[1]
|
朱日祥,侯增谦,郭正堂,等. 宜居地球的过去、现在与未来:地球科学发展战略概要[J]. 科学通报,2021,66(35):4485-4490.
Zhu Rixiang, Hou Zengqian, Guo Zhengtang, et al. Summary of “the past, present and future of the habitable Earth: Development strategy of Earth science”[J]. Chinese Science Bulletin, 2021, 66(35): 4485-4490. |
[2]
|
Zheng Y F, Zhao Z F, Chen R X. Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: Compositional inheritance and metamorphic modification[J]. Geological Society of London, 2019, 474(1): 89-132. |
[3]
|
Hawkesworth C J, Kemp A I S. Evolution of the continental crust[J]. Nature, 2006, 443(7113): 811-817. |
[4]
|
Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 2006, 439(7076): 580-583. |
[5]
|
Iizuka T, Hirata T, Komiya T, et al. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust[J]. Geology, 2005, 33(6): 484-488. |
[6]
|
Qiu X F, Deng X, Jiang T, et al. First discovery of Hadean Xenocrystal zircons from granitic gneisses in the northern Dabie orogen[J]. Acta Geologica Sinica, 2021, 95(5): 1775-1776. |
[7]
|
Wang D, Qiu X F, Carlson R W. The Eoarchean Muzidian gneiss complex: Long-lived Hadean crustal components in the building of Archean continents[J]. Earth and Planetary Science Letters, 2023, 605: 118037. |
[8]
|
Qiu X F, Tong X R, Jiang T, et al. Reworking of Hadean continental crust in the Dabie orogen: Evidence from the Muzidian granitic gneisses[J]. Gondwana Research, 2021, 89: 119-130. |
[9]
|
徐大良,彭练红,邓新,等. 大别山南缘翁门杂岩中太古代—古元古代岩浆构造热事件的识别及其地质意义[J]. 地球科学,2023,48(11):4072-4087.
Xu Daliang, Peng Lianhong, Deng Xin, et al. Identification of Mesoarchean to Paleoproterozoic magmatic tectono-thermal events from Wengmen complex in southern Dabie orogen and its geological significance[J]. Earth Science, 2023, 48(11): 4072-4087. |
[10]
|
Zhao T, Zhu G, Wu Q, et al. Evidence for discrete Archean microcontinents in the Yangtze Craton[J]. Precambrian Research, 2021, 361: 106259. |
[11]
|
邱啸飞,江拓,吴年文,等. 大别造山带新太古代地壳岩石和古元古代混合岩化作用:来自锆石U-Pb年代学和Hf同位素证据[J]. 地质学报,2020,94(3):729-738.
Qiu Xiaofei, Jiang Tuo, Wu Nianwen, et al. Neoarchean crustal rocks and Paleoproterozoic migmatization in the Dabie orogen: Evidence from zircon U-Pb age and Hf isotopes[J]. Acta Geologica Sinica, 2020, 94(3): 729-738. |
[12]
|
田洋,王伟,金巍,等. 大别贾庙新太古代花岗质岩石:对扬子克拉通形成与演化的制约[J]. 中国科学:地球科学,2022,52(11):2219-2238.
Tian Yang, Wang Wei, Jin Wei, et al. Neoarchean granitic rocks from the Jiamiao area of the Dabie orogen: Implications on the formation and early evolution of the Yangtze Craton[J]. Science China:Earth Sciences, 2022, 52(11): 2219-2238. |
[13]
|
陈雪,陈岳龙,包创,等. 澜沧江河流沉积物碎屑锆石U-Pb年龄、Hf同位素组成及其地质意义[J]. 现代地质,2014,28(6):1170-1182.
