-
目前国内外学者较为统一的原油化合物降解顺序为:正构烷烃<类异戊二烯<甾烷<五环三萜烷<重排甾烷<三环萜烷<三芳甾烷<卟啉[4]。在生物降解初期,正构烷烃会被优先降解,随着主要溶解化合物的减少,色谱基线的驼峰会变得越来越突出,通常将其称为未分离复杂混合物,即UCM鼓包,表示降解强度比较严重(降解强度大于4),而高丰度25-降藿烷是强烈生物降解(生物降解等级大于6)的标志性化合物,其结构与规则藿烷的C26-C34系列化合物相当,是规则藿烷在C-10位失去一个甲基形成的。通常,25-降藿烷出现在那些藿烷被优先消除的原油中。芳香族甾类烃具有很强的抗生物降解能力,只有在极端情况下才会被降解。Wardroper et al.[29]指出C20-C21三芳甾类化合物属于原油生物降解中被最先消耗的芳香甾类化合物,20R构型的单芳甾烷、三芳甾烷会被优先降解,且在严重生物降解8级时单芳甾烷已被完全消耗。
本文样品中均已检测不到正构烷烃、规则甾烷、重排甾烷、单芳甾烷和C20-C21三芳甾烷系列的化合物,保存了高丰度的三环萜烷、藿烷、降藿烷系列化合物,孕甾烷、升孕甾烷,以及长链三芳甾烷系列均有一定量的分布,化合物绝对浓度见表1。其中检测到完整的C28-C34的降藿烷(NH)系列(图1),25-降藿烷(即C29NH)的绝对浓度分布介于687.10~1 240.21 μg/g,相较于C30藿烷(绝对浓度分布范围91.31~912.09 μg/g)和伽马蜡烷(绝对浓度分布范围57.74~667.29 μg/mg),其含量相对较为丰富。根据上述特征初步揭示了研究区原油样品至少经历了8级以上的生物降解作用,属于强烈生物降解的原油。
表 1 准噶尔盆地西北缘油砂主要化合物绝对浓度(μg/mg)与参数表
井号 层位 孕甾烷 伽马蜡烷 C29NH 三芳甾烷 Tm/Ts C20/C19TT TT/H (C20+C21)/C26TT G/C30H C29NH/C30H 风砂53 K1t 348.55 170.45 1 106.51 97.53 4.11 3.68 4.19 0.92 0.99 6.48 风砂52 K1t 0 305.25 917.04 58.83 7.13 4.49 3.02 1.14 1.13 3.39 风砂52 K1t 263.62 61.78 775.90 39.43 4.14 6.13 4.89 0.23 0.68 8.50 风砂54 K1t 372.19 269.47 1 038.53 60.80 6.53 4.39 3.33 0.63 1.57 6.05 风砂51 K1t 290.56 185.47 696.20 43.63 6.32 4.93 3.66 1.59 1.05 3.96 风砂55 K1t 400.68 667.29 687.10 44.11 14.30 5.25 1.40 1.77 0.73 0.75 风砂54 K1t 500.02 365.41 1 146.36 33.82 7.11 6.13 4.39 2.07 1.11 3.47 风砂55 K1t 340.19 185.76 840.52 89.21 6.53 4.25 5.93 0.80 1.17 5.30 风砂51 K1t 417.59 277.94 920.74 76.38 6.68 4.28 3.50 1.43 1.17 3.86 风砂53 K1t 353.38 57.74 1 178.18 78.88 4.01 7.25 4.24 0.26 0.49 10.08 风砂55 J3q 351.21 159.08 901.95 71.62 5.18 5.01 3.67 0.71 1.06 6.00 风砂56 J3q 553.05 299.68 880.01 72.82 11.30 6.22 5.35 3.09 1.37 4.04 风砂53 J3q 506.58 164.59 1 055.60 62.36 0 5.85 8.81 3.66 1.31 8.40 风砂52 J3q 452.72 293.39 790.48 60.74 9.91 5.63 4.66 2.91 1.36 3.66 风砂55 J3q 563.19 187.14 1 240.22 69.26 0 5.89 7.12 3.50 1.16 7.68 风砂56 J3q 584.64 238.83 1 041.31 65.89 0 5.63 6.37 3.58 1.33 5.78 风砂54 J3q 594.80 433.47 994.86 66.83 11.69 5.97 3.17 3.51 0.74 1.69 风砂58 J3q 666.58 479.40 859.59 58.50 14.18 5.89 4.16 1.18 2.49 4.47 风砂51 J3q 594.01 660.44 4 307.56 86.66 0 6.94 2.75 3.40 1.33 8.68 风砂54 J3q 575.33 385.31 749.55 45.05 11.39 6.23 3.79 2.24 1.23 2.39 风砂51 J3q 632.56 326.83 1 077.57 44.03 10.08 6.10 5.37 2.93 1.20 3.95 风砂53 J3q 525.38 151.40 1 176.87 117.93 4.33 6.24 8.48 3.95 1.08 8.38 图 1 准噶尔盆地西北缘油砂典型样品降藿烷质量色谱图
