-
在区域Ⅰ,我们收集了华北盆地北部下板城、平泉、北京西山、宁武、太原西山和延安地区三叠纪不同组对应的碎屑锆石年龄数据(表1),并绘制了如图4所示的锆石年龄频谱图。其中,所有选择的锆石U-Pb年龄不谐和度均小于10%,年轻锆石(<1 000 Ma)单点误差1σ多在10 Ma以内,最大单点误差为39 Ma,晚古生代锆石颗粒多呈自形—半自形,具有明显的岩浆振荡生长环带[8,10,12],锆石Th/U比值为0.01~43.74,以岩浆锆石 (Th/U>0.4)为主(81.16%,784/966),变质锆石(Th/U<0.1)较少(0.93%,9/966)。早三叠世,下板城和平泉地区具有相似的锆石年龄频谱特征,形成382 Ma、324 Ma、256 Ma三个晚古生代锆石年龄峰值以及2 528 Ma和1 856 Ma两个新太古代—古元古代年龄峰值[8-9];宁武和太原西山也具有相似的年龄频谱特征,形成405 Ma、302 Ma和272 Ma三个晚古生代年龄峰值以及2 516 Ma和1 874 Ma两个新太古代—古元古代年龄峰值[10,71];延安地区以晚古生代锆石年龄(255 Ma、309 Ma和340 Ma)为主,新太古代—古元古代碎屑锆石较少[74]。中三叠世,下板城、宁武和延安地区碎屑锆石年龄主要集中在晚古生代(253 Ma、287 Ma和386 Ma)和新太古代—古元古代(2 470 Ma、1 868 Ma)两个年龄段[9-10,74]。晚三叠世,北京西山杏石口组以峰值为295 Ma和205 Ma的晚古生代—早中生代锆石年龄为主[2];宁武地区晚古生代碎屑锆石具有260 Ma的主峰值年龄及247 Ma、273 Ma、298 Ma和316 Ma多个次峰值年龄,新太古代—古元古代碎屑锆石形成1 840 Ma和2 499 Ma两个主年龄峰值[12]。
表 1 华北各地区三叠纪碎屑锆石年龄收集汇总
区域 采样位置与层位 岩性与样品编号 碎屑锆石年龄组成(%)/Ma 锆石数量/个 数据来源 华北北部 下板城二马营组 砂岩Sandie 5, 7 388~221 (41%) 2 552~1 632 (59%) N=179 Meng et al.[9] 下板城刘家沟组 砂岩Sandie 1-3 400~240 (40%) 463 2 589~1 665 (60%) N=274 平泉刘家沟组 砂岩LJG 405~247 (25%) 2 618~1 748 (75%) N=96 Ma et al.[8] 北京西山杏石口组 砂岩FW04-121 329~203 (59%) 2 559~1 706 (41%) N=58 Yang et al.[2] 宁武上三叠统下部 细砂岩N-4 317~238 (24%) 2 520~1 547 (76%) N=74 Li et al.[12] 宁武二马营组 砂岩T2er-2 307~240 (26%) 2 558~1 739 (74%) N=94 Zhou et al.[10] 宁武刘家沟组 砂岩T1l-1 409~258 (26%) 2 621~1 661 (74%) N=93 太原西山刘家沟组 砂岩LJG 418~255 (29%) 3 126~1 563 (70%) N=133 刘超等[71] 华北南部 济源谭庄组 细砂岩T-t 383~248 (13%) 1 539~738 (15%) 2 890~1 658 (72%) N=79 Yang et al.[13] 济源椿树腰组 细砂岩T-c 388~241 (19%) 2 683~1 740 (81%) N=75 济源油房庄组 中砂岩T-y 351~245 (25%) 2 655~1 703 (75%) N=72 济源二马营组 细砂岩S-3 367~236 (47%) 2 651~1 635 (53%) N=74 彭深远等[72] 济源和尚沟组 细砂岩S-2 1 381~382 (84%) 2 687~1 573 (16%) N=76 济源刘家沟组 细砂岩S-1 387~250 (22%) 821~427 (12%) 3 217~1 794 (66%) N=75 济源上三叠统上部 细砂岩J-9 372~228 (38%) 469 2 562~ 1626 (61%) N=66 Li et al.[12] 济源上三叠统中部 细砂岩J-7 363~243 (37%) 2 636~1 696 (63%) N=67 登封油房庄组 砂岩DF6-1 367~221 (43%) 514 2 596~1 670 (56%) N=83 Yang et al.[14] 三门峡油房庄组 砂岩SMX1-1 327~235 (35%) 446~438 (4%) 2 582~1 629 (61%) N=53 三门峡二马营组 砂岩SMX2-1 388~232 (49%) 2 679~1 600 (51%) N=88 宜阳和尚沟组 中砂岩Y-H 1 048~436 (82%) 2 453~1 791 (18%) N=103 Wang et al.[18] 宜阳刘家沟组 粗砂岩 Y-L 403~259 (17%) 1 229~424 (25%) 2 748~1 583 (58%) N=102 宜川延长组下部 中砂岩ZXW-20 275~248 (10%) 2 582~1 608 (90%) N=54 Zhang et al.[17] 宜川纸坊组 中砂岩YC-1 356~263 (21%) 2 563~1 693 (79%) N=53 韩城纸坊组 中砂岩HC-2 350~247 (17%) 2 636~1 673 (83%) N=58 黄龙延长组长5-4 粉砂岩DN34 340~213 (45%) 1 450~1 160 (2%) 2 488~1 541 (52%) N=86 王娟[15] 黄陵延长组长5-4 细砂岩DN29 354~236 (15%) 475 2 685~1 543 (84%) N=93 黄龙延长组长6 细砂岩DN37 294~226 (29%) 430 2 635~1 617 (70%) N=89 铜川延长组长6 砂岩DN11 342~255 (7%) 1 393~400 (28%) 2 599~1 644 (65%) N=97 铜川延长组长7 砂岩DN19 314~235 (9%) 1 451~411 (19%) 3 248~1 677 (72%) N=82 黄龙延长组长6 细砂岩DN37 294~226 (31%) 2 635~1 617 (66%) N=97 乔向阳等[73] 铜川延长组长6 砂岩DN11 342~255 (7%) 1 168~400 (22%) 2 730~1 644 (55%) N=99 铜川延长组长8 细砂岩TC8 369~261 (13%) 468~448 (4%) 2 652~1 793 (82%) N=68 Xie et al.