高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例

马冬晨 王文军 张婷 李立武 王作栋 钱宇 敖添 符印 王丹 贾星亮

马冬晨, 王文军, 张婷, 李立武, 王作栋, 钱宇, 敖添, 符印, 王丹, 贾星亮. 正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例[J]. 沉积学报, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098
引用本文: 马冬晨, 王文军, 张婷, 李立武, 王作栋, 钱宇, 敖添, 符印, 王丹, 贾星亮. 正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例[J]. 沉积学报, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098
MA DongChen, WANG WenJun, ZHANG Ting, LI LiWu, WANG ZuoDong, QIAN Yu, AO Tian, FU Yin, WANG Dan, JIA XingLiang. Analysis of Carbon Isotopic Compositional Differences of Individual n-Alkane: Case study of Ordovician crude oil in Tahe oilfield[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098
Citation: MA DongChen, WANG WenJun, ZHANG Ting, LI LiWu, WANG ZuoDong, QIAN Yu, AO Tian, FU Yin, WANG Dan, JIA XingLiang. Analysis of Carbon Isotopic Compositional Differences of Individual n-Alkane: Case study of Ordovician crude oil in Tahe oilfield[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098

正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例

doi: 10.14027/j.issn.1000-0550.2022.098
基金项目: 

国家自然科学基金项目 42272187

详细信息
    作者简介:

    马冬晨,男,1969年出生,硕士研究生,高级工程师,地球化学与勘查,E-mail: mdc0001@126.com

    通讯作者:

    王作栋,男,高级工程师,E-mail: wzd@lzb.ac.cn

Analysis of Carbon Isotopic Compositional Differences of Individual n-Alkane: Case study of Ordovician crude oil in Tahe oilfield

Funds: 

National Natural Science Foundation of China 42272187

  • 摘要: 目的 为明确原油正构烷烃单体碳同位素(δ13Calkane)组成差异的成因。 方法 研究分析了塔北地区奥陶系共计17个原油样品δ13Calkane组成特征,结合相关有机地球化学参数,从沉积环境、成熟度和生物降解作用三个方面解释了三类原油δ13Calkane值的变化趋势。 结果与结论 根据物性的差异,可将塔北地区原油分为重质、中质和轻质三类。塔北地区奥陶系原油δ13Calkane值介于-37‰~-31‰,呈现出海相原油的特征,表明原油δ13Calkane组成及分布范围受其形成的沉积环境和母质类型控制;从重质原油到中质原油再到轻质原油,成熟度逐渐增大,导致原油δ13Calkane值正偏;相较于中质原油和轻质原油,重质原油低碳数部分δ13Calkane明显变大,表明生物降解程度是重质原油中、低分子量正构烷烃δ13C14~δ13C19值正偏的主要影响因素。
  • 图  1  塔河油田奥陶系原油井位分布图[21]

    Figure  1.  Location of Ordovician crude oil wells in Tahe oilfield[21]

    图  2  三类原油代表性TIC、m/z 191、m/z 217质量色谱图

    Figure  2.  Representative TIC, m/z 191 and m/z 217 mass chromatograms for heavy, medium and light crude oil

    图  3  三类原油δ13Calkane组成分布对比图

    Figure  3.  Comparison of δ13Calkane composition of three types of crude oil

    图  4  Pr/Ph与MDBTs/MDBTFs二元图[24]

    Figure  4.  Binary plot of Pr/Ph vs. MDBTs/MDBTFs[24]

    图  5  原油沉积环境及母质来源判别图

    Figure  5.  Discrimination diagram of crude oil deposition environment and parent material source

    图  6  原油成熟度判别图[39]

    Figure  6.  Discrimination diagram of crude oil maturity[39]

    图  7  原油生物降解判别图[41]

    Figure  7.  Discrimination diagram of crude oil biodegradation[41]

    表  1  塔河油田奥陶系原油相关地球化学参数

    Table  1.   Relevant geochemical parameters of Ordovician crude oil in Tahe oilfield

    井号深度/m层位abcdefghijklmnopqrs
    AD46 448~6 558O1.301.081.050.730.410.552.451.8315.890.560.290.320.560.490.750.940.451.825.39
    YQX1-15 920~5 985O1-2y7.021.191.021.050.360.422.802.3810.180.580.250.550.540.480.660.740.482.083.31
    YQ5O1-2y2.091.040.930.780.400.542.511.855.250.620.270.460.560.490.650.790.492.174.50
    TP316 477~6 638O2yj3.361.091.180.770.430.662.351.514.850.470.310.410.560.480.530.580.350.685.71
    TP1346 532~6 655O2yj2.891.191.010.800.550.761.831.318.660.390.270.310.560.480.530.560.350.735.19
    TP138XO2yj4.691.001.130.700.490.902.041.116.880.440.260.250.560.480.590.660.370.574.69
    AT206 100~6 130O2yj10.821.010.991.080.330.393.022.567.150.810.380.150.540.480.770.870.499.26
    S86O2yj4.911.280.930.730.350.522.901.929.820.410.280.220.560.490.630.690.380.293.97
    TP236 588~6 705O2yj2.121.080.960.980.530.641.891.557.350.540.310.360.550.460.620.720.410.368.30
    T7386 045~6 090O12.001.091.080.600.430.872.351.158.230.350.240.260.560.480.680.840.460.412.74
    S11446 150O2yj3.461.040.980.810.350.482.842.0715.030.720.280.230.540.470.650.740.404.39
    TP376 804~6 940O2yj3.951.031.030.970.350.442.872.2822.430.830.310.280.540.480.680.780.4013.53
    AT176 375~6 440O2yj1.291.011.011.080.190.205.204.946.630.270.290.530.490.670.770.439.78
    AT286 582~6 736O2yj1.231.001.000.940.170.186.005.5815.971.310.620.420.550.460.830.930.50
    S107CH6 170O2yj1.591.001.011.100.190.205.174.9710.220.900.480.380.580.480.830.940.50
    AT27X6 867~6 996O2yj5.901.011.021.060.260.313.833.2515.470.650.420.350.570.480.951.060.52
    S1015 756~5 817O2yj0.621.001.010.890.200.234.944.3914.270.300.470.600.570.490.780.860.44
    注:(1)a.ΣnC21-nC22+;b.CPI;c.OEP;d.Pr/Ph;e.Pr/nC17;f.Ph/nC18;g.nC17/Pr;h.nC18/Ph;i.MDBTs/MDBTFs;j.C21⁃22甾烷/(C21⁃22+C27⁃29)甾烷;k.C27dia/(dia+reg)甾烷;l.GI;m.C29甾烷ββ/(αα+ββ);n.C29甾烷S/(S+R);o.MPI1;p.MPI2;q.MPDF1;r.C28⁃25降藿烷/C29⁃17α(H)藿烷;s.Σ三环萜烷/C29-17α(H)藿烷;(2)CPI.碳优势指数,CPI=[Σ(C25~C33)/Σ(C24~C32)+Σ(C25~C33)/Σ(C26~C34)] ;OEP.奇偶优势指数,OEP=[(Ci+6Ci+2+Ci+4)/4Ci+1+4Ci+3](-1)i+1,Ci为碳数等于i的正构烷烃的相对含量;Pr/Ph=姥鲛烷/植烷;MDBTs.甲基二苯并噻吩系列;MDBTFs.甲基二苯并呋喃系列;dia甾烷.重排甾烷;reg甾烷.规则甾烷;GI.伽马蜡烷指数,GI=伽马蜡烷/C3017α(H)-藿烷;MPI1=1.5×(3-MP+2-MP)/(P+9-MP+1-MP);MPI2=3×2-MP/(P+9-MP+1-MP);MPDF1.甲基菲分馏指数,MPDF1=(3-MP+2-MP)/(3-MP+2-MP+9-MP+1-MP);P.菲;MP.甲基菲。
    下载: 导出CSV