Figure 1. Mass chromatogram depicting norhopane of typical oil sand samples in the northwestern margin of Junggar Basin
伽马蜡烷、25-降藿烷、孕甾烷及三芳甾烷均为抗生物降解能力较强的化合物,从白垩系样品的伽马蜡烷(绝对浓度均值为254.65 μg/mg,下同)、25-降藿烷(930.71 μg/mg)、孕甾烷(328.68 μg/mg)、三芳甾烷(62.26 μg/mg);侏罗系样品的伽马蜡烷(绝对浓度均值314.96 μg/mg)、25-降藿烷(1256.29 μg/mg)、孕甾烷(550 μg/mg)、三芳甾烷(68.47 μg/mg),可以看出侏罗系样品中抗生物降解能力强的化合物其绝对浓度明显高于白垩系样品。常见的随着生物降解程度增加而增大的生物降解参数(Ts/Tm、C20/C19TT、TT/H、(C20+C21)/C26TT、G/C30H、C29NH/C30H)显示(表1),侏罗系样品的这些参数均大于白垩系样品。
-
图2为研究区典型原油样品三环萜烷的质量色谱图,总体而言,油砂样品中分布有较为完整的C19-C31三环萜烷系列化合物(缺失C27)。白垩系样品与侏罗系样品中三环萜烷的分布特征明显不同,白垩系样品抽提物主要以C31三环萜烷为主峰,而侏罗系样品抽提物中则以C23三环萜烷为主峰。此外,侏罗系油砂抽提物中C20、C21三环萜烷的丰度均比白垩系高。本文在计算油砂样品三环萜烷系列化合物的绝对浓度时,发现侏罗系样品中三环萜烷总浓度普遍高于白垩系样品。准噶尔盆地西北缘三环萜烷含量异常丰富,碳数范围较大,高碳数三环萜烷含量也较高,这与文献报道的研究结果相一致[30]。
-
ETR=(C28+C29)/(C28+C29+Ts)最早是由Holba et al.[31]提出用来划分三叠系与侏罗系的参数,之后有学者发现ETR可作为指示海侵作用或盐度和碱度的指标[32-33],也有学者在研究强烈生物降解原油时发现ETR会随着生物降解程度的增加而增大[34-35]。研究区样品中ETR与三环萜烷的浓度呈较好的正相关关系(图3),且侏罗系样品中的ETR普遍高于白垩系样品。该关系证实了侏罗系油砂样品的原油生物降解程度高于白垩系样品,反之也表明三环萜烷越丰富,生物降解作用越强。
-
一般而言,原油遭受生降解的程度是随着深度的增加而逐渐降低的。本文在分析一些抗生物降解能力强的化合物浓度及其相关比值时发现,侏罗系油砂样品的生物降解程度明显高于白垩系样品,即使侏罗系油砂样品的深度大于白垩系样品。在此基础上,试图通过相邻碳数三环萜烷的比值与深度的分布关系来刻画不同碳数的三环萜烷的抗降解能力(图4)。可以看出C20/C21TT、C21/C22TT、C24/C25TT、C25/C26TT、C28/C29TT、C29/C30TT比值与深度呈较好的相关关系,表明这些比值是随着降解程度的增加而增加的,由此可知在C20-C22TT、C24-C26TT、C28-C30TT这三个范围内的三环萜烷是随着碳数的增加,其抗降解能力逐渐减弱;而C19/C20TT、C22/C23TT、C26/C28TT这些比值与深度呈反相关关系,即C20TT抗降解能力要高于C19TT,C23TT抗降解能力高于C22TT,C26TT抗降解能力高于C28TT。根据上述规律,以C22TT、C26TT为界,将研究区样品中C19-C31(除C27)三环萜烷的分布划分为低碳数、中碳数、高碳数三个部分:其中C19-C22TT为低碳数,C23-C26TT为中碳数,C28-C31TT为高碳数。并根据上述分类来探讨下文高、中、低碳数的三环萜烷之间的生物降解程度。
图 4 准噶尔盆地西北缘油砂不同碳数三环萜烷比值与深度关系图
Figure 4. Relationship between different carbon number tricyclic terpanes and depth of oil sands in the northwestern margin of Junggar Basin
侏罗系的油砂样品的生物降解程度高于白垩系样品,并且侏罗系油砂样品的抽提物中以C23TT为主峰,白垩系油砂样品抽提物以C31TT为主峰,故C23/C31TT可以表示随生物降解程度的增加,该比值也是增加的。从图5中可以看出,C19-C22TT/C28-C31TT、C23-C26TT/C28-C31TT比值均与C23/C31TT比值呈较好的正相关关系。良好的正相关关系也说明随着降解程度的增加,C19-C22TT/C28-C31TT、C23-C26TT/C28-C31TT的比值在增大,由此推断低碳数和中碳数的三环萜烷的抗生物降解能力是强于高碳数三环萜烷的。
图 5 准噶尔盆地西北缘油砂C23TT/C31TT与C19⁃C22TT/C28⁃C31TT、C23⁃C26TT/C28⁃C31TT比值关系图
Figure 5. Correlation between the ratios of C23TT/C31TT and C19⁃C22TT/C28⁃C31TT, C23⁃C26TT/C28⁃C31TT of oil sandsin the northwestern margin of Junggar Basin
低碳数、中碳数和高碳数三环萜烷的相对百分含量关系如图6所示,白垩系的样品点更靠近C28-C31TT,而侏罗系样品点更靠近C19-C22TT。由前文分析可知,侏罗系样品遭受生物降解的程度高于白垩系样品,据此推断研究区三环萜烷化合物随着碳数的增加,其抗生物降解的能力是逐渐减弱的,即三环萜烷抗生物降解能力为高碳数(C28-C31TT)<中碳数(C23-C26TT)<低碳数(C19-C22TT)。