[11] 铜川延长组长9 中砂岩DN-02 358~229 (46%) 2 586~1 747 (54%) N=63 吴桐桐[16] 宜川延长组长8 中砂岩DN-40 371~233 (38%) 2 639~1 731 (62%) N=89 宜川延长组长10 细砂岩DN-42 366~239 (29%) 2 677~1 726 (71%) N=99 宜君延长组长10 中砂岩DN-23 349~231 (24%) 2 608~1 696 (76%) N=112 华北西部 贺兰山上三叠统 砂岩WH-11-2 357~249 (14%) 1 377~1 344 (14%) 2 776~1 803 (71%) N=14 Shi et al.[26] 贺兰山中三叠统 砂岩WH-4, 7, 25 382~266 (23%) 670~447 (4%) 2 815~1 803 (72%) N=47 区域 采样位置与层位 岩性与样品编号 碎屑锆石年龄组成(%)/Ma 锆石点数/个 数据来源 华北西部 贺兰山延长组上部 细砂岩HL-21 422~208 (25%) 1 053~504 (8%) 2 551~1 558 (67%) N=64 Sun et al.[6] 贺兰山延长组中部 中砂岩HL-18 335~205 (16%) 917~381 (33%) 2 755~1 588 (49%) N=61 贺兰山延长组下部 粗砂岩HL-17 327~293 (5%) 1 256~959 (4%) 2 682~1 729 (91%) N=61 汝箕沟口纸坊组 粗砂岩HL-16 310~256 (12%) 457~410 (5%) 2 560~1 731 (82%) N=61 汝箕沟延长组长3-2 砂岩16RJG01 371~252 (20%) 951~490 (6%) 2 654~1 807 (72%) N=64 李亚男[23] 磁窑堡延长组长7-4 砂岩17CYB05 435~268 (34%) 742 2 765~1 829 (63%) N=76 磁窑堡延长组长9-8 砂岩17CYB04 410~287 (6%) 2 564~1 732 (94%) N=83 炭井沟延长组长9-8 砂岩16TJG01 360~272 (18%) 458~420 (2%) 2 610~1 599 (80%) N=79 插旗口延长组长9-8 砂岩15CQK08 396~271 (10%) 479~441 (4%) 2 591~1 776 (86%) N=79 石沟驿上三叠统 砂岩SGY-001 311~259 (11%) 514~442 (6%) 2 600~1 753 (83%) N=53 张义楷[29] 窑山延长组上部 粗砂岩YS1-3 450~220 2 700~16 50 — 谭聪等[24] 麻黄沟延长组上部 中砂岩MH1 450~230 2 550~1 750 — 华池延长组长6 砂岩li78 348~269 (22%) 1 097~405 (38%) 2 451~1 857 (38%) N=37 孙迪等[21] 玄马延长组长6 砂岩zhuang33 373~294 (14%) 1 177~400 (49%) 2 668~1 788 (33%) N=43 平凉延长组长6 砂岩yan40 318~291 (6%) 1 367~446 (47%) 2 594~1 559 (43%) N=49 汭水河延长组长6 砂岩rsh04 323~248 1 572~430 2 589~1 745 N=51 环县延长组下部 中砂岩ZXW-22 353~228 (29%) 1 581~509 (3%) 2 580~1 767 (68%) N=57 Zhang et al.[17] 环县延长组长10 砂岩环78 361~248 2 711~1 634 — 李元昊等[22] 盐池延长组长10 砂岩安99 373~234 2 537~1 647 — 华池延长组长10 砂岩白212 526~251 (16%) 2 597~1 564 (84%) — 庆阳延长组长10 砂岩宁65 370~224 (25%) 2 644~1 637 (75%) — 汭水河延长组长8 中砂岩AK8 307~252 (10%) 473~411 (3%) 2 591~1 673 (87%) N=90 Xie et al.[11] 汭水河延长组长6 砂岩RUIHE17 366~235 (18%) 1 106~1 022 (16%) 2 591~1 812 (65%) N=57 宋立军等[19] 汭水河延长组长9 中砂岩RUIHE9 303~256 (23%) 2 628~1 556 (77%) N=70 汭水河延长组上部 细砂岩RSH3 412~239 (41%) 1 380~420 (27%) 2 493~1 754 (32%) N=123 Xie[20] 汭水河延长组中部 中砂岩RSH2 412~225 (58%) 1 351~422 (7%) 2 600~1 600 (35%) N=191 汭水河延长组下部 中砂岩RSH1 421~227 (46%) 911~467 (3%) 2 623~1 648 (51%) N=186 延安上三叠统下部 细砂岩Y-4 343~288 (11%) 2 522~1 675 (89%) N=66 Li et al.[12] 延安上三叠统上部 砂岩YA06-1 408~246 (6%) 1 483~441 (71%) 2 794~1 613 (23%) N=73 Bao et al.[74] 延安上三叠统下部 砂岩YA09-1 309~245 (17%) 434 (2%) 2 566~1 647 (81%) N=64 延安中三叠统 砂岩YA13-1 386~232 (24%) 1 083~486 (3%) 2 736~1 772 (73%) N=63 延安下三叠统 砂岩YA11-1 341~245 (31%) 467 2 879~1 731 (66%) N=35