Chen Xue, Chen Yuelong, Bao Chuang, et al. U-Pb dating and Hf isotopic composition of detrital zircons in the sediments from the Lancang River and its geological significance[J]. Geoscience, 2014, 28(6): 1170-1182. |
[14]
|
Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. |
[15]
|
Rino S, Komiya T, Windley B F, et al. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1/2): 369-394. |
[16]
|
Liu X M, Gao S, Diwu C R, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4): 421-468. |
[17]
|
Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2660-2673. |
[18]
|
Wang A D, Liu Y C. Neoarchean (2.5-2.8 Ga) crustal growth of the North China Craton revealed by zircon Hf isotope: A synthesis[J]. Geoscience Frontiers, 2012, 3(2): 147-173. |
[19]
|
Lei N Z, Wu Y B. Zircon U-Pb age, trace element, and Hf isotope evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal remnant in the Dabie orogen[J]. Journal of China University of Geosciences, 2008, 19(2): 110-134. |
[20]
|
夏群科,郑永飞,葛宁洁,等. 大别山北部黄土岭片麻岩的锆石U-Pb年龄和氧同位素组成:古老的原岩和多阶段历史[J]. 岩石学报,2003,19(3):506-512.
Xia Qunke, Zheng Yongfei, Ge Ningjie, et al. U-Pb ages and oxygen isotope compositions of zircons from gneiss of Huangtuling, northern Dabie: Old protolith and multi-stage evolution[J]. Acta Petrologica Sinica, 2003, 19(3): 506-512. |
[21]
|
Liu Y C, Li S G, Gu X F, et al. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China[J]. Journal of Metamorphic Geology, 2007, 25(9): 975-989. |
[22]
|
Zheng Y F. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 2008, 53(20): 3081-3104. |
[23]
|
Zheng Y F. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology, 2012, 328: 5-48. |
[24]
|
徐旭峰,石永红,林伟,等. 中大别腹地榴辉岩锆石U-Pb年龄及其类型归属[J]. 岩石学报,2013,29(5):1559-1572.
Xu Xufeng, Shi Yonghong, Lin Wei, et al. Zircon U-Pb geochronology and typological classification of eclogites in the hinterland of the central Dabie[J]. Acta Petrologica Sinica, 2013, 29(5): 1559-1572. |
[25]
|
李静,陆丽娜,崔月菊,等. 大别山榴辉岩中石榴石拉曼光谱特征及其地质学意义[J]. 矿物岩石,2016,36(1):17-21.
Li Jing, Lu Lina, Cui Yueju, et al. Raman spectra features of the garnet in elcogite from the Dabie Mountain and its geological significances[J]. Journal of Mineralogy and Petrology, 2016, 36(1): 17-21. |
[26]
|
徐大良,邓新,彭练红,等. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘,2023,30(4):299-316.
Xu Daliang, Deng Xin, Peng Lianhong, et al. The components of the subducted continental basement within the Dabieshan orogenic belt as evidenced by xenocrystic/inherited zircons from Cretaceous dykes[J]. Earth Science Frontiers, 2023, 30(4): 299-316. |
[27]
|
孔令耀,韩庆森,郭盼,等. 大别造山带古元古代黑云紫苏斜长片麻岩年代学、地球化学特征及其地质意义[J]. 地质学报,2023,97(5):1463-1477.
Kong Lingyao, Han Qingsen, Guo Pan, et al. Geochronology and geochemistry of the Early Proterozoic hypersthene plagioclase gneiss in the Dabie orogen and its geological implications[J]. Acta Geologica Sinica, 2023, 97(5): 1463-1477. |
[28]
|
童喜润,陈伟雄,江拓,等. 大别造山带红安地块康家湾构造混杂岩锆石U-Pb年龄和Hf同位素组成及其地质意义[J]. 地质学报,2023,97(1):52-68.
Tong Xirun, Chen Weixiong, Jiang Tuo, et al. U-Pb ages and Hf isotope compositions of the zircons in the Kangjiawan mélange of the Hongan block, Dabie orogenic belt and its geological implication[J]. Acta Geologica Sinica, 2023, 97(1): 52-68. |
[29]
|
Hu Z C, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U–Pb ages and Zr–O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2715-2734. |
[30]
|
Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of Early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan orogen, southern Central Asian orogenic belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. |
[31]
|
Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. |
[32]
|
Ludwig K R. User’s manual for Isoplot 3.00: A geochronological toolkit for microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003: 25-32. |
[33]
|
Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79. |
[34]
|
Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324. |
[35]
|
Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269. |
[36]
|
Iizuka T, Yamaguchi T, Hibiya Y, et al. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17): 5331-5336. |
[37]
|
Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258. |
[38]
|
Li Y, Liu Y C, Yang Y, et al. Petrogenesis and tectonic significance of Neoproterozoic meta-basites and meta-granitoids within the central Dabie UHP zone, China: Geochronological and geochemical constraints[J]. Gondwana Research, 2020, 78: 1-19. |
[39]
|
金巍,田洋,王晶,等. 大别造山带白垩纪花岗岩对太古宙基底的再造:来自U-Pb年代学、Sr-Nd-Hf同位素的证据[J]. 地质学报,2023,97(6):1780-1796.