-
伽马蜡烷比藿烷抗生物降解能力要强[36]。伽马蜡烷指数(Ga/C30H)会随着生物降解程度的增强而增大。伽马蜡烷指数与C23-C26TT/C28-C31TT、C23TT/C31TT比值的关系显示(图7),随着伽马蜡烷指数的增加,C23-C26TT/C28-C31TT、C23TT/C31TT比值也随之增大,表明C23-C26TT/C28-C31TT、C23TT/C31TT比值随着生物降解程度的增强而增大。二者之间良好的线性关系也说明在受到强烈生物降解作用影响时,伽马蜡烷指数仍然可以用来判断受到强烈生物降解作用的样品的降解程度。然而,伽马蜡烷易受其他因素的影响,据前人研究[36],准噶尔盆地西北缘油砂的地化特征总体上较为相似,三环萜烷极其丰富而藿烷含量低,其油源来自南部的玛湖凹陷,属于同一类原油,故此处用伽马蜡烷来判断生物降解的等级是有意义的。
-
藿烷被生物降解时常产生一些新的化合物,包括C26和C29-C3417α(H),21β(H),25-降藿烷,这一系列通常被认为是发生严重生物降解的原油中的典型生物标志物[37-38]。一般而言,17α(H),21β(H)-25-降藿烷/C30H的比值随着生物降解作用的增强而增大。研究区原油样品普遍遭受了强烈的生物降解作用,对比研究研究区降藿烷系列化合物相关参数与三环萜烷相关比值,并未发现降藿烷系列化合物相关参数有明显的变化趋势。这表明在研究受到强烈生物降解作用地区的样品时,这些指标参数可能已经失效。因此,本文对研究区降藿烷化合物绝对浓度也进行了研究。降藿烷绝对浓度之和与C19-C22TT/C23-C26TT、C19-C22TT/C28-C31TT比值的关系显示(图8),C19-C22TT/C23-C26TT、C19-C22TT/C28-C31TT比值可有效划分研究区两种受到不同生物降解作用的样品;而降藿烷的绝对浓度虽然很高,但是在侏罗系、白垩系的样品分布均在较为相似的分布范围,不能有效划分遭受过强烈生物降解作用影响的样品。因此认为降藿烷系列化合物的绝对浓度与相对比值已不能用来判断受到强烈生物作用的程度,在选用降藿烷系列化合物分析受到强烈生物降解地区的样品时,需慎重选择相关降藿烷类参数。
-
Anders et al.[11]认为C20-C25三环萜烷是五环三萜的降解产物,而Neto et al.[39]则认为三环萜烷与藿烷并没有联系。根据藿烷的生物降解途径,程熊等[24]提出3种三环萜烷的降解途径:1)三环萜烷支链末端的甲基被氧化而形成三环萜烷酸;2)三环萜烷直接脱去C-10位的甲基而形成脱甲基三环萜烷;3)先发生途径一生成三环萜烷酸,再由途径二形成的脱甲基三环萜烷酸发生脱羧反应从而形成脱甲基三环萜烷。本文样品中并未检测到脱甲基三环萜烷,说明三环萜烷是在未进行脱甲基的情况下形成的,故认为研究区三环萜烷的形成途径也是三环萜烷支链末端的甲基被氧化而形成的。Neto et al.[39]分析发现C20+三环萜烷是在C-14位处包含一个正的类异戊二烯侧链,C22、C27三环萜烷的丰度一般都比较低或者没有,表明这个位置有分支或者侧链异构体。Peters[40]研究发现C32三环萜烷在所有样品中的含量都很低,因为它们需要两个碳碳键的裂解才能从更高的同源物中形成,由此猜测低碳数的三环萜烷需要从更高的同源物中碳碳键的裂解才能形成。C20+三环萜烷的形成是在C-14位连接了一个侧链,侧链被微生物侵蚀完全时只剩下C20三环萜烷;而C19三环萜烷则是C-13位处连接了一个甲基,所以C20三环萜烷会比C19三环萜烷更容易形成,也反映了C20三环萜烷比C19三环萜烷更抗生物降解。
Anders et al.[11]研究发现,C19-C26三环萜烷(除C20外)的抗生物降解能力是随着碳数的增加而逐渐增强的。但有原油生物降解模拟实验定量分析了C19-C29三环萜烷,结果表明高碳数(C25+)三环萜烷抗生物降解能力高于低碳数(C25-)[41]。结合本次研究,在遭受强烈生物降解作用时,只有C19与C20、C22与C23、C26与C28三环萜烷的抗生物降解能力有明显随碳数增加而增加的趋势,而在C20-C22TT、C24-C26TT、C28-C30TT三环萜烷这几个区域内的三环萜烷随着碳数的增加,抗降解能力是逐渐减弱的。因此,推测三环萜烷化合物的抗生物降解能力与样品受到的降解程度有关,而不是一个固定的降解序列。
Study on the Differences in Distribution and Composition Characteristics of Tricyclic Terpanes Under Intensive Biodegradation: A case study from oilsands in the northwestern margin of Junggar Basin
-