Provenance Characteristics and Sedimentary-Tectonic Evolution of the North China Basin in the Triassic: Indications from detrital zircon ages
-
摘要: 华北盆地三叠纪沉积厚度大,分布广泛,其地层沉积特征很好地记录了周缘造山带或隆起区在该时期的构造演化过程。目前,前人已经对华北各地区三叠纪碎屑物源进行了大量研究,而对于物源区的认识仍存在分歧,对于盆缘地区沉积—构造演化过程的研究也相对较少。通过整理前人对华北各地区三叠纪碎屑物源研究的锆石年龄数据,并结合造山带构造演化过程和地层沉积特征,对华北盆地三叠纪碎屑物源及沉积—构造演化过程进行了整体研究。结果表明:华北北部三叠纪沉积物源均来自北缘的内蒙古隆起,锆石年龄和地层沉积特征记录了源区逐渐增强的岩浆活动和隆升过程。华北南部地区在该时期主要接受来自华北南缘二叠纪沉积盖层和北秦岭造山带的碎屑物质供给,华北南缘伴随着秦岭造山过程可能在中三叠世就已经逆冲隆升并遭受剥蚀,两者的协同演变共同控制着盆地南部沉积演化过程。鄂尔多斯盆地西北部碎屑物源主要来自阿拉善地块和北祁连造山带,西南部地区物源则主要来自盆地西南缘再旋回沉积盖层和北祁连造山带,分别为伸展和挤压状态下的内陆盆地沉积。早—中三叠世,华北盆地为统一的大型内陆沉积盆地,晚三叠世,盆地南、北缘发育沿褶皱逆冲带分布的陆内前陆盆地系统。Abstract: The Triassic stratum in the North China Basin has a large thickness and wide distribution, and its sedimentary characteristics well record the tectonic evolution processes of periphery orogenic belts and their uplift area. At present, numerous studies have been performed on the Triassic detrital provenance in North China, but disagreements still exist about the source areas, and the research on sedimentary-tectonic evolution in the basin rim is relatively scant. This paper collected a large number of published age data for detrital zircons from the Triassic provenance analysis in the North China Basin and researched the detrital zircon provenance and the sedimentary-tectonic evolution processes of the North China Basin in the Triassic as a whole, combined with the tectonic evolution of orogenic belts and depositional characteristics. The results show that the Triassic clastic sediments in the northern part of North China were sourced from the Inner Mongolia paleo-uplift; detritus deposited in the southern part of north China mainly came from the sedimentary covers in southern North China Craton and the north Qinling orogenic belt; and the Alxa block and the north Qilian orogenic belt provided sediments to the northwest Ordos Basin, while the provenance in the southwest was mainly sourced from recycled sedimentary covers in the southwest basin rim and the north Qilian orogenic belt. In the Early-Middle Triassic, the entire North China Block was deposited as a large inland craton basin, with a lengthways compression. In the Late Triassic, foreland basin systems developed along the fold and thrust belts in the north and south margins of the North China Block, under sustained plate squeeze and collision orogeny. Meanwhile, imbalanced east-west directional compression induced the eastern North China Block uplift and denudation, and the western Ordos Basin deposited successively in the inland craton basin.
