[1] 张三,金强,乔贞,等. 塔河油田奥陶系构造差异演化及油气地质意义[J]. 中国矿业大学学报,2020,49(3):576-586.

Zhang San, Jin Qiang, Qiao Zhen, et al. Differential tectonic evolution of the Ordovician and its significance in petroleum geology in main area of Tahe oilfield [J]. Journal of China University of Mining & Technology, 2020, 49(3): 576-586.
[2] 饶丹,秦建中,许锦,等. 塔河油田奥陶系油藏成藏期次研究[J]. 石油实验地质,2014,36(1):83-88,101.

Rao Dan, Qin Jianzhong, Xu Jin, et al. Accumulation periods of Ordovician reservoirs in Tahe oil field[J]. Petroleum Geology & Experiment, 2014, 36(1): 83-88, 101.
[3] 郑朝阳,段毅,张学军,等. 塔河油田奥陶系原油有机地球化学特征及其油藏成因[J]. 沉积学报,2011,29(3):605-612.

Zheng Chaoyang, Duan Yi, Zhang Xuejun, et al. Characteristics of molecular geochemistry and genesis of crude oils from Tahe oilfield of Tarim Basin [J]. Acta Sedimentologica Sinica, 2011, 29(3): 605-612.
[4] 赵永强,云露,王斌,等. 塔里木盆地塔河油田中西部奥陶系油气成藏主控因素与动态成藏过程[J]. 石油实验地质,2021,43(5):758-766.

Zhao Yongqiang, Yun Lu, Wang Bin, et al. Main constrains and dynamic process of Ordovician hydrocarbon accumulation central and western Tahe oil field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 758-766.
[5] 张水昌. 运移分馏作用:凝析油和蜡质油形成的一种重要机制[J]. 科学通报,2000,45(6):667-670.

Zhang Shuichang. The migration fractionation: An important mechanism in the formation of condensate and waxy oil[J]. Chinese Science Bulletin, 2000, 45(6): 667-670.
[6] 南青云,刘文汇,腾格尔,等. 塔河油田原油甾藿烷系列化合物地球化学再认识[J]. 沉积学报,2006,24(2):294-299.

Qingyun Nan, Liu Wenhui, Tenger, et al. Geochemical characters recognition for steranes and hopanes from oils of Tahe oilfield [J]. Acta Sedimentologica Sinica, 2006, 24(2): 294-299.
[7] Yu S, Pan C C, Wang J J, et al. Correlation of crude oils and oil components from reservoirs and source rocks using carbon isotopic compositions of individual n-alkanes in the Tazhong and Tabei uplift of the Tarim Basin, China[J]. Organic Geochemistry, 2012, 52: 67-80.
[8] Xiao Q L, Sun Y G, Zhang Y D, et al. Stable carbon isotope fractionation of individual light hydrocarbons in the C6-C8 range in crude oil as induced by natural evaporation: Experimental results and geological implications[J]. Organic Geochemistry, 2012, 50: 44-56.
[9] Xiong Y Q, Geng A S. Carbon isotopic composition of individual n-alkanes in asphaltene pyrolysates of biodegraded crude oils from the Liaohe Basin, China[J]. Organic Geochemistry, 2000, 31(12): 1441-1449.
[10] 段毅,张辉,吴保祥,等. 柴达木盆地原油单体正构烷烃碳同位素研究[J]. 矿物岩石,2003,23(4):91-94.

Duan Yi, Zhang Hui, Wu Baoxiang, et al. Carbon isotopic studies of individual n-alkanes in crude oils from Qaidam Basin[J]. Journal of Mineralogy and Petrology, 2003, 23(4): 91-94.
[11] 李素梅,郭栋. 东营凹陷原油单体烃碳同位素特征及其在油源识别中的应用[J]. 现代地质,2010,24(2):252-258.

Li Sumei, Guo Dong. Characteristics and application of compound specific isotope in oil-source identification for oils in Dongying Depression, Bohai Bay Basin[J]. Geoscience, 2010, 24(2): 252-258.
[12] 李洪波,张敏,毛治超. 塔里木盆地原油轻烃单体烃碳同位素组成特征[J]. 矿物岩石地球化学通报,2017,36(4):667-672.

Li Hongbo, Zhang Min, Mao Zhichao. Compound-specific carbon isotope compositions of light hydrocarbons in crude oils from the Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4): 667-672.
[13] Zhang Z R, Volkman J K. Isotopically enriched n-alkan-2-ones with even chain predominance in a torbanite from the Sydney Basin, Australia[J]. Organic Geochemistry, 2020, 144: 104018.
[14] 林俊峰,张敏,张利红,等. 塔里木盆地寒武—奥陶系烃源岩萘、菲系列化合物单体碳同位素特征[J]. 地球化学,2021,50(3):273-281.