摘要: 准噶尔盆地具有丰富的油砂资源,风城油砂矿区所在的西北缘是准噶尔盆地最主要的油砂分布区。对研究区油砂样品抽提物进行饱和烃和芳烃的色质研究中发现,油砂样品中正构烷烃、常规甾烷、单芳甾烷和短链三芳甾烷、重排甾烷均已检测不到,而藿烷类化合物、孕甾烷、升孕甾烷、长链三芳甾烷也仅有少量分布;三环萜烷以及25-降藿烷却异常丰富,揭示该地区原油曾遭受比较严重的生物降解,降解等级在8级以上。就三环萜烷整体碳数分布而言,随着生物降解作用的增强,三环萜烷化合物的抗降解能力会随着碳数的增加而减弱,即三环萜烷(TT)抗生物降解能力为高碳数(C28-C31TT)<中碳数(C23-C26TT)<低碳数(C19-C22TT)。但对于单个化合物而言,C19与C20、C22与C23、C26与C28三环萜烷则随着碳数增大,抗降解能力有增加之趋势。在此基础上,提出利用三环萜烷化合物的相对比值,即C19-C22TT/C28-C31TT、C23-C26TT/C28-C31TT、C19-C22TT/C23-C26TT、C23TT/C31TT,来刻画原油遭受强烈生物降解的程度,为原油经历次生蚀变作用尤其是生物降解作用提供地球化学依据。Abstract: The Junggar Basin is rich in oil sand resources. The northwestern margin of the Fengcheng oil sand mining area is the most important oil sand distribution area in the Junggar Basin. In this paper, the gas chromatography- mass spectrometry GC-MS of saturated and aromatic hydrocarbons in the oil sand sample extracts, such as normal alkanes, regular steranes, mono-aromatic steranes, short-chain triaromatic steranes, and rearranged steranes, were undetectable; in addition, the abundance of hopanes, pregnane, and long-chain triaromatic steranes were rare. Severe biodegradation has occurred, and the degradation level can reach level 8 or higher. As far as the overall carbon number distribution of tricyclic terpanes is concerned, with the increase of biodegradation, the anti-degradation ability of tricyclic terpanes will decrease with the increase of carbon number, i.e., tricyclic terpanes (TT) are resistant to biodegradation. The distribution appeared to be the following: high carbon number(C28-C31TT) > medium carbon number(C23-C26TT) > low carbon number (C19-C22 TT). However, for a single tricyclic terpane compound, C19 and C20, C22 and C23, and C26 and C28 tricyclic terpanes tend to increase their resistance to degradation as the carbon number increases. Therefore, the use of the relative ratio of tricyclic terpane compounds, namely C19-C22 TT /C28-C31 TT、C23-C26 TT /C28-C31 TT、C19-C22 TT /C23-C26 TT、C23 TT /C31 TT, is proposed to describe the degree of severe biodegradation of crude oil and provide a geochemical basis for crude oil to undergo secondary alteration, especially biodegradation.
-
Key words:
- Junggar Basin /
- biodegradation /
- tricyclic terpanes /
- oil sand
-
表 1 准噶尔盆地西北缘油砂主要化合物绝对浓度(μg/mg)与参数表