-
Key words:
- Triassic /
- North China Basin /
- detrital zircon /
- provenance analysis /
- sedimentary-tectonic evolution
-
表 1 华北各地区三叠纪碎屑锆石年龄收集汇总
区域 采样位置与层位 岩性与样品编号 碎屑锆石年龄组成(%)/Ma 锆石数量/个 数据来源 华北北部 下板城二马营组 砂岩Sandie 5, 7 388~221 (41%) 2 552~1 632 (59%) N=179 Meng et al.[9] 下板城刘家沟组 砂岩Sandie 1-3 400~240 (40%) 463 2 589~1 665 (60%) N=274 平泉刘家沟组 砂岩LJG 405~247 (25%) 2 618~1 748 (75%) N=96 Ma et al.[8] 北京西山杏石口组 砂岩FW04-121 329~203 (59%) 2 559~1 706 (41%) N=58 Yang et al.[2] 宁武上三叠统下部 细砂岩N-4 317~238 (24%) 2 520~1 547 (76%) N=74 Li et al.[12] 宁武二马营组 砂岩T2er-2 307~240 (26%) 2 558~1 739 (74%) N=94 Zhou et al.[10] 宁武刘家沟组 砂岩T1l-1 409~258 (26%) 2 621~1 661 (74%) N=93 太原西山刘家沟组 砂岩LJG 418~255 (29%) 3 126~1 563 (70%) N=133 刘超等[71] 华北南部 济源谭庄组 细砂岩T-t 383~248 (13%) 1 539~738 (15%) 2 890~1 658 (72%) N=79 Yang et al.[13] 济源椿树腰组 细砂岩T-c 388~241 (19%) 2 683~1 740 (81%) N=75 济源油房庄组 中砂岩T-y 351~245 (25%) 2 655~1 703 (75%) N=72 济源二马营组 细砂岩S-3 367~236 (47%) 2 651~1 635 (53%) N=74 彭深远等[72] 济源和尚沟组 细砂岩S-2 1 381~382 (84%) 2 687~1 573 (16%) N=76 济源刘家沟组 细砂岩S-1 387~250 (22%) 821~427 (12%) 3 217~1 794 (66%) N=75 济源上三叠统上部 细砂岩J-9 372~228 (38%) 469 2 562~ 1626 (61%) N=66 Li et al.[12] 济源上三叠统中部 细砂岩J-7 363~243 (37%) 2 636~1 696 (63%) N=67 登封油房庄组 砂岩DF6-1 367~221 (43%) 514 2 596~1 670 (56%) N=83 Yang et al.[14] 三门峡油房庄组 砂岩SMX1-1 327~235 (35%) 446~438 (4%) 2 582~1 629 (61%) N=53 三门峡二马营组 砂岩SMX2-1 388~232 (49%) 2 679~1 600 (51%) N=88 宜阳和尚沟组 中砂岩Y-H 1 048~436 (82%) 2 453~1 791 (18%) N=103 Wang et al.[18] 宜阳刘家沟组 粗砂岩 Y-L 403~259 (17%) 1 229~424 (25%) 2 748~1 583 (58%) N=102 宜川延长组下部 中砂岩ZXW-20 275~248 (10%) 2 582~1 608 (90%) N=54 Zhang et al.[17] 宜川纸坊组 中砂岩YC-1 356~263 (21%) 2 563~1 693 (79%) N=53 韩城纸坊组 中砂岩HC-2 350~247 (17%) 2 636~1 673 (83%) N=58 黄龙延长组长5-4 粉砂岩DN34 340~213 (45%) 1 450~1 160 (2%) 2 488~1 541 (52%) N=86 王娟[15] 黄陵延长组长5-4 细砂岩DN29 354~236 (15%) 475 2 685~1 543 (84%) N=93 黄龙延长组长6 细砂岩DN37 294~226 (29%) 430 2 635~1 617 (70%) N=89 铜川延长组长6 砂岩DN11 342~255 (7%) 1 393~400 (28%) 2 599~1 644 (65%) N=97 铜川延长组长7 砂岩DN19 314~235 (9%) 1 451~411 (19%) 3 248~1 677 (72%) N=82 黄龙延长组长6 细砂岩DN37 294~226 (31%) 2 635~1 617 (66%) N=97 乔向阳等[73] 铜川延长组长6 砂岩DN11 342~255 (7%) 1 168~400 (22%) 2 730~1 644 (55%) N=99 铜川延长组长8 细砂岩TC8 369~261 (13%) 468~448 (4%) 2 652~1 793 (82%) N=68 Xie et al.[11] 铜川延长组长9 中砂岩DN-02 358~229 (46%) 2 586~1 747 (54%) N=63 吴桐桐[16] 宜川延长组长8 中砂岩DN-40 371~233 (38%) 2 639~1 731 (62%) N=89 宜川延长组长10 细砂岩DN-42 366~239 (29%) 2 677~1 726 (71%) N=99 宜君延长组长10 中砂岩DN-23 349~231 (24%) 2 608~1 696 (76%) N=112 华北西部 贺兰山上三叠统 砂岩WH-11-2 357~249 (14%) 1 377~1 344 (14%) 2 776~1 803 (71%) N=14 Shi et al.[26] 贺兰山中三叠统 砂岩WH-4, 7, 25 382~266 (23%) 670~447 (4%) 2 815~1 803 (72%) N=47 区域 采样位置与层位 岩性与样品编号 碎屑锆石年龄组成(%)/Ma 锆石点数/个 数据来源 华北西部 贺兰山延长组上部 细砂岩HL-21 422~208 (25%) 1 053~504 (8%) 2 551~1 558 (67%) N=64 Sun et al.