Lin Junfeng, Zhang Min, Zhang Lihong, et al. Stable carbon isotopic characteristics of naphthalene and phenanthrene series in Cambrian-Ordovician source rocks from the Tarim Basin[J]. Geochimica, 2021, 50(3): 273-281.
[15] Chen Y X, Tian C T, Li K N, et al. Influence of thermal maturity on carbon isotopic composition of individual aromatic hydrocarbons during anhydrous closed-system pyrolysis[J]. Fuel, 2016, 186: 466-475.
[16] Liao Y H, Geng A S, Huang H P. The influence of biodegradation on resins and asphaltenes in the Liaohe Basin[J]. Organic Geochemistry, 2009, 40(3): 312-320.
[17] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Heidelberg: Springer-Verlag, 1984.
[18] Xu H Y, George S C, Hou D J, et al. Petroleum sources in the Xihu Depression, East China Sea: Evidence from stable carbon isotopic compositions of individual n-alkanes and isoprenoids[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107073.
[19] Cortes J E, Rincon J M, Jaramillo J M, et al. Biomarkers and compound-specific stable carbon isotope of n-alkanes in crude oils from eastern Llanos Basin, Colombia[J]. Journal of South American Earth Sciences, 2010, 29(2): 198-213.
[20] 刘金萍,耿安松,熊永强,等. 正构烷烃单体碳、氢同位素在油源对比中的应用[J]. 新疆石油地质,2007,28(1):104-107.

Liu Jinping, Geng Ansong, Xiong Yongqiang, et al. Application of free C and H isotopes in normal alkane to correlation of oil sources in Huanghua Depression[J]. Xinjiang Petroleum Geology, 2007, 28(1): 104-107.
[21] 丁勇,彭守涛,李会军. 塔河油田及塔北碳酸盐岩油藏特征与成藏主控因素[J].石油实验地质,2011,33(5):488-494.

Ding Yong, Peng Shoutao, Li Huijun. Features and main controlling factors of carbonate reservoirs in Tahe oilfield and northern Tarim Basin[J]. Petroleum Geology & Experimental, 2011, 33(5): 488-494.
[22] Giger W, Schaffner C, Wakeham S G. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 119-129.
[23] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8): 745-749.
[24] Hughes W B, Holba A G, Dzou L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
[25] Wang G L, Chang X C, Wang T G, et al. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks[J]. Organic Geochemistry, 2015, 78: 110-120.
[26] 黄第藩,张大江,李晋超. 论4-甲基甾烷和孕甾烷的成因[J]. 石油勘探与开发,1989,16(3):8-15.

Huang Difan, Zhang Dajiang, Li Jinchao. On origin of 4-methyl steranes and pregnanes[J]. Petroleum Exploration and Development, 1989, 16(3): 8-15.
[27] Rubinstein I, Sieskind O, Albrecht P. Rearranged sterenes in a shale: Occurrence and simulated formation[J]. Journal of the Chemical Society, Perkin Transactions 1, 1975(19): 1833-1836.
[28] Clark J P, Philp R P. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta[J]. Bulletin of Canadian Petroleum Geology, 1989, 37(4): 401-416.
[29] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222.
[30] ten Haven H L, Rullkötter J, de Leeuw J W, et al. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988, 333(6174): 604.
[31] Peters K E, Clark M E, das Gupta U, et al. Recognition of an infracambrian source rock based on biomarkers in the Baghewala-1 oil, India[J]. AAPG Bulletin, 1995, 79(10): 1481-1493.
[32] Peters K E, Walters C C, Moldowan J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
[33] Philp R P. Biological markers in fossil fuel production[J]. Mass Spectrometry Reviews, 1985, 4(1): 1-54.
[34] Li M W, Larter S R, Taylor P, et al. Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols[J]. Organic Geochemistry, 1995, 23(2): 159-167.
[35] Qiao J Q, Baniasad A, Zieger L, et al. Paleo-depositional environment, origin and characteristics of organic matter of the Triassic Chang 7 member of the Yanchang Formation throughout the mid-western part of the Ordos Basin, China[J]. International Journal of Coal Geology, 2021, 237: 103636.
[36] 陈建渝,刘从印,张树林,等. 原油中生物标志物的组成是成藏史的反映[J]. 地球科学:中国地质大学学报,1997,22(6):97-102.