井号 层位 孕甾烷 伽马蜡烷 C29NH 三芳甾烷 Tm/Ts C20/C19TT TT/H (C20+C21)/C26TT G/C30H C29NH/C30H 风砂53 K1t 348.55 170.45 1 106.51 97.53 4.11 3.68 4.19 0.92 0.99 6.48 风砂52 K1t 0 305.25 917.04 58.83 7.13 4.49 3.02 1.14 1.13 3.39 风砂52 K1t 263.62 61.78 775.90 39.43 4.14 6.13 4.89 0.23 0.68 8.50 风砂54 K1t 372.19 269.47 1 038.53 60.80 6.53 4.39 3.33 0.63 1.57 6.05 风砂51 K1t 290.56 185.47 696.20 43.63 6.32 4.93 3.66 1.59 1.05 3.96 风砂55 K1t 400.68 667.29 687.10 44.11 14.30 5.25 1.40 1.77 0.73 0.75 风砂54 K1t 500.02 365.41 1 146.36 33.82 7.11 6.13 4.39 2.07 1.11 3.47 风砂55 K1t 340.19 185.76 840.52 89.21 6.53 4.25 5.93 0.80 1.17 5.30 风砂51 K1t 417.59 277.94 920.74 76.38 6.68 4.28 3.50 1.43 1.17 3.86 风砂53 K1t 353.38 57.74 1 178.18 78.88 4.01 7.25 4.24 0.26 0.49 10.08 风砂55 J3q 351.21 159.08 901.95 71.62 5.18 5.01 3.67 0.71 1.06 6.00 风砂56 J3q 553.05 299.68 880.01 72.82 11.30 6.22 5.35 3.09 1.37 4.04 风砂53 J3q 506.58 164.59 1 055.60 62.36 0 5.85 8.81 3.66 1.31 8.40 风砂52 J3q 452.72 293.39 790.48 60.74 9.91 5.63 4.66 2.91 1.36 3.66 风砂55 J3q 563.19 187.14 1 240.22 69.26 0 5.89 7.12 3.50 1.16 7.68 风砂56 J3q 584.64 238.83 1 041.31 65.89 0 5.63 6.37 3.58 1.33 5.78 风砂54 J3q 594.80 433.47 994.86 66.83 11.69 5.97 3.17 3.51 0.74 1.69 风砂58 J3q 666.58 479.40 859.59 58.50 14.18 5.89 4.16 1.18 2.49 4.47 风砂51 J3q 594.01 660.44 4 307.56 86.66 0 6.94 2.75 3.40 1.33 8.68 风砂54 J3q 575.33 385.31 749.55 45.05 11.39 6.23 3.79 2.24 1.23 2.39 风砂51 J3q 632.56 326.83 1 077.57 44.03 10.08 6.10 5.37 2.93 1.20 3.95 风砂53 J3q 525.38 151.40 1 176.87 117.93 4.33 6.24 8.48 3.95 1.08 8.38 -
[1] Hunt J M. Petroleum geochemistry and geology[M]. San Francisco: W. H. Freeman, 1979: 387. [2] Winter J C, Williams J A. Microbiological alteration of crude oil in the reservoir[J]. Preprints, 1969, 14(3): E22-E31. [3] Bailey N J L, Krouse H R, Evans C R, et al. Alteration of crude oil by waters and bacteria-evidence from geochemical and isotope studies[J]. AAPG Bulletin, 1973, 57(7): 1276-1290. [4] Peters K E, Walters C C, Moldowan J M. The biomarker guide Vol. 1: Biomarkers and isotopes in the environment and human history[M]. 2nd ed. New York: Cambridge University Press, 2005. [5] 卢松年,郜建军,陈义贤,等. 生物降解作用与辽河“稠油”的形成[J]. 石油学报,1986,7(3):1-10. Lu Songnian, Gao Jianjun, Chen Yixian, et al. Biodegradation of crude oil and origin of “thick oil” in Liaohe Depression[J]. Acta Petrolei Sinica, 1986, 7(3): 1-10. [6] 杨斌. 克拉玛依原油的生物降解作用[J]. 地球化学,1988,17(2):99-108. Yang Bin. Effects of biodegradation on crude oils from Karamay oilfield[J]. Geochimica, 1988, 17(2): 99-108. [7] 张大江,黄第藩,李晋超. 克拉玛依原油的生物降解[J]. 