[6] 贺兰山延长组中部 中砂岩HL-18 335~205 (16%) 917~381 (33%) 2 755~1 588 (49%) N=61 贺兰山延长组下部 粗砂岩HL-17 327~293 (5%) 1 256~959 (4%) 2 682~1 729 (91%) N=61 汝箕沟口纸坊组 粗砂岩HL-16 310~256 (12%) 457~410 (5%) 2 560~1 731 (82%) N=61 汝箕沟延长组长3-2 砂岩16RJG01 371~252 (20%) 951~490 (6%) 2 654~1 807 (72%) N=64 李亚男[23] 磁窑堡延长组长7-4 砂岩17CYB05 435~268 (34%) 742 2 765~1 829 (63%) N=76 磁窑堡延长组长9-8 砂岩17CYB04 410~287 (6%) 2 564~1 732 (94%) N=83 炭井沟延长组长9-8 砂岩16TJG01 360~272 (18%) 458~420 (2%) 2 610~1 599 (80%) N=79 插旗口延长组长9-8 砂岩15CQK08 396~271 (10%) 479~441 (4%) 2 591~1 776 (86%) N=79 石沟驿上三叠统 砂岩SGY-001 311~259 (11%) 514~442 (6%) 2 600~1 753 (83%) N=53 张义楷[29] 窑山延长组上部 粗砂岩YS1-3 450~220 2 700~16 50 — 谭聪等[24] 麻黄沟延长组上部 中砂岩MH1 450~230 2 550~1 750 — 华池延长组长6 砂岩li78 348~269 (22%) 1 097~405 (38%) 2 451~1 857 (38%) N=37 孙迪等[21] 玄马延长组长6 砂岩zhuang33 373~294 (14%) 1 177~400 (49%) 2 668~1 788 (33%) N=43 平凉延长组长6 砂岩yan40 318~291 (6%) 1 367~446 (47%) 2 594~1 559 (43%) N=49 汭水河延长组长6 砂岩rsh04 323~248 1 572~430 2 589~1 745 N=51 环县延长组下部 中砂岩ZXW-22 353~228 (29%) 1 581~509 (3%) 2 580~1 767 (68%) N=57 Zhang et al.[17] 环县延长组长10 砂岩环78 361~248 2 711~1 634 — 李元昊等[22] 盐池延长组长10 砂岩安99 373~234 2 537~1 647 — 华池延长组长10 砂岩白212 526~251 (16%) 2 597~1 564 (84%) — 庆阳延长组长10 砂岩宁65 370~224 (25%) 2 644~1 637 (75%) — 汭水河延长组长8 中砂岩AK8 307~252 (10%) 473~411 (3%) 2 591~1 673 (87%) N=90 Xie et al.[11] 汭水河延长组长6 砂岩RUIHE17 366~235 (18%) 1 106~1 022 (16%) 2 591~1 812 (65%) N=57 宋立军等[19] 汭水河延长组长9 中砂岩RUIHE9 303~256 (23%) 2 628~1 556 (77%) N=70 汭水河延长组上部 细砂岩RSH3 412~239 (41%) 1 380~420 (27%) 2 493~1 754 (32%) N=123 Xie[20] 汭水河延长组中部 中砂岩RSH2 412~225 (58%) 1 351~422 (7%) 2 600~1 600 (35%) N=191 汭水河延长组下部 中砂岩RSH1 421~227 (46%) 911~467 (3%) 2 623~1 648 (51%) N=186 延安上三叠统下部 细砂岩Y-4 343~288 (11%) 2 522~1 675 (89%) N=66 Li et al.[12] 延安上三叠统上部 砂岩YA06-1 408~246 (6%) 1 483~441 (71%) 2 794~1 613 (23%) N=73 Bao et al.[74] 延安上三叠统下部 砂岩YA09-1 309~245 (17%) 434 (2%) 2 566~1 647 (81%) N=64 延安中三叠统 砂岩YA13-1 386~232 (24%) 1 083~486 (3%) 2 736~1 772 (73%) N=63 延安下三叠统 砂岩YA11-1 341~245 (31%) 467 2 879~1 731 (66%) N=35 -
[1] 任纪舜. 中国大陆的组成、结构、演化和动力学[J]. 地球学报,1994,15(3/4):5-13. Ren Jishun. The continental tectonics of China[J]. Acta Geoscientia Sinica, 1994, 15(3/4): 5-13. [2] Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 336-352. [3] 徐备,王志伟,张立杨,等. 兴蒙陆内造山带[J]. 岩石学报,2018,34(10):2819-2844. Xu Bei, Wang Zhiwei, Zhang Liyang, et al. The Xing-Meng intracontinent orogenic belt[J]. Acta Petrologica Sinica, 2018, 34(10): 2819-2844. [4] 马收先,孟庆任,武国利,等. 内蒙古隆起晚古生代构造隆升的沉积记录[J]. 地质学报,2014,88(10):1771-1789. Ma Shouxian, Meng Qingren, Wu Guoli, et al. Late Paleozoic exhumation of the Inner Mongolia paleo-uplift: Evidences from sedimentary records[J]. Acta Geologica Sinica, 2014, 88(10): 1771-1789. [5] Yang D B, Xu W L, Xu Y G, et al. Provenance of sediments from Mesozoic basins in western Shandong: Implications for the evolution of the eastern North China Block[J]. Journal of Asian Earth Sciences, 2013, 76: 12-29. [6] Sun J P, Dong Y P. Triassic tectonic interactions between the Alxa Massif and Ordos Basin: Evidence from integrated provenance analyses on sandstones, North China[J]. Journal of Asian Earth Sciences, 2019, 169: 162-181. [7] 马收先,孟庆任,曲永强. 