    表  2  塔河油田奥陶系原油正构烷烃单体碳同位素值(δ13Calkane/‰,VPDB)

    Table  2.   Carbon isotope values of individual n⁃alkane in Ordovician crude oil in Tahe oilfield (δ13Calkane/‰, VPDB)

    井号nC14nC15nC16nC17nC18nC19nC20nC21nC22
    AD4-32.3-33.0-33.6-33.7-35.2-34.8-33.7-35.0-33.9
    YQX1-1-33.1-33.5-34.0-33.7-33.6-34.3-34.2-35.0-34.6
    YQ5-33.4-34.4-34.3-34.2-34.9-35.3-35.2-35.2-34.8
    TP31-33.6-33.8-35.0-35.4-36.0-36.7-35.3-37.0-36.2
    TP134-33.8-34.3-33.7-34.2-34.0-34.2-36.3-33.9-34.0
    TP138X-34.1-33.9-34.0-34.9-35.9-36.2-35.5-36.2-35.0
    AT20-34.0-34.1-33.9-34.0-34.3-34.4-34.3-34.7-34.4
    S86-34.7-34.1-33.5-33.9-34.2-34.9-33.8-34.9-33.7
    TP23-34.0-34.5-35.2-34.3-35.2-35.0-34.3-35.5-34.8
    T738-34.6-34.1-35.0-35.0-35.0-33.4-34.1-33.3-33.6
    S1144-34.4-34.8-34.4-34.8-35.3-34.8-34.2-35.3-36.1
    TP37-35.1-34.8-34.1-35.2-35.1-35.8-35.1-35.9-35.2
    AT17-35.2-35.6-35.3-35.2-34.9-34.8-34.9-35.1-34.4
    AT28-31.9-32.1-32.5-31.6-32.7-32.7-32.5-33.5-32.3
    S107CH-32.4-32.3-32.4-32.2-32.4-32.0-31.9-32.6-32.4
    AT27X-32.4-33.1-32.3-32.7-33.5-33.0-32.1-33.5-34.4
    S101-32.2-34.5-33.1-33.6-33.3-33.8-33.6-34.0-33.1
    下载: 导出CSV
  • [1] 张三,金强,乔贞,等. 塔河油田奥陶系构造差异演化及油气地质意义[J]. 中国矿业大学学报,2020,49(3):576-586.

    Zhang San, Jin Qiang, Qiao Zhen, et al. Differential tectonic evolution of the Ordovician and its significance in petroleum geology in main area of Tahe oilfield [J]. Journal of China University of Mining & Technology, 2020, 49(3): 576-586.
    [2] 饶丹,秦建中,许锦,等. 塔河油田奥陶系油藏成藏期次研究[J]. 石油实验地质,2014,36(1):83-88,101.

    Rao Dan, Qin Jianzhong, Xu Jin, et al. Accumulation periods of Ordovician reservoirs in Tahe oil field[J]. Petroleum Geology & Experiment, 2014, 36(1): 83-88, 101.
    [3] 郑朝阳,段毅,张学军,等. 塔河油田奥陶系原油有机地球化学特征及其油藏成因[J]. 沉积学报,2011,29(3):605-612.

    Zheng Chaoyang, Duan Yi, Zhang Xuejun, et al. Characteristics of molecular geochemistry and genesis of crude oils from Tahe oilfield of Tarim Basin [J]. Acta Sedimentologica Sinica, 2011, 29(3): 605-612.
    [4] 赵永强,云露,王斌,等. 塔里木盆地塔河油田中西部奥陶系油气成藏主控因素与动态成藏过程[J]. 石油实验地质,2021,43(5):758-766.

    Zhao Yongqiang, Yun Lu, Wang Bin, et al. Main constrains and dynamic process of Ordovician hydrocarbon accumulation central and western Tahe oil field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 758-766.
    [5] 张水昌. 运移分馏作用:凝析油和蜡质油形成的一种重要机制[J]. 科学通报,2000,45(6):667-670.

    Zhang Shuichang. The migration fractionation: An important mechanism in the formation of condensate and waxy oil[J]. Chinese Science Bulletin, 2000, 45(6): 667-670.
    [6] 南青云,刘文汇,腾格尔,等. 塔河油田原油甾藿烷系列化合物地球化学再认识[J]. 沉积学报,2006,24(2):294-299.

    Qingyun Nan, Liu Wenhui, Tenger, et al. Geochemical characters recognition for steranes and hopanes from oils of Tahe oilfield [J]. Acta Sedimentologica Sinica, 2006, 24(2): 294-299.
    [7] Yu S, Pan C C, Wang J J, et al. Correlation of crude oils and oil components from reservoirs and source rocks using carbon isotopic compositions of individual n-alkanes in the Tazhong and Tabei uplift of the Tarim Basin, China[J]. Organic Geochemistry, 2012, 52: 67-80.
    [8] Xiao Q L, Sun Y G, Zhang Y D, et al. Stable carbon isotope fractionation of individual light hydrocarbons in the C6-C8 range in crude oil as induced by natural evaporation: Experimental results and geological implications[J]. Organic Geochemistry, 2012, 50: 44-56.
    [9] Xiong Y Q, Geng A S. Carbon isotopic composition of individual n-alkanes in asphaltene pyrolysates of biodegraded crude oils from the Liaohe Basin, China[J]. Organic Geochemistry, 2000, 31(12): 1441-1449.
    [10] 段毅,张辉,吴保祥,等. 柴达木盆地原油单体正构烷烃碳同位素研究[J]. 矿物岩石,2003,23(4):91-94.

    Duan Yi, Zhang Hui, Wu Baoxiang, et al. Carbon isotopic studies of individual n-alkanes in crude oils from Qaidam Basin[J]. Journal of Mineralogy and Petrology, 2003, 23(4): 91-94.
    [11] 李素梅,郭栋. 东营凹陷原油单体烃碳同位素特征及其在油源识别中的应用[J]. 现代地质,2010,24(2):252-258.

    Li Sumei, Guo Dong. Characteristics and application of compound specific isotope in oil-source identification for oils in Dongying Depression, Bohai Bay Basin[J]. Geoscience, 2010, 24(2): 252-258.
    [12] 李洪波,张敏,毛治超. 塔里木盆地原油轻烃单体烃碳同位素组成特征[J]. 矿物岩石地球化学通报,2017,36(4):667-672.