Jin Wei, Tian Yang, Wang Jing, et al. Reconstruction of Archaean basement in the Dabie orogen: Constraints from geochronology and Sr-Nd-Hf isotope of the Early Cretaceous Daqishan granite[J]. Acta Geologica Sinica, 2023, 97(6): 1780-1796. |
[40]
|
Zhang H F, Zhai M G, Santosh M, et al. Geochronology and petrogenesis of Neoarchean potassic meta-granites from Huai’an complex: Implications for the evolution of the North China Craton[J]. Gondwana Research, 2011, 20(1): 82-105. |
[41]
|
Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432(7019): 892-897. |
[42]
|
赵军红,王伟,刘航. 扬子东南缘新元古代地质演化[J]. 矿物岩石地球化学通报,2015,34(2):227-233.
Zhao Junhong, Wang Wei, Liu Hang, et al. Geological evolution of the southeastern Yangtze Block during the Neoproterozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 227-233. |
[43]
|
涂城. 扬子克拉通北缘肥东杂岩地球化学研究[D]. 合肥:中国科学技术大学,2020.
Tu Cheng. Geochemistry of the Feidong complex in the northern margin of the Yangtze Craton[D]. Hefei: University of Science and Technology of China, 2020. |
[44]
|
李远,刘贻灿,杨阳,等. 大别山宿松变质带花岗片麻岩的锆石U-Pb年龄和Hf同位素成分[J]. 地球科学与环境学报,2018,40(1):61-75.
Li Yuan, Liu Yican, Yang Yang, et al. Zircon U-Pb Ages and Hf-isotope compositions of granitic gneisses from the Susong metamorphic zone in the Dabie orogen, China[J]. Journal of Earth Sciences and Environment, 2018, 40(1): 61-75. |
[45]
|
Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200-203: 26-37. |
[46]
|
Wang X, Guo J W, Tao W, et al. Paleoproterozoic tectonic evolution of the Yangtze Craton: Evidence from magmatism and sedimentation in the Susong area, South China[J]. Precambrian Research, 2021, 365: 106390. |
[47]
|
熊定一,王孝磊,邢光福 .从超大陆旋回看前寒武纪伟晶岩型锂矿的形成[J]. 华东地质,2023,44(1):1-12.
Xiong Dingyi, Wang Xiaolei, Xing Guangfu. A supercontinental cycles perspective for the formation of Precambrian pegmatitic lithium deposits[J]. East China Geology, 2023, 44(1): 1-12. |
[48]
|
Buick R, Marais D J D, Knoll A H. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia[J]. Chemical Geology, 1995, 123(1/2/3/4): 153-171. |
[49]
|
Brasier M D, Lindsay J F. A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia[J]. Geology, 1998, 26(6): 555-558. |
[50]
|
黄天正,王瑞敏,沈冰.“中年地球”的磷循环与生物泵:再谈“沉寂的十亿年”[J].科学通报, 2022, 67(15): 1614-1623.