石油勘探与开发,1987,14(4):11-19. Zhang Dajiang, Huang Difan, Li Jinchao. Biodegradation of crude oils of Karamay field in Junggar Basin[J]. Petroleum Expoloration and Development, 1987, 14(4): 11-19. [8] 陈中红, Moldowan J M,刘昭茜. 东营凹陷生物降解稠油甾烷分子的选择蚀变[J]. 地球科学进展,2012,27(10):1108-1114. Chen Zhonghong, Moldowan J M, Liu Zhaoqian. Selective alteration of steranes in heavy biodegraded oils from Dongying Sag[J]. Advances in Earth Sciences, 2012, 27(10): 1108-1114. [9] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow sub-basin of western Australia[J]. Organic Geochemistry, 1984, 6: 619-632. [10] 倪春华,包建平,顾忆. 生物降解作用对芳烃生物标志物参数的影响研究[J]. 石油实验地质,2008,30(4):386-389. Ni Chunhua, Bao Jianping, Gu Yi. Study of biodegradation effect on aromatic biomarker parameters[J]. Petroleum Geology & Experiment, 2008, 30(4): 386-389. [11] Anders D E, Robinson W E. Cycloalkane constituents of the bitumen from Green River shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(7): 661-678. [12] Gallegos E J. Identification of new steranes, terpanes, and branched paraffins in Green River shale by combined capillary gas chromatography and mass spectrometry[J]. Analytical Chemistry, 1971, 43(10): 1151-1160. [13] Moldowan J M, Seifert W K, Gallegos E J. Identification of an extended series of tricyclic terpanes in petroleum[J]. Geochimica et Cosmochimica Acta, 1983, 47(8): 1531-1534. [14] de Grande S M B, Neto F R A, Mello M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry, 1993, 20(7): 1039-1047. [15] 尚慧芸,姜乃煌. 陆相沉积盆地指相生物标记物及分子参数[J]. 沉积学报,1983,1(1):107-117. Shang Huiyun, Jiang Naihuang. Sedimentary facies indicators of biomarkers and their molecular parameters in terrestrial basins[J]. Acta Sedimentologica Sinica, 1983, 1(1): 107-117. [16] 史继扬,汪本善,张丽洁,等. 成岩作用阶段某些生物标志物的分布特征[J]. 石油与天然气地质,1988,9(3):223-230. Shi Jiyang, Wang Benshan, Zhang Lijie, et al. Distribution of some biomarkers in diagenetic stages[J]. Oil & Gas Geology, 1988, 9(3): 223-230. [17] Seifert W K, Moldowan J M. The effect of biodegradation on steranes and terpanes in crude oils[J]. Geochimica et Cosmochimica Acta, 1979, 43(1): 111-126. [18] Connan J, Restle A, Albrecht P. Biodegradation of crude oil in the Aquitaine Basin[J]. Physics and Chemistry of the Earth, 1980, 12: 1-17. [19] Goodwin N S, Park P J D, Rawlinson A P. Crude oil biodegradation under simulated and natural conditions[M]//Bjorøy M. Advances in organic geochemistry. New York: Wiley, 1983: 650-658. [20] Aquino N F R, Trendel J M, Restle A, et al. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums[M]//Bjorøy M. Advances in organic geochemistry. Chichester: Wiley Heyden, 1983: 207-227. [21] Lin L H, Michael G E, Kovachev G, et al. Biodegradation of tar-sand bitumens from the Ardmore and Anadarko Basins, Carter county, Oklahoma[J]. Organic Geochemistry, 1989, 14(5): 511-523. [22] Bost F D, Frontera-Suau R, McDonald T J, et al. Aerobic iodegradation of hopanes and norhopanes in Venezuelan crude oils[J]. Organic Geochemistry, 2001, 32(1): 105-114. [23] 马遵敬. 哈山地区二叠系油源对比及成烃演化研究[D]. 青岛:中国石油大学,2014. Ma Zunjing. Source rock-oil correlation and hydrocarbon generation research of Hashan region[D]. Qingdao: China University of Petroleum, 2014. [24] 程熊,侯读杰,徐长贵,等. 庙西凹陷严重生物降解原油序列中三环萜烷的异常分布成因初探[J]. 沉积学报,2017,35(1):193-202. Cheng Xiong, Hou Dujie, Xu Changgui, et al. Abnormal distributions of tricyclic terpanes and its genesis in severely biodegraded oils from the Miaoxi Depression, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2017, 35(1): 193-202. [25] Huang H P, Zhang S C, Gu Y, et al. Impacts of source input and secondary alteration on the extended tricyclic terpane ratio: A case study from Palaeozoic sourced oils and condensates in the Tarim Basin, NW China[J]. Organic Geochemistry, 2017, 112: 158-169. [26] 王屿涛. 准噶尔盆地西北缘稠油生物降解特征[J]. 沉积学报,1994,12(1):81-88. Wang Yutao. Characteristics of heavy oil biodegradation in the northwestern margin of Junggar Basin[J]. Acta Sedimentologica Sinica, 1994, 12(1): 81-88. [27] 王绪龙,支东明,王屿涛,等. 准噶尔盆地烃源岩与油气地球化学[M]. 北京:石油工业出版社,2013. Wang Xulong, Zhi Dongming, Wang Yutao, et al. Source rocks and oil-gas geochemistry in Junggar Basin[M]. Beijing: Petroleum Industry Press, 2013. [28] 杨瑞麒,过洪波. 准噶尔盆地西北缘稠油油藏地质特征及成因分析[J]. 新疆石油地质,1989,10(1):55-60. Yang Ruiqi, Guo Hongbo. Geological characteristics and genetic analysis of heavy oil reservoirs in the northwestern margin of Junggar Basin[J]. Xingjiang Pertoleum Geology, 1989, 10(1): 55-60. [29] Wardroper A M K, Hoffmann C F, Maxwell J R, et al. Crude oil biodegradation under simulated and natural conditions-Ⅱ. Aromatic steroid hydrocarbons[J]. Organic Geochemistry, 1984, 6: 605-617. [30] 陈建平,王绪龙,邓春萍,等. 准噶尔盆地烃源岩与原油地球化学特征[J]. 