    Li Hongbo, Zhang Min, Mao Zhichao. Compound-specific carbon isotope compositions of light hydrocarbons in crude oils from the Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4): 667-672.
    [13] Zhang Z R, Volkman J K. Isotopically enriched n-alkan-2-ones with even chain predominance in a torbanite from the Sydney Basin, Australia[J]. Organic Geochemistry, 2020, 144: 104018.
    [14] 林俊峰,张敏,张利红,等. 塔里木盆地寒武—奥陶系烃源岩萘、菲系列化合物单体碳同位素特征[J]. 地球化学,2021,50(3):273-281.

    Lin Junfeng, Zhang Min, Zhang Lihong, et al. Stable carbon isotopic characteristics of naphthalene and phenanthrene series in Cambrian-Ordovician source rocks from the Tarim Basin[J]. Geochimica, 2021, 50(3): 273-281.
    [15] Chen Y X, Tian C T, Li K N, et al. Influence of thermal maturity on carbon isotopic composition of individual aromatic hydrocarbons during anhydrous closed-system pyrolysis[J]. Fuel, 2016, 186: 466-475.
    [16] Liao Y H, Geng A S, Huang H P. The influence of biodegradation on resins and asphaltenes in the Liaohe Basin[J]. Organic Geochemistry, 2009, 40(3): 312-320.
    [17] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Heidelberg: Springer-Verlag, 1984.
    [18] Xu H Y, George S C, Hou D J, et al. Petroleum sources in the Xihu Depression, East China Sea: Evidence from stable carbon isotopic compositions of individual n-alkanes and isoprenoids[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107073.
    [19] Cortes J E, Rincon J M, Jaramillo J M, et al. Biomarkers and compound-specific stable carbon isotope of n-alkanes in crude oils from eastern Llanos Basin, Colombia[J]. Journal of South American Earth Sciences, 2010, 29(2): 198-213.
    [20] 刘金萍,耿安松,熊永强,等. 正构烷烃单体碳、氢同位素在油源对比中的应用[J]. 新疆石油地质,2007,28(1):104-107.

    Liu Jinping, Geng Ansong, Xiong Yongqiang, et al. Application of free C and H isotopes in normal alkane to correlation of oil sources in Huanghua Depression[J]. Xinjiang Petroleum Geology, 2007, 28(1): 104-107.
    [21] 丁勇,彭守涛,李会军. 塔河油田及塔北碳酸盐岩油藏特征与成藏主控因素[J].石油实验地质,2011,33(5):488-494.

    Ding Yong, Peng Shoutao, Li Huijun. Features and main controlling factors of carbonate reservoirs in Tahe oilfield and northern Tarim Basin[J]. Petroleum Geology & Experimental, 2011, 33(5): 488-494.
    [22] Giger W, Schaffner C, Wakeham S G. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 119-129.
    [23] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8): 745-749.
    [24] Hughes W B, Holba A G, Dzou L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
    [25] Wang G L, Chang X C, Wang T G, et al. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks[J]. Organic Geochemistry, 2015, 78: 110-120.
    [26] 黄第藩,张大江,李晋超. 论4-甲基甾烷和孕甾烷的成因[J]. 石油勘探与开发,1989,16(3):8-15.

    Huang Difan, Zhang Dajiang, Li Jinchao. On origin of 4-methyl steranes and pregnanes[J]. Petroleum Exploration and Development, 1989, 16(3): 8-15.
    [27] Rubinstein I, Sieskind O, Albrecht P. Rearranged sterenes in a shale: Occurrence and simulated formation[J]. Journal of the Chemical Society, Perkin Transactions 1, 1975(19): 1833-1836.
    [28] Clark J P, Philp R P. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta[J]. Bulletin of Canadian Petroleum Geology, 1989, 37(4): 401-416.
    [29] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222.
    [30] ten Haven H L, Rullkötter J, de Leeuw J W, et al. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988, 333(6174): 604.
    [31] Peters K E, Clark M E, das Gupta U, et al. Recognition of an infracambrian source rock based on biomarkers in the Baghewala-1 oil, India[J]. AAPG Bulletin, 1995, 79(10): 1481-1493.
    [32] Peters K E, Walters C C, Moldowan J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
    [33] Philp R P. Biological markers in fossil fuel production[J]. Mass Spectrometry Reviews, 1985, 4(1): 1-54.
    [34] Li M W, Larter S R, Taylor P, et al. Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols[J]. Organic Geochemistry, 1995, 23(2): 159-167.
    [35] Qiao J Q, Baniasad A, Zieger L, et al. Paleo-depositional environment, origin and characteristics of organic matter of the Triassic Chang 7 member of the Yanchang Formation throughout the mid-western part of the Ordos Basin, China[J]. International Journal of Coal Geology, 2021, 237: 103636.
    [36] 陈建渝,刘从印,张树林,等. 原油中生物标志物的组成是成藏史的反映[J]. 地球科学:中国地质大学学报,1997,22(6):97-102.

    Chen Jianyu, Liu Congyin, Zhang Shulin, et al. Composition of the biomarkers in crude oil is the reflection of pool-forming history[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(6): 97-102.
    [37] 陈致林,李素娟, 王忠. 低—中成熟演化阶段芳烃成熟度指标的研究[J]. 沉积学报,1997,15(2):192-197.

    Chen Zhilin, Li Sujuan, Wang Zhong. A study on maturity indicatorssome of some aromatics in low-midmature thermal evolution zones [J]. Acta Sedimentologica Sinica, 1997, 15(2): 192-197.
    [38] 陈琰,包建平,刘昭茜,等. 甲基菲指数及甲基菲比值与有机质热演化关系:以柴达木盆地北缘地区为例[J]. 石油勘探与开发,2010,37(4):508-512.

    Chen Yan, Bao Jianping, Liu Zhaoqian, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example [J]. Petroleum Exploration and Development, 2010, 37(4): 508-512.
    [39] 许婷,侯读杰,曹冰,等. 东海盆地西湖凹陷轻质原油芳烃地球化学特征[J]. 沉积学报,2017,35(1):182-192.

    Xu Ting, Hou Dujie, Cao Bing, et al. Characteristics of aromatic geochemistry in light oils from Xihu Sag in East China Sea Basin [J]. Acta Sedimentologica Sinica, 2017, 35(1): 182-192.
    [40] Wenger L M, Davis C L, Isaksen G H. Multiple controls on petroleum biodegradation and impact on oil quality[C]//SPE annual technical conference and exhibition. New Orleans: SPE, 2002.
    [41] Killops S D, Nytoft H P, di Primio R. Biodegradative production and destruction of norhopanes: An example from residual oil in a Paleogene paleomigration conduit on the Utsira High, Norwegian North Sea[J]. Organic Geochemistry, 2019, 138: 103906.
    [42] 赵孟军,黄第藩. 不同沉积环境生成的原油单体烃碳同位素分布特征[J]. 石油实验地质,1995,17(2):171-179.