Chen Jianyu, Liu Congyin, Zhang Shulin, et al. Composition of the biomarkers in crude oil is the reflection of pool-forming history[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(6): 97-102.
[37] 陈致林,李素娟, 王忠. 低—中成熟演化阶段芳烃成熟度指标的研究[J]. 沉积学报,1997,15(2):192-197.

Chen Zhilin, Li Sujuan, Wang Zhong. A study on maturity indicatorssome of some aromatics in low-midmature thermal evolution zones [J]. Acta Sedimentologica Sinica, 1997, 15(2): 192-197.
[38] 陈琰,包建平,刘昭茜,等. 甲基菲指数及甲基菲比值与有机质热演化关系:以柴达木盆地北缘地区为例[J]. 石油勘探与开发,2010,37(4):508-512.

Chen Yan, Bao Jianping, Liu Zhaoqian, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example [J]. Petroleum Exploration and Development, 2010, 37(4): 508-512.
[39] 许婷,侯读杰,曹冰,等. 东海盆地西湖凹陷轻质原油芳烃地球化学特征[J]. 沉积学报,2017,35(1):182-192.

Xu Ting, Hou Dujie, Cao Bing, et al. Characteristics of aromatic geochemistry in light oils from Xihu Sag in East China Sea Basin [J]. Acta Sedimentologica Sinica, 2017, 35(1): 182-192.
[40] Wenger L M, Davis C L, Isaksen G H. Multiple controls on petroleum biodegradation and impact on oil quality[C]//SPE annual technical conference and exhibition. New Orleans: SPE, 2002.
[41] Killops S D, Nytoft H P, di Primio R. Biodegradative production and destruction of norhopanes: An example from residual oil in a Paleogene paleomigration conduit on the Utsira High, Norwegian North Sea[J]. Organic Geochemistry, 2019, 138: 103906.
[42] 赵孟军,黄第藩. 不同沉积环境生成的原油单体烃碳同位素分布特征[J]. 石油实验地质,1995,17(2):171-179.

Zhao Mengjun, Huang Difan. Carbon isotopic distributive characteriscs of crude oll monomers produced in different sedimentary environments [J]. Experimental Petroleum Geology, 1995, 17(2): 171-179.
[43] Bjorøy M, Hall K, Gillyon P, et al. Carbon isotope variations in n-alkanes and isoprenoids of whole oils[J]. Chemical Geology, 1991, 93(1/2): 13-20.
[44] 贾存善,王延斌,顾忆,等. 塔河油田奥陶系原油芳烃地球化学特征[J]. 石油实验地质,2009,31(4):384-388,393.

Jia Cunshan, Wang Yanbin, Gu Yi, et al. Geochemical characteristics of aromatic hydrocarbons of crude oils from Ordovician reservoir in the Tahe oilfield [J]. Petroleum Geology & Experimental, 2009, 31(4): 384-388, 393.
[45] 卢鸿,柴平霞,孙永革,等. 轮南14井原油正构烷烃和类异戊二烯单体碳同位素研究[J]. 沉积学报,2002,20(3):477-481,504.

Lu Hong, Chai Pingxia, Sun Yongge, et al. Study on stable carbon isotopic compositions of n-alkanes and isoprenoids for crude oils from well Lunnan 14, Tarim Basin[J]. Acta Sedimentologica Sinica, 2002, 20(3): 477-481, 504.
[46] 赵孟军,黄第藩. 初论原油单体烃系列碳同位素分布特征与生油环境之间的关系[J]. 地球化学,1995,24(3):254-260.

Zhao Mengjun, Huang Difan. Preliminary discussion on carbon isotopic distribution pattern of individual hydrocarbons from crude oil and its relationship to oil-forming environment [J]. Geochimica, 1995, 24(3): 254-260.
[47] Bjorøy M, Hall P B, Hustad E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/2/3): 89-105.
[48] Clayton C J, Bjorøy M. Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils[J]. Organic Geochemistry, 1994, 21(6/7): 737-750.
[49] 马安来,金之钧,朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学,2017,28(2): 313-323.

Ma Anlai, Jin Zhijun, Zhu Cuishan. Maturity and oil-cracking of the Ordovician oils from Tahe oilfield, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2017, 28(2): 313-323.
[50] Sun Y G, Chen Z Y, Xu S P, et al. Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: Evidence from a group of progressively biodegraded oils[J]. Organic Geochemistry, 2005, 36(2): 225-238.