Huang Tianzheng, Wang Ruimin, Shen Bing. The phosphorus cycle and biopump of "middle aged Earth": Further discussion on "silent billion years"[J]. Chinese Science Bulletin, 2022, 67(15): 1614-1623. |
[51]
|
Jin W, Liu J H, Tian Y, et al. Mid-Mesoproterozoic (ca. 1.37 Ga) anorogenic magmatism in the Dabie orogen, northern Yangtze Craton: Response to the breakup of Columbia[J]. GSA Bulletin, 2023, 136(5/6): 2616-2635. |
[52]
|
Hu J, Jin W, Tian Y, et al. Deposition of a newly identified Mesoproterozoic iron formation from the Dabie orogen: Influenced by high-T hydrothermal fluid and redox stratification[J]. Precambrian Research, 2023, 390: 107043. |
[53]
|
孙洋,马昌前,张超. 大别山鲁家寨花岗岩地球化学、锆石年代学和Hf同位素特征:扬子克拉通北东缘新元古代岩浆活动证据[J]. 地学前缘,2011,18(2):85-99.
Sun Yang, Ma Changqian, Zhang Chao. Geochemistry, zircon geochronology and Hf isotopes of Lujiazhai granites from the Dabie orogen: Evidence for the Neoproterozoic magmatism along the northeastern margin of Yangtze Block[J]. Earth Science Frontiers, 2011, 18(2): 85-99. |
[54]
|
胡俊良,刘劲松,刘阿睢,等. 北大别木子店岩体斑状黑云二长花岗岩的年龄与成因:锆石U-Pb定年、Hf同位素与稀土元素证据[J]. 矿物岩石地球化学通报,2018,37(4):750-759.
Hu Junliang, Liu Jinsong, Liu Asui, et al. Age and petrogenesis of the porphyritic biotite monzogranite in the Muzidian complex in northern Dabie mountains: Evidences from zircon U-Pb dating, Hf isotopes and REE geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 750-759. |
[55]
|
刘劲松,胡俊良,刘阿睢,等. 大别山木子店地区细粒二长花岗岩脉的年龄和成因:锆石U-Pb年龄和Hf同位素制约[J]. 地质通报,2016,35(12):2088-2099.
Liu Jinsong, Hu Junliang, Liu Asui, et al. Age and origin of Muzidian fine-grained monzogranite dyke in Dabie orogenic belt: Zircon U-Pb dating and Hf isotopic constraints[J]. Geological Bulletin of China, 2016, 35(12): 2088-2099. |
[56]
|
Zheng Y F, Xu Z, Zhao Z F, et al. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere[J]. Science China Earth Sciences, 2018, 61(4): 353-385. |
[57]
|
Zhu R X, Xu Y G. The subduction of the west Pacific Plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62(9): 1340-1350. |
[58]
|
Xu H J, Ma C Q, Ye K. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: Shrimp zircon U-Pb dating and geochemistry[J]. Chemical Geology, 2007, 240(3/4): 238-259. |
[59]
|
Zhao Z F, Zheng Y F, Wei C S, et al. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust[J]. Lithos, 2007, 93(3/4): 248-272. |
[60]
|
陈能松,刘嵘,孙敏,等. 北大别黄土岭长英质麻粒岩的原岩、变质作用及源区热事件年龄的锆石LA-ICPMS U-Pb测年约束[J]. 地球科学:中国地质大学学报,2006,31(3):294-300.
Chen Nengsong, Liu Rong, Sun Min, et al. LA-ICPMS U-Pb zircon dating for felsic granulite, Huangtuling area, north Dabieshan: Constraints on timing of its protolith and granulite-facies metamorphism, and thermal events in its provenance[J]. Earth Science: Journal of China University of Geosciences, 2006, 31(3): 294-300. |
[61]
|
Qiu X F, Zhao X M, Yang H M, et al. Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze Craton, South China Block: Implications for provenance and tectonic evolution[J]. Geological Magazine, 2018, 155(6): 1263-1276. |
[62]
|
吴元保,陈道公,郑永飞,等. 北大别漫水河混合岩化片麻岩中锆石微区微量元素特征及其地质意义[J]. 岩石学报,2004,20(5):1141-1150.
Wu Yuanbao, Chen Daogong, Zheng Yongfei, et al. Trace element geochemistry of zircons in migmatitic gneiss at Manshuihe, north Dabieshan and its geological implications[J]. Acta Petrologica Sinica, 2004, 20(5): 1141-1150. |
[63]
|
陈道公, Deloule E,倪涛. 大别地体新店榴辉岩变质锆石U-Pb年龄和氧同位素研究[J]. 中国科学:地球科学,2005,35(8):691-699.