    Zhao Mengjun, Huang Difan. Carbon isotopic distributive characteriscs of crude oll monomers produced in different sedimentary environments [J]. Experimental Petroleum Geology, 1995, 17(2): 171-179.
    [43] Bjorøy M, Hall K, Gillyon P, et al. Carbon isotope variations in n-alkanes and isoprenoids of whole oils[J]. Chemical Geology, 1991, 93(1/2): 13-20.
    [44] 贾存善,王延斌,顾忆,等. 塔河油田奥陶系原油芳烃地球化学特征[J]. 石油实验地质,2009,31(4):384-388,393.

    Jia Cunshan, Wang Yanbin, Gu Yi, et al. Geochemical characteristics of aromatic hydrocarbons of crude oils from Ordovician reservoir in the Tahe oilfield [J]. Petroleum Geology & Experimental, 2009, 31(4): 384-388, 393.
    [45] 卢鸿,柴平霞,孙永革,等. 轮南14井原油正构烷烃和类异戊二烯单体碳同位素研究[J]. 沉积学报,2002,20(3):477-481,504.

    Lu Hong, Chai Pingxia, Sun Yongge, et al. Study on stable carbon isotopic compositions of n-alkanes and isoprenoids for crude oils from well Lunnan 14, Tarim Basin[J]. Acta Sedimentologica Sinica, 2002, 20(3): 477-481, 504.
    [46] 赵孟军,黄第藩. 初论原油单体烃系列碳同位素分布特征与生油环境之间的关系[J]. 地球化学,1995,24(3):254-260.

    Zhao Mengjun, Huang Difan. Preliminary discussion on carbon isotopic distribution pattern of individual hydrocarbons from crude oil and its relationship to oil-forming environment [J]. Geochimica, 1995, 24(3): 254-260.
    [47] Bjorøy M, Hall P B, Hustad E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/2/3): 89-105.
    [48] Clayton C J, Bjorøy M. Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils[J]. Organic Geochemistry, 1994, 21(6/7): 737-750.
    [49] 马安来,金之钧,朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学,2017,28(2): 313-323.

    Ma Anlai, Jin Zhijun, Zhu Cuishan. Maturity and oil-cracking of the Ordovician oils from Tahe oilfield, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2017, 28(2): 313-323.
    [50] Sun Y G, Chen Z Y, Xu S P, et al. Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: Evidence from a group of progressively biodegraded oils[J]. Organic Geochemistry, 2005, 36(2): 225-238.
  • [1] 孙鹏, 杨海风, 王飞龙, 汤国民, 王广源, 唐友军.  生物降解作用对原油稀土元素的响应 . 沉积学报, 2024, 42(3): 912-927. doi: 10.14027/j.issn.1000-0550.2024.061
    [2] 苏蕾, 常象春, 徐佑德, 柳忠泉, 史兵兵.  车排子凸起东翼中生界原油生物降解程度评价 . 沉积学报, 2024, 42(4): 1422-1432. doi: 10.14027/j.issn.1000-0550.2022.140
    [3] 罗雨婷, 张敏.  松辽盆地梨树断陷原油高碳数三环萜烷分布特征及主控因素 . 沉积学报, 2023, 41(2): 569-583. doi: 10.14027/j.issn.1000-0550.2022.071
    [4] 王珊, 张敏.  强烈生物降解作用下三环萜烷的分布与组成特征差异研究 . 沉积学报, 2023, 41(4): 1192-1201. doi: 10.14027/j.issn.1000-0550.2022.012
    [5] 陈治军, 王志伟, 张少清, 高怡文, 韩长春, 李科社.  二连盆地宝勒根陶海凹陷烃源岩生物标志化合物特征与油源对比 . 沉积学报, 2020, 38(2): 451-462. doi: 10.14027/j.issn.1000-0550.2019.034
    [6] 程熊, 侯读杰, 徐长贵, 王飞龙.  庙西凹陷严重生物降解原油序列中三环萜烷的异常分布成因初探 . 沉积学报, 2017, 35(1): 193-202. doi: 10.14027/j.cnki.cjxb.2017.01.019
    [7] 王万春, 王晓锋, 郑建京, 王作栋.  鄂尔多斯盆地西南缘奥陶系泥页岩与碳酸盐岩生物标志物特征对比 . 沉积学报, 2016, 34(2): 404-414. doi: 10.14027/j.cnki.cjxb.2016.02.019
    [8] 张刚庆.  板桥凹陷原油芳烃组成特征及地球化学意义 . 沉积学报, 2009, 27(2): 367-371.
    [9] 孙敏卓.  柴达木盆地涩北1井钙质泥岩饱和烃微生物作用的地球化学意义 . 沉积学报, 2009, 27(1): 186-190.
    [10] 刘俊海.  胡庆油田湖相原油咔唑类化合物的地球化学特征 . 沉积学报, 2006, 24(1): 123-128.
    [11] 孟仟祥, 房嬛, 徐永昌, 沈平.  柴达木盆地石炭系烃源岩和煤岩生物标志物特征及其地球化学意义 . 沉积学报, 2004, 22(4): 729-736.
    [12] 卢鸿, 彭平安, 徐兴友, 张林晔.  济阳拗陷特殊生物降解油的初步研究 . 沉积学报, 2004, 22(4): 694-699.
    [13] 林金辉, 伊海生, 李勇, 王成善, 彭平安.  藏北高原双湖地区中侏罗统海相油页岩生物标志化合物分布特征及其意义 . 沉积学报, 2001, 19(2): 287-292.
    [14] 李素梅, 王铁冠, 张爱云, 郭绍辉, 张水昌.  原油中吡咯类化合物的地球化学特征及其意义 . 沉积学报, 1999, 17(2): 312-317.
    [15] 王万春, 徐永昌, Manfred Schidlowski, Eckhard Faber, Wolfgang Stahl.  不同沉积环境及成熟度干酪根的碳氢同位素地球化学特征 . 沉积学报, 1997, 15(S1): 132-137.
    [16] 许玩宏, 张忠英, 沈平, 孟仟祥.  贵州三都早奥陶世同高组下燕高页岩段的生物标志化合物 . 沉积学报, 1997, 15(3): 72-77.
    [17] 陈传平, 梅博文, 易绍金, 王大华, 金迪威, 张春明.  砂岩储层中原油微生物降解的模拟实验研究 . 沉积学报, 1997, 15(1): 135-140.
    [18] 妥进才, 邵宏舜, 黄杏珍.  柴达木盆地大柴旦盐湖现代沉积物中的生物标志化合物分布特征 . 沉积学报, 1993, 11(2): 118-123.
    [19] 丁祖国, 柴之芳, 马建国, 傅家谟, 盛国英, 彭平安, 林清.  江汉油田原油和生油岩有机抽提物中过渡族微量元素特征及其石油地球化学意义 . 沉积学报, 1992, 10(1): 108-117.
    [20] 张俊达, 裴存民.  珠江口盆地东部原油和抽提物中苯并藿烷的检出及其地质意义 . 沉积学报, 1991, 9(S1): 125-130.
  • 加载中
图(7) / 表 (2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  20
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-08-01
  • 录用日期:  2022-10-06
  • 网络出版日期:  2022-10-06
  • 刊出日期:  2024-08-10

目录

    正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例

    doi: 10.14027/j.issn.1000-0550.2022.098
      基金项目:

      国家自然科学基金项目 42272187

      作者简介:

      马冬晨,男,1969年出生,硕士研究生,高级工程师,地球化学与勘查,E-mail: mdc0001@126.com

      通讯作者: 王作栋,男,高级工程师,E-mail: wzd@lzb.ac.cn

    摘要: 目的 为明确原油正构烷烃单体碳同位素(δ13Calkane)组成差异的成因。 方法 研究分析了塔北地区奥陶系共计17个原油样品δ13Calkane组成特征,结合相关有机地球化学参数,从沉积环境、成熟度和生物降解作用三个方面解释了三类原油δ13Calkane值的变化趋势。 结果与结论 根据物性的差异,可将塔北地区原油分为重质、中质和轻质三类。塔北地区奥陶系原油δ13Calkane值介于-37‰~-31‰,呈现出海相原油的特征,表明原油δ13Calkane组成及分布范围受其形成的沉积环境和母质类型控制;从重质原油到中质原油再到轻质原油,成熟度逐渐增大,导致原油δ13Calkane值正偏;相较于中质原油和轻质原油,重质原油低碳数部分δ13Calkane明显变大,表明生物降解程度是重质原油中、低分子量正构烷烃δ13C14~δ13C19值正偏的主要影响因素。

    English Abstract

    马冬晨, 王文军, 张婷, 李立武, 王作栋, 钱宇, 敖添, 符印, 王丹, 贾星亮. 正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例[J]. 沉积学报, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098
    引用本文: 马冬晨, 王文军, 张婷, 李立武, 王作栋, 钱宇, 敖添, 符印, 王丹, 贾星亮. 正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例[J]. 沉积学报, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098
    MA DongChen, WANG WenJun, ZHANG Ting, LI LiWu, WANG ZuoDong, QIAN Yu, AO Tian, FU Yin, WANG Dan, JIA XingLiang. Analysis of Carbon Isotopic Compositional Differences of Individual n-Alkane: Case study of Ordovician crude oil in Tahe oilfield[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098
    Citation: MA DongChen, WANG WenJun, ZHANG Ting, LI LiWu, WANG ZuoDong, QIAN Yu, AO Tian, FU Yin, WANG Dan, JIA XingLiang. Analysis of Carbon Isotopic Compositional Differences of Individual n-Alkane: Case study of Ordovician crude oil in Tahe oilfield[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1411-1421. doi: 10.14027/j.issn.1000-0550.2022.098
      • 塔里木盆地塔河油田位于塔北隆起中段的阿克库勒凸起之上,西为哈拉哈塘凹陷,东邻草湖凹陷,北为雅克拉断凸,南接顺托果勒隆起和满加尔坳陷,其为复杂类型碳酸盐岩岩溶缝洞型油藏,储集空间以岩溶缝洞和构造裂缝为主,是世界上少见的、极其复杂的缝洞型碳酸盐岩油藏[12]。塔河油田原油的主力烃源岩为中上奥陶统烃源岩,寒武系和下奥陶统烃源岩对塔河油田油气的生成也有一定贡献[3]。该油田经历了多期次构造活动、油气生成、运移及成藏过程,并且受到生物降解、地色层效应等各种次生改造作用的影响,因此在运用生物标志化合物解决其油源、油气成藏和运移等问题时存在一定的局限性[46]。单体生物标志化合物碳同位素分析技术的出现,为原油成因的研究提供了新方法[79]。段毅等[10]根据正构烷烃单体碳同位素分布形式特征,提出柴北地区原油属于煤成油和湖相偏腐泥型、混合型母质成因。李素梅等[11]在对东营凹陷原油正构烷烃单体碳同位素的研究中发现,生油窗内成熟度对烃源岩及原油碳同位素的影响较小,后者主要受控于母源和沉积环境。李洪波等[12]认为轻烃化合物的单体碳同位素组成是不同成因原油的划分标志。分子单体碳同位素不仅可以反映单个化合物的来源,而且受沉积后期及次生改造过程的影响较小[13]。然而也有研究发现,成熟度以及生物降解作用均能不同程度地影响原油分子单体碳同位素组成。例如,林俊峰等[14]认为高成熟度或异常高温作用可能对芳烃的分子碳同位素产生较大影响,使其更富集13C。Chen et al.[15]研究表明取代基较多的芳烃其碳同位素值随成熟度的增加逐渐增大,且取代基越多,δ13C值越大。另外,生物降解作用较强会导致饱和烃组分δ13C值显著增大[16]。由此可见,成熟度及生物降解作用对分子单体碳同位素组成的影响不容忽视。

        正构烷烃是地质体中常见的生物标志化合物,它的生源复杂,可能来源于古环境中的菌类、藻类、高等植物及其他有机质的转化[17]。在复杂的含油气系统中,正构烷烃单体碳同位素组成对原油有机质的生源具有重要的指示意义,并且可以用于探讨原油有机质的沉积环境[1820]。借助于单体烃碳同位素分析技术,分析塔河油田奥陶系原油正构烷烃的单体碳同位素组成特征,并结合有机地球化学参数,探讨沉积环境、成熟度和生物降解作用对正构烷烃单体碳同位素组成的影响,以期将正构烷烃单体碳同位素更好地应用于油—油、油—源对比等方面的研究。

      • 选取的17个奥陶系原油样品,均采自塔里木盆地塔河油田,主要包括艾丁、于奇、托甫台及跃进等区域,深度范围主要介于5 500~7 000 m(表1)。根据塔河油田奥陶系原油物性的差异,可以将原油样品采集区划分为重质油区、中质油区和轻质油区(图1)。

        表 1  塔河油田奥陶系原油相关地球化学参数

        Table 1.  Relevant geochemical parameters of Ordovician crude oil in Tahe oilfield