华北地块北缘上石炭统—中三叠统碎屑锆石研究及其地质意义[J]. 地质通报,2011,30(10):1485-1500. Ma Shouxian, Meng Qingren, Qu Yongqiang. A study of detrital zircons of Late Carboniferous-Middle Triassic strata in the northern margin of North China Block and its geological implication[J]. Geological Bulletin of China, 2011, 30(10): 1485-1500. [8] Ma S X, Meng Q R, Duan L, et al. Reconstructing Late Paleozoic exhumation history of the Inner Mongolia Highland along the northern edge of the North China Craton[J]. Journal of Asian Earth Sciences, 2014, 87: 89-101. [9] Meng Q R, Wei H H, Wu G L, et al. Early Mesozoic tectonic settings of the northern North China craton[J]. Tectonophysics, 2014, 611: 155-166. [10] Zhou R, Liu D N, Zhou A C, et al. Provenance analyses of Early Mesozoic sediments in the Ningwu Basin: Implications for the tectonic-palaeogeographic evolution of the northcentral North China Craton[J]. International Geology Review, 2019, 61(1): 86-108. [11] Xie X Y, Heller P L. U-Pb detrital zircon geochronology and its implications: The early Late Triassic Yanchang Formation, south Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2013, 64: 86-98. [12] Li H Y, Huang X L. Constraints on the paleogeographic evolution of the North China Craton during the Late Triassic-Jurassic[J]. Journal of Asian Earth Sciences, 2013, 70-71: 308-320. [13] Yang W T, Yang J H, Wang X F, et al. Uplift-denudation history of the Qinling orogen: Constrained from the detrital-zircon U-Pb geochronology[J]. Journal of Asian Earth Sciences, 2014, 89: 54-65. [14] Yang D B, Yang H T, Shi J P, et al. Sedimentary response to the paleogeographic and tectonic evolution of the southern North China Craton during the Late Paleozoic and Mesozoic[J]. Gondwana Research, 2017, 49: 278-295. [15] [16] [17] Zhang Y, Meng X H, Wang D Y. Provenance analysis of the Middle Triassic Ordos Basin: Constraints from zircon U-Pb geochronology[J]. Geochemistry, 2020, 80(1): 125521. [18] Wang Y P, Yang W T, Peng S Y, et al. Early Triassic conversion from source to sink on the southern margin of the North China Craton: Constraints by detrital zircon U-Pb ages[J]. Minerals, 2020, 10(1): 7. [19] 宋立军,陈隽璐,张英利,等. 鄂尔多斯盆地西南部汭水河地区上三叠统碎屑锆石U-Pb年代学特征及其地质意义[J]. 地质学报,2010,84(3):370-386. Song Lijun, Chen Juanlu, Zhang Yingli, et al. U-Pb chronological characteristics of Late Triassic sediment in southwestern Ordos and it’s tectonic significance[J]. Acta Geologica Sinica, 2010, 84(3): 370-386. [20] Xie X Y. Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implications[J]. Sedimentary Geology, 2016, 335: 1-16. [21] 孙迪,冯乔,刘震,等. 鄂尔多斯盆地西南部上三叠统延长组碎屑锆石U-Pb定年及其物源意义[J]. 地质学报,2017,91(11):2521-2544. Sun Di, Feng Qiao, Liu Zhen, et al. Detrital zircon U-Pb dating of the Upper Triassic Yanchang Formation in southwestern Ordos Basin and its provenance significance[J]. Acta Geologica Sinica, 2017, 91(11): 2521-2544. [22] 李元昊,郭小军,梁艳,等. 