地质学报,2016,90(1):37-67. Chen Jianping, Wang Xulong, Deng Chunping, et al. Geochemical features of source rocks and crude oil in the Junggar Basin, Northwest China[J]. Acta Geologica Sinica, 2016, 90(1): 37-67. [31] Holba A G, Ellis L, Dzou I L, et al. Extended tricyclic terpanes as age discriminators between Triassic, Early Jurassic and Middle-Late Jurassic oils[C]// European Association of Organic Geochemists. Proceedings of the 20th International Meeting on Organic Geochemistry: Nancy, France, September 10-14, 464, 2001. [32] Nabbefeld B, Grice K, Twitchett R J, et al. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 84-96. [33] Hao F, Zhou X H, Zhu Y M, et al. Mechanisms for oil depletion and enrichment on the Shijiutuo uplift, Bohai Bay Basin, China[J]. AAPG Bulletin, 2009, 93(8): 1015-1037. [34] Huang H P, Li J. Molecular composition assessment of biodegradation influence at extreme levels-A case study from oilsand bitumen in the Junggar Basin, NW China[J]. Organic Geochemistry, 2017, 103: 31-42. [35] 王军,周心怀,杨波,等. 渤海蓬莱9-1油田强烈生物降解原油油源对比[J]. 中国海上油气,2017,29(6):32-42. Wang Jun, Zhou Xinhuai, Yang Bo, et al. Oil-source correlation of severely biodegraded oil of PL 9-1 oilfield in Bohai Sea[J]. China Offshore Oil and Gas, 2017, 29(6): 32-42. [36] Zhang D J, Huang D F, Li J C. Biodegraded sequence of Karamay oils and semi-quantitative estimation of their biodegraded degrees in Junggar Basin, China[J]. Organic Geochemistry, 1988, 13(1/2/3): 295-302. [37] Peters K E, Moldowan J M, McCaffrey M A, et al. Selective biodegradation of extended hopanes to 25-norhopanes in petroleum reservoirs. Insights from molecular mechanics[J]. Organic Geochemistry, 1996, 24(8/9): 765-783. [38] Trendel J M, Guilhem J, Crisp P, et al. Identification of two C-10 demethylated C28 hopanes in biodegraded petroleum[J]. Journal of the Chemical Society, Chemical Communications, 1990(5): 424-425. [39] Neto F R A, Restle A, Connan J, et al. Novel tricyclic terpanes (C19, C20) in sediments and petroleums[J]. Tetrahedron Letters, 1982, 23(l9): 2027-2030. [40] Peters K E. Petroleum tricyclic terpanes: Predicted physicochemical behavior from molecular mechanics calculations[J]. Organic Geochemistry, 2000, 31(6): 497-507. [41] 向廷生,黑花丽. 原油生物降解模拟实验及其定量化评价[J]. 现代地质,2010,24(2):259-267. Xiang Tingsheng, Huali Hei. A biodegradation experiment of crude oils in laboratory and quantitative evaluation[J]. Geoscience, 2010, 24(2): 259-267.