        井号深度/m层位abcdefghijklmnopqrs
        AD46 448~6 558O1.301.081.050.730.410.552.451.8315.890.560.290.320.560.490.750.940.451.825.39
        YQX1-15 920~5 985O1-2y7.021.191.021.050.360.422.802.3810.180.580.250.550.540.480.660.740.482.083.31
        YQ5O1-2y2.091.040.930.780.400.542.511.855.250.620.270.460.560.490.650.790.492.174.50
        TP316 477~6 638O2yj3.361.091.180.770.430.662.351.514.850.470.310.410.560.480.530.580.350.685.71
        TP1346 532~6 655O2yj2.891.191.010.800.550.761.831.318.660.390.270.310.560.480.530.560.350.735.19
        TP138XO2yj4.691.001.130.700.490.902.041.116.880.440.260.250.560.480.590.660.370.574.69
        AT206 100~6 130O2yj10.821.010.991.080.330.393.022.567.150.810.380.150.540.480.770.870.499.26
        S86O2yj4.911.280.930.730.350.522.901.929.820.410.280.220.560.490.630.690.380.293.97
        TP236 588~6 705O2yj2.121.080.960.980.530.641.891.557.350.540.310.360.550.460.620.720.410.368.30
        T7386 045~6 090O12.001.091.080.600.430.872.351.158.230.350.240.260.560.480.680.840.460.412.74
        S11446 150O2yj3.461.040.980.810.350.482.842.0715.030.720.280.230.540.470.650.740.404.39
        TP376 804~6 940O2yj3.951.031.030.970.350.442.872.2822.430.830.310.280.540.480.680.780.4013.53
        AT176 375~6 440O2yj1.291.011.011.080.190.205.204.946.630.270.290.530.490.670.770.439.78
        AT286 582~6 736O2yj1.231.001.000.940.170.186.005.5815.971.310.620.420.550.460.830.930.50
        S107CH6 170O2yj1.591.001.011.100.190.205.174.9710.220.900.480.380.580.480.830.940.50
        AT27X6 867~6 996O2yj5.901.011.021.060.260.313.833.2515.470.650.420.350.570.480.951.060.52
        S1015 756~5 817O2yj0.621.001.010.890.200.234.944.3914.270.300.470.600.570.490.780.860.44
        注:(1)a.ΣnC21-nC22+;b.CPI;c.OEP;d.Pr/Ph;e.Pr/nC17;f.Ph/nC18;g.nC17/Pr;h.nC18/Ph;i.MDBTs/MDBTFs;j.C21⁃22甾烷/(C21⁃22+C27⁃29)甾烷;k.C27dia/(dia+reg)甾烷;l.GI;m.C29甾烷ββ/(αα+ββ);n.C29甾烷S/(S+R);o.MPI1;p.MPI2;q.MPDF1;r.C28⁃25降藿烷/C29⁃17α(H)藿烷;s.Σ三环萜烷/C29-17α(H)藿烷;(2)CPI.碳优势指数,CPI=[Σ(C25~C33)/Σ(C24~C32)+Σ(C25~C33)/Σ(C26~C34)] ;OEP.奇偶优势指数,OEP=[(Ci+6Ci+2+Ci+4)/4Ci+1+4Ci+3](-1)i+1,Ci为碳数等于i的正构烷烃的相对含量;Pr/Ph=姥鲛烷/植烷;MDBTs.甲基二苯并噻吩系列;MDBTFs.甲基二苯并呋喃系列;dia甾烷.重排甾烷;reg甾烷.规则甾烷;GI.伽马蜡烷指数,GI=伽马蜡烷/C3017α(H)-藿烷;MPI1=1.5×(3-MP+2-MP)/(P+9-MP+1-MP);MPI2=3×2-MP/(P+9-MP+1-MP);MPDF1.甲基菲分馏指数,MPDF1=(3-MP+2-MP)/(3-MP+2-MP+9-MP+1-MP);P.菲;MP.甲基菲。

        图  1  塔河油田奥陶系原油井位分布图[21]

        Figure 1.  Location of Ordovician crude oil wells in Tahe oilfield[21]

      • 利用正己烷将原油样品中的沥青质沉淀析出,其可溶组分经浓缩后,通过硅胶—氧化铝(硅胶:氧化铝=3∶1)层析柱,分别采用正己烷和二氯甲烷依次将饱和烃及芳烃淋洗出来。之后对饱和烃和芳烃组分进行气相色谱—质谱(GC-MS)分析。利用尿素络合法将剩余饱和烃馏分进行分离提纯,去除其中所含的支链和环烷烃,以降低其他化合物对正构烷烃单体碳同位素组成分析结果的影响。

      • 分析仪器为安捷伦6890N-5973N气相色谱质谱仪,仪器编号CO38;色谱柱是DB-5MS色谱柱,30 m×0.25 mm×0.25 μm;采用手动无分流进样的方法,进样量1.0 μL,氦气流量0.8 mL/min;初始温度80 ℃,恒温3 min后,以3 ℃/min的速率升至230 ℃,再以2 ℃/min升至310 ℃后恒温15 min;进样口温度290 ℃,离子源温度230 ℃,传输线温度300 ℃;扫描周期0.66 cyc/sec;电离电压70 eV,离子源类型EI+;使用NIST 05谱库对化合物进行定性分析,采用峰面积计算相关的生物标志化合物参数。

      • 仪器型号MAT253,仪器编号C033;色谱柱是Pona毛细色谱柱;采用无分馏进样的方法,进样量0.5 μL;氦气流量0.8 mL/min;柱箱初始温度80 ℃,恒温3 min后,以3 ℃/min的速率升至190 ℃,再以2 ℃/min升至290 ℃后恒温25 min;进样器温度280 ℃。

      • 塔河油田奥陶系原油的饱和烃组分以正构烷烃系列化合物为主,碳数分布范围较广,为nC11~nC36,主峰碳为nC16nC17。姥植比(Pr/Ph)介于0.60~1.10,平均值为0.89。从重质原油到中质原油再到轻质原油,Pr/nC17值和Ph/nC18值逐渐变小。伽马蜡烷指数(GI)介于0.15~0.60,平均值为0.44。此外,三类原油饱和烃中检出三环萜烷、藿烷及甾烷,其中,甾烷主要包括C27~C29常规甾烷、重排甾烷、孕甾烷、升孕甾烷等(图2)。三类原油C29甾烷ββ/(αα+ββ)值介于0.53~0.57,平均值为0.56,C29甾烷20S/(20S+20R)值介于0.46~0.49,平均值为0.48(表1)。

        图  2  三类原油代表性TIC、m/z 191、m/z 217质量色谱图

        Figure 2.  Representative TIC, m/z 191 and m/z 217 mass chromatograms for heavy, medium and light crude oil

        芳烃组分中检出菲、甲基菲系列、甲基二苯并噻吩系列及甲基二苯并呋喃系列等化合物。其中,重质原油甲基菲指数(MPI1)值介于0.53~0.75,平均值为0.62,中质原油MPI1值介于0.62~0.77,平均值为0.67,轻质原油MPI1值介于0.78~0.95,平均值为0.85,从重质原油到中质原油再到轻质原油,MPI1值逐渐变大。三类原油甲基二苯并噻吩系列/甲基二苯并呋喃系列(MDBTs/MDBTFs)值介于4.85~22.43,平均值为10.84(表1)。

      • 塔河油田奥陶系原油正构烷烃单体碳同位素组成(δ13Calkane)如表2所示。其中,重质原油δ13Calkane值介于-37.0‰~-33.4‰,平均值为-34.4‰;中质原油δ13Calkane值介于-36.1‰~-33.5‰,平均值为-34.6‰;轻质原油δ13Calkane值介于-34.4‰~-31.6‰,平均值为-32.6‰。

        表 2  塔河油田奥陶系原油正构烷烃单体碳同位素值(δ13Calkane/‰,VPDB)

        Table 2.  Carbon isotope values of individual n⁃alkane in Ordovician crude oil in Tahe oilfield (δ13Calkane/‰, VPDB)