Chen Daogong, Deloule E, Ni Tao. Metamorphic zircon from Xindian eclogite, Dabie terrain: U-Pb age and oxygen isotope composition[J]. Science China: Earth Sciences, 2005, 35(8): 691-699. |
[64]
|
薛怀民,董树文,刘晓春. 北大别大山坑二长花岗片麻岩的地球化学特征与锆石U-Pb年代学[J]. 地球科学进展,2003, 18(2):192-197.
Xue Huaimin, Dong Shuwen, Liu Xiaochun.Geochemical characteristics and U-Pb zircon dating of Dashankeng monzonitic granitic gneiss in northeastern Dabie mountains[J]. Advance In Earth Sciences, 2003, 18(2): 192-197. |
[65]
|
陈道公,李彬贤,夏群科,等. 大别超高压碰撞造山带岩石锆石U/Pb同位素框架年代学[J]. 矿物岩石地球化学通报,2001,20(4):253-255.
Chen Daogong, Li Binxian, Xia Qunke, et al. Zircon U/Pb frame geochronology of ultra-high pressure zone rocks for Dabie orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 253-255. |
[66]
|
邓尚贤,王江海,孙敏,等. 湖北省罗田凤凰关混合岩浅色体的类型及其锆石U-Pb年龄[J]. 地球化学,1997,26(2):75-86.
Deng Shangxian, Wang Jianghai, Sun Min, et al. Leucosome types and age of one-generation leucosome of the Fenghuangguan migmatites in Luotian, Hubei province, central China[J]. Geochimica, 1997, 26(2): 75-86. |
[67]
|
Wang J H, Sun M, Deng S X. Geochronological constraints on the timing of migmatization in the Dabie Shan, east-central China[J]. European Journal of Mineralogy, 2002, 14(4): 513-524. |
[68]
|
吴元保,唐俊,张少兵,等. 北大别两期混合岩化作用:SHRIMP锆石U-Pb年龄证据[J]. 科学通报,2007,52(8):939-944.
Wu Yuanbao, Tang Jun, Zhang Shaobing, et al. Two periods of mixed lithiation in Beidabie: Evidence from SHRIMP zircon U-Pb ages[J]. Chinese Science Bulletin, 2007, 52(8): 939-944. |
[69]
|
胡娟,刘晓春,陈龙耀,等. 扬子克拉通北缘约2.5Ga岩浆事件:来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据[J]. 科学通报,2013,58(34):3579-3588.
Hu Juan, Liu Xiaochun, Chen Longyao, et al. A ~2.5 Ga magmatic event at the northern margin of the Yangtze Craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58(34): 3579-3588. |
[70]
|
李全忠,谢智,徐夕生,等. 大别造山带早白垩世基性岩的同位素特征及下地壳物质对岩浆源区的贡献[J]. 岩石学报,2008,24(8):1771-1781.
Li Quanzhong, Xie Zhi, Xu Xisheng, et al. The isotopic characteristics of the Early-Cretaceous mafic rocks from Dabie orogenic belt and the contribution of the lower crust to the magma source[J]. Acta Petrologica Sinica, 2008, 24(8): 1771-1781. |
[71]
|
Chen K, Gao S, Wu Y B, et al. 2.6-2.7 Ga crustal growth in Yangtze Craton, South China[J]. Precambrian Research, 2013, 224: 472-490. |
[72]
|
Wei J Q, Wei Y X, Wang J X, et al. Geochronological constraints on the formation and evolution of the Huangling basement in the Yangtze Craton, South China [J]. Precambrian Research, 2020, 342: 105707. |
[73]
|
Gao S, Yang J, Zhou L, et al. Age and growth of the archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 2011, 311 (2): 153-182. |
[74]
|
Wei Y X, Zhou W X, Hu Z X, et al. Geochronology and geochemistry of Archean TTG and tremolite schist xenoliths in Yemadong complex: Evidence for ≥3.0 Ga Archean continental crust in Kongling high-grade metamorphic terrane, Yangtze Craton, China[J]. Minerals, 2019, 9 (11): 689. |
[75]
|
Zhang S B, Zheng Y F, Wu P, et al. The nature of subduction system in the Neoarchean: Magmatic records from the northern Yangtze Craton, South China[J]. Precambrian Research, 2020, 347: 105834. |
[76]
|
Guo J L, Gao S, Wu Y B, et al. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242: 82-95. |
[77]
|
Guo J L, Wu Y B, Gao S, et al.Episodic Paleoarchean-Paleoproterozoic (3.3 -2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for Late Archean tectonics[J]. Precambrian Research, 2015, 270: 246-266. |
[78]
|
Qiu Y M, Gao S, McNaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze Craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 2000, 28(1): 11-14. |
[79]
|
Li Y H, Zheng J P, Ping X Q, et al. Complex growth and reworking processes in the Yangtze cratonic nucleus[J]. Precambrian Research, 2018, 311: 262-277. |
[80]
|
Jiao W F, Wu Y B, Yang S H, et al. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China Series D: Earth Sciences, 2009, 52(9): 1393-1399. |
[81]
|
邱啸飞,陈伟雄,徐大良,等. 扬子陆核崆岭杂岩太古宙地壳演化[J]. 华南地质,2022,38(1):56-66.