鄂尔多斯盆地上三叠统延长组长10油层组沉积特征及物源[J]. 古地理学报,2018,20(5):787-802. Li Yuanhao, Guo Xiaojun, Liang Yan, et al. Sedimentary characteristics and provenance of the Chang 10 interval of Upper Triassic Yanchang Formation in Ordos Basin[J]. Journal of Palaeogeography, 2018, 20(5): 787-802. [23] [24] 谭聪,阮壮,于炳松,等. 鄂尔多斯盆地西缘中—晚三叠世构造—物源—古地貌体系演化:来自碎屑锆石、地球化学和岩石学的证据[J]. 石油学报,2019,40(6):660-676. Tan Cong, Ruan Zhuang, Yu Bingsong, et al. Tectonics-provenance-palaeogeomorphology system evolution of the western margin of Ordos Basin during the Middle-Late Triassic: The evidences from U-Pb detrital zircon geochronology, geochemistry and petrology[J]. Acta Petrolei Sinica, 2019, 40(6): 660-676. [25] Sun J P, Dong Y P. Middle-Late Triassic sedimentation in the Helanshan tectonic belt: Constrain on the tectono-sedimentary evolution of the Ordos Basin, North China[J]. Geoscience Frontiers, 2019, 10(1): 213-227. [26] Shi G Z, Soares C J, Shen C B, et al. Combined detrital zircon fission track and U-Pb dating of the Late Paleozoic to Early Mesozoic sandstones in the Helanshan, western Ordos fold-thrust belt: Constraints for provenance and exhumation history[J]. Journal of Geodynamics, 2019, 130: 57-71. [27] 杨文涛,杨江海,汪校锋,等. 豫西济源盆地中三叠世—中侏罗世碎屑锆石年代学及其对秦岭造山带造山过程的启示[J]. 地球科学:中国地质大学学报,2012,37(3):489-500. Yang Wentao, Yang Jianghai, Wang Xiaofeng, et al. Geochronology from Middle Triassic to Middle Jurassic detrital zircons in Jiyuan Basin and its implications for the Qinling orogen[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(3): 489-500. [28] 杨文涛,王敏,杜远生. 中生代济源盆地沉积充填特征及其对秦岭、太行山隆升作用的响应[J]. 地质论评,2014,60(2):260-274. Yang Wentao, Wang Min, Du Yuansheng. The depositional characteristics from Mesozoic Jiyuan Basin with its response to the uplift of Qinling orogen and Taihang Mountains[J]. Geological Review, 2014, 60(2): 260-274. [29] [30] Song S G, Niu Y L, Su L, et al. Tectonics of the north Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401. [31] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. [32] Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, central China[J]. Gondwana Research, 2016, 29(1): 1-40. [33] 赵越,陈斌,张栓宏,等. 华北克拉通北缘及邻区前燕山期主要地质事件[J]. 中国地质,2010,37(4):900-915. Zhao Yue, Chen Bin, Zhang Shuanhong, et al. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas[J]. Geology in China, 2010, 37(4): 900-915. [34] Zhang S H, Zhao Y, Liu X C, et al. Late Paleozoic to Early Mesozoic mafic–ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle[J]. Lithos, 2009, 110(1/4): 229-246. [35] Dan W, Li X H, Wang Q, et al. Phanerozoic amalgamation of the Alxa block and North China Craton: Evidence from Paleozoic granitoids, U-Pb geochronology and Sr-Nd-Pb-Hf-O isotope geochemistry[J]. Gondwana Research, 2016, 32: 105-121. [36] Zhang J, Zhang B H, Zhao H. Timing of amalgamation of the Alxa block and the North China Block: Constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 2016, 668-669: 65-81. [37] Liu S F, Su S, Zhang G W. Early Mesozoic basin development in North China: Indications of cratonic deformation[J]. Journal of Asian Earth Sciences, 2013, 62: 221-236. [38] Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (central China): Tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 2003, 366(1/2): 1-53. [39] Ratschbacher L, Franz L, Enkelmann E, et al. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra) high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains[M]//Hacker B R, McClelland W X, Liou J G. Ultrahigh-pressure metamorphism: Deep continental subduction. Boulder: Geological Society of America, 2006: 45-75. [40] Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237. [41] Dong Y P, Zhang G W, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011, 122(1/2): 39-56. [42] Wang T, Wang X X, Tian W, et al. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China[J]. Science in China Series D: Earth Sciences, 2009, 52(9): 1359-1384. [43] Wang X X, Wang T, Zhang C L. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151. [44] Li H Y, He B, Xu Y G, et al. U-Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: Insights into interactions of the North China Craton with surrounding plates[J]. Journal of Asian Earth Sciences, 2010, 39(5): 335-346. [45] Zhao Z F, Zheng Y F, Zhang J, et al. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen[J]. Chemical Geology, 2012, 328: 70-88. [46] Wu M L, Zhao G C, Sun M, et al. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Jiaodong Terrane: Implications for the crustal evolution of the eastern block of the North China Craton[J]. Lithos, 2014, 190-191: 71-84. [47] Zhao R, Wang Q F, Liu X F, et al. Architecture of the Sulu crustal suture between the North China Craton and Yangtze Craton: Constraints from Mesozoic granitoids[J]. Lithos, 2016, 266-267: 348-361. [48] Yang F, Santosh M, Kim S W. Mesozoic magmatism in the eastern North China Craton: Insights on tectonic cycles associated with progressive craton destruction[J]. Gondwana Research, 2018, 60: 153-178. [49] 史兴俊,张磊,王涛,等. 阿拉善北部宗乃山地区片麻岩锆石U-Pb年龄、Hf同位素特征及其构造归属探讨[J]. 岩石学报,2016,32(11):3518-3536. Shi Xingjun, Zhang Lei, Wang Tao, et al. Zircon geochronology and Hf isotopic compositions for the Mesoproterozoic gneisses in Zongnaishan area, northern Alxa and its tectonic affinity[J]. Acta Petrologica Sinica, 2016, 32(11): 3518-3536. [50] Dan W, Li X H, Wang Q, et al. Neoproterozoic s-type granites in the Alxa block, westernmost North China and tectonic implications: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints[J]. American Journal of Science, 2014, 314(1): 110-153. [51] Wang Z Z, Han B F, Feng L X, et al. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the western North China Craton: Evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 2016, 261: 278-295. [52] Liu Q, Zhao G C