        井号nC14nC15nC16nC17nC18nC19nC20nC21nC22
        AD4-32.3-33.0-33.6-33.7-35.2-34.8-33.7-35.0-33.9
        YQX1-1-33.1-33.5-34.0-33.7-33.6-34.3-34.2-35.0-34.6
        YQ5-33.4-34.4-34.3-34.2-34.9-35.3-35.2-35.2-34.8
        TP31-33.6-33.8-35.0-35.4-36.0-36.7-35.3-37.0-36.2
        TP134-33.8-34.3-33.7-34.2-34.0-34.2-36.3-33.9-34.0
        TP138X-34.1-33.9-34.0-34.9-35.9-36.2-35.5-36.2-35.0
        AT20-34.0-34.1-33.9-34.0-34.3-34.4-34.3-34.7-34.4
        S86-34.7-34.1-33.5-33.9-34.2-34.9-33.8-34.9-33.7
        TP23-34.0-34.5-35.2-34.3-35.2-35.0-34.3-35.5-34.8
        T738-34.6-34.1-35.0-35.0-35.0-33.4-34.1-33.3-33.6
        S1144-34.4-34.8-34.4-34.8-35.3-34.8-34.2-35.3-36.1
        TP37-35.1-34.8-34.1-35.2-35.1-35.8-35.1-35.9-35.2
        AT17-35.2-35.6-35.3-35.2-34.9-34.8-34.9-35.1-34.4
        AT28-31.9-32.1-32.5-31.6-32.7-32.7-32.5-33.5-32.3
        S107CH-32.4-32.3-32.4-32.2-32.4-32.0-31.9-32.6-32.4
        AT27X-32.4-33.1-32.3-32.7-33.5-33.0-32.1-33.5-34.4
        S101-32.2-34.5-33.1-33.6-33.3-33.8-33.6-34.0-33.1

        不同类型原油δ13Calkane值分布曲线如图3所示,δ13Calkane值的变化主要有以下特征:(1)三类原油的δ13Calkane值介于-37‰~-31‰;(2)从重质原油到中质原油再到轻质原油,δ13Calkane值逐渐变大;(3)中质原油、轻质原油中δ13Calkane值曲线变化较为平缓,而重质原油中低碳数正构烷烃(C14~C19)碳数越小,δ13Calkane值越大,高碳数部分变化较为平缓。

        图  3  三类原油δ13Calkane组成分布对比图

        Figure 3.  Comparison of δ13Calkane composition of three types of crude oil

      • 正构烷烃和类异戊二烯烷烃是原油饱和烃中的主要组成部分。研究发现,以低碳数正构烷烃为主的原油,其生源一般为浮游藻类;而以高碳数正构烷烃为主的原油,其生源一般为高等植物[2223]。选取的原油样品均来自塔河油田奥陶系,主峰碳为nC16nC17,以低碳数正构烷烃为主。根据MDBTs/MDBTFs与Pr/Ph二元图(图4),三类原油均分布在海相碳酸岩范围内,另一方面,原油样品中C29甾烷占优势,而在前奥陶纪高等植物尚未出现,只有浮游绿藻和宏体褐藻C29甾烷占优势[3],表明三类原油中的海相有机质贡献显著。

        图  4  Pr/Ph与MDBTs/MDBTFs二元图[24]

        Figure 4.  Binary plot of Pr/Ph vs. MDBTs/MDBTFs[24]

        C21-22/C27-29甾烷(孕甾烷/规则甾烷)和C27 dia/reg甾烷(C27重排甾烷/规则甾烷)是判识沉积环境和有机相的常用指标[25]。孕甾烷主要来源于生物激素孕甾醇和孕甾酮以及热演化过程中规则甾烷的侧链断裂等[26]。丰富的孕甾烷、升孕甾烷与缺氧碳酸盐岩和受限制、碎屑缺乏的环境有关[25]。另外,重排甾烷/规则甾烷常被用来鉴别原油是源于碳酸盐岩还是碎屑岩烃源岩。原油中重排甾烷/规则甾烷比值较低指示烃源岩的沉积水体是缺氧环境,为贫黏土的碳酸盐岩;重排甾烷/规则甾烷比值较高时指示富含黏土的烃源岩[2728]。三类原油主要分布在限制性区域且富碳酸盐岩烃源岩的范围内[25]图5a),表明它们的烃源岩类型一致,这也与实际采样区域相符。

        图  5  原油沉积环境及母质来源判别图

        Figure 5.  Discrimination diagram of crude oil deposition environment and parent material source

        Pr/Ph是重要的有机地球化学指标,它有助于进一步判识有机质的沉积环境及母质来源[2930]。高Pr/Ph(>3.0)指示与陆源相关的有氧条件有机质的输入;低Pr/Ph(<1.0)指示缺氧条件,一般是高盐或碳酸盐环境[3132];1.0<Pr/Ph<3.0指示介于二者之间的沉积环境,为贫氧环境[33]。塔河油田奥陶系三类原油的Pr/Ph介于0.60~1.10,平均值为0.89。根据Pr/nC17-Ph/nC18二元图[34]图5b),三类原油分布在还原型沉积环境范围内,说明烃源岩发育于弱还原环境。此外,伽马蜡烷的含量可以指示烃源岩沉积环境的水体分层[35],水体盐度的提高会导致较高的GI指数(伽马蜡烷/C3017α(H)-藿烷),三类原油GI指数介于0.15~0.60,平均值为0.34,表明有机质形成时的水体环境是咸水环境。

        利用不同的生物标志化合物参数,包括MDBTs/MDBTFs、Pr/Ph、C27-C28-C29ααα20R/甾烷、孕甾烷/规则甾烷、C27重排甾烷/规则甾烷及GI指数等,对塔河油田奥陶系原油的有机质类型、烃源岩的发育环境、有机质沉积水体的氧化还原条件及咸化程度进行了讨论。结果表明,三类原油之间无较大差异,它们的母质来源以海相有机质为主,烃源岩形成于弱还原的沉积环境,有机质沉积时的水体盐度较高。

      • C29甾烷20S/(20S+20R)和C29甾烷ββ/(αα+ββ)是判别原油成熟度常用的指标[33]。C2920R甾烷在成熟度较低时含量较高,随着成熟度的增加,R构型的甾烷会逐渐向S构型的甾烷转化。当C29甾烷20S/(20S+20R)值小于0.25时为未熟油,C29甾烷20S/(20S+20R)值介于0.25~0.40时为低熟油,C29甾烷20S/(20S+20R)值大于0.40时为成熟油。但当C29甾烷20S/(20S+20R)值大于0.52~0.55时,S构型的甾烷和R构型的甾烷之间的转化达到平衡,C29甾烷20S/(20S+20R)值将不能准确反映原油的成熟度[36]。ββ 构型和αα构型的甾烷与S和R构型的甾烷类似,随着成熟度的增加,αα构型的甾烷会向ββ 构型的甾烷转化,C29甾烷ββ/(αα+ββ)比值随之增大,但当异构化达到平衡后,C29甾烷ββ/(αα+ββ)值趋于稳定(介于0.61~0.71),C29甾烷ββ/(αα+ββ)值将不再反映成熟度的变化[34]。三类原油的C29甾烷ββ/(αα+ββ)值介于0.53~0.57,C29甾烷20S/(20S+20R)值介于0.46~0.49,C29甾烷构型的转化已经达到平衡,表明原油可能处于高成熟阶段,上述两个指标已经无法将三类原油成熟度的大小关系进行区分。