Qiu Xiaofei, Chen Weixiong, Xu Daliang, et al. Crustal evolution in Archean for the Kongling complex in the Yangtze Craton nucleus[J]. South China Geology, 2022, 38(1): 56-66. |
[82]
|
Zhao T, Cawood P A, Wang K, et al. Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block[J]. Precambrian Research, 2019, 332: 105395. |
[83]
|
Zhao T, Li J, Liu G, et al. Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: Constraints on the early formation of the Yangtze Block[J]. Precambrian Research, 2020, 347: 105848. |
[84]
|
崔晓庄,任光明,孙志明,等. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆—变质事件[J]. 地球科学,2020,45(8):3054-3069.
Cui Xiaozhuang, Ren Guangming, Sun Zhiming, et al. Multiple tectonothermal events recorded in the Early Precambrian Cuoke complex in the southwestern Yangtze Block, South China[J]. Earth Science, 2020, 45(8): 3054-3069. |
[85]
|
Cui X Z, Wang J, Wang X C, et al. Early crustal evolution of the Yangtze Block: Constraints from zircon U-Pb-Hf isotope systematics of 3.1-1.9 Ga granitoids in the Cuoke complex, SW China[J]. Precambrian Research, 2021, 357: 106155. |
[86]
|
Wu Y B, Zhou G Y, Gao S, et al. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 2014, 254: 73-86. |
[87]
|
涂城,张少兵,苏克,等. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素:对扬子克拉通统一结晶基底的限制[J]. 地球科学,2021,46(5):1630-1643.
Tu Cheng, Zhang Shaobing, Su Ke, et al. Zircon U-Pb dating and Lu-Hf isotope results for Feidong complex: Implications for coherent basement of the Yangtze Craton[J]. Earth Science, 2021, 46(5): 1630-1643. |
[88]
|
Yuan X, Niu M, Cai Q,et al. The nature of Paleoproterozoic basement in the northern Yangtze and its geological implication[J]. Precambrian Research, 2022, 378: 106761. |
[89]
|
Han Q, Peng S, Kusky T, et al. A Paleoproterozoic ophiolitic mélange, Yangtze Craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation[J]. Precambrian Research, 2017, 293: 13-38. |
[90]
|
Zhou W, Huang B, Wei Y, et al. Paleoproterozoic ophiolitic mélanges and orogenesis in the northern Yangtze Craton: Evidence for the operation of modern-style plate tectonics[J]. Precambrian Research, 2021, 364: 106385. |
[91]
|
Han Q, Peng S, Polat A, et al. A ca.2.1Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze Craton, China: Evidence from high-Mg basalts and andesites[J]. Precambrian Research, 2018, 309: 309-324. |
[92]
|
Han Q, Peng S. Paleoproterozoic subduction within the Yangtze Craton: Constraints from Nb-enriched mafic dikes in the Kongling complex[J]. Precambrian Research, 2020, 340: 105634. |