        芳烃化合物是原油中的重要组成部分,原油母质来源、成熟度及沉积环境的不同,均会导致芳烃组成存在差异,因此可以利用芳烃化合物的组成和分布特征来判识原油的母质类型、成熟度以及沉积环境[37]。甲基菲是芳烃化合物中的重要组成部分,不同构型的甲基菲具不同的稳定性,随着热演化进程的推进,9-MP与1-MP会逐渐转化为3-MP与2-MP,因此,甲基菲的相关参数是指示原油成熟度的良好指标[38]。塔河油田奥陶系原油中的甲基菲参数MPI1与MPI2、MPDF1表1)都具有明显的线性关系(图6),表明从重质原油到中质原油再到轻质原油,成熟度逐渐升高。另外根据Pr/nC17-Ph/nC18二元图(图5b)同样可以得出这个规律。

        图  6  原油成熟度判别图[39]

        Figure 6.  Discrimination diagram of crude oil maturity[39]

      • 目前,国内外众多学者已经对原油的生物降解作用开展了大量的研究,并且提出了基本的降解顺序:正构烷烃(最易降解)>无环类异戊二烯>藿烷(25-降藿烷出现)≥甾烷>藿烷(不含25-降藿烷)≈重排甾烷>芳香甾烷(最难降解)[40]

        正构烷烃的消耗通常被认为是油藏开始生物降解的标志。但是,塔河油田奥陶系原油的成熟度较高,原油中的正构烷烃可能来源于其他组分的热裂解。例如,非烃和沥青质组分中脂碳链/桥的断裂和脂肪酸脱羧等。从重质原油到中质原油再到轻质原油,饱和烃中的nC17/Pr、nC18/Ph的比值随着成熟度的升高逐渐增大,表明原油在热演化过程中释放的烷烃以正构烷烃为主。因此,塔河奥陶系原油中正构烷烃的存在与否不能作为判断其生物降解程度大小的标志。

        C28-25降藿烷是生物降解原油中一类典型的化合物,它是由C29-17α(H)藿烷发生降解作用失去一个甲基形成。因此,根据它们二者的比值可以反映原油的生物降解程度[41]。三类原油中,重质原油均检出了C28-25降藿烷,中质原油部分样品检出了C28-25降藿烷,而轻质原油并未检出C28-25降藿烷(图7a、表2),根据C28-25降藿烷/C29-17α(H)藿烷与Σ三环萜烷/C29-17α(H)藿烷二元图(图7b),表明相较于中质原油及轻质原油来说,重质原油受到的生物降解程度最大。此外,由Pr/nC17-Ph/nC18二元图(图5b)同样可以得出,从轻质原油到中质原油再到重质原油,生物降解程度逐渐升高。

        图  7  原油生物降解判别图[41]

        Figure 7.  Discrimination diagram of crude oil biodegradation[41]

      • 沉积环境影响有机质类型,进而控制原油的性质,这通过原油碳同位素组成上的差异得以体现[42]。奥陶系海相原油正构烷烃单体碳同位素值在-35‰左右,其分布曲线呈现水平或正倾斜[4243]。不同母质来源有机质的正构烷烃单体碳同位素组成存在一定差异,塔河油田奥陶系原油无论是早期遭受过强烈生物降解的重质原油,还是晚期充注的高成熟度的轻质油或凝析油,均来自同一来源[44]。塔河油田奥陶系三类原油δ13Calkane值介于-37‰~-31‰,并且δ13Calkane值曲线变化较为平缓,呈现出海相原油的特征[43,45],表明原油正构烷烃单体碳同位素组成及分布范围受其形成的沉积环境和母质类型控制。而三类原油的有机质类型、烃源岩及有机质沉积时水体的氧化还原和咸化程度相差较小,表明这些条件不是重质原油、中质原油和轻质原油间δ13Calkane值产生差异的主要影响因素。

        正构烷烃单体碳同位素组成不仅取决于先驱生物所利用的碳源,而且受控于其生物合成、同化过程中的碳同位素分馏效应[46]。在热力学断键机制的影响下,12C-12C键的断开所需要的能量比12C-13C键或13C-13C键的小[42],因此,在干酪根成熟生油演化过程中,从饱和烃中裂解出来的甲烷等轻组分的碳同位素轻,残留者重,导致成熟度越高,形成的石油、凝析油的碳同位素值越大,而且较高成熟度的凝析油单体碳同位素值比原油重3‰左右[4748]。塔河油田奥陶系原油中4-甲基+3-甲基双金刚烷绝对含量呈现“东高西低、南高北低”的特点,表明奥陶系原油东部和南部的成熟度高于主体区和西部,反映奥陶系油气主要来自沙雅隆起南部的满加尔坳陷[44,49]。塔河油田奥陶系三类原油的成熟度均较高,重质原油到中质原油再到轻质原油的成熟度逐渐增加,结合δ13Calkane值曲线变化规律分析,表明成熟度增大是原油δ13Calkane值正偏的主要影响因素,这与烃类化合物热力学断键机制呈现出的规律保持一致。

        塔河油田主力产层奥陶系储集的海相原油在成藏早期经历了强烈的生物降解,原油中普遍检测到生物降解的标志化合物25-降藿烷系列[44]。生物降解作用对整个原油的碳同位素组成影响不大[13,50],然而,正构烷烃的连续损失会导致饱和烃部分的δ13C降低。在轻度至中度生物降解过程中,正构烷烃没有发生明显的碳同位素分馏;在重度生物降解过程中,低分子量正构烷烃(nC15~nC18)的δ13C值通常会增加, 高分子量正构烷烃没有发生同位素分馏[50]。塔河油田奥陶系三类原油受到的生物降解程度不同,生物降解作用对重质原油的影响最大。另外,生物降解作用优先降解低碳数部分的正构烷烃,表明生物降解程度是重质原油中、低分子量(nC14~nC19δ13Calkane值正偏的主要影响因素。

      • (1) 塔河奥陶系原油的有机质类型、烃源岩及有机质沉积时水体的氧化还原和咸化程度相差较小,表明这些条件不是三类原油间δ13Calkane值产生差异的主要影响因素。塔河油田奥陶系原油δ13Calkane值介于-37‰~-31‰,三类原油原油δ13Calkane值总体变化较为平缓,呈现出海相原油的特征,表明原油δ13Calkane值的组成分布范围受其形成的沉积环境和母质类型控制。

        (2) 塔河油田奥陶系原油成熟度较高,从重质原油到中质原油再到轻质原油的成熟度逐渐增大,δ13Calkane值逐渐变大,表明成熟度升高是原油δ13Calkane值正偏的主要影响因素。

        (3) 相较于中质原油和轻质原油,生物降解作用对重质原油的影响程度最大。中、轻质原油δ13Calkane值变化曲线较为平缓,而重质原油低碳数正构烷烃(C14~C19)碳数越小,δ13Calkane值越大,结合生物降解作用优先降解正构烷烃中低碳数部分的规律判断,生物降解程度是重质原油中、低分子量(nC14~nC19δ13Calkane值正偏的主要影响因素。

    参考文献 (50)

    目录

      /

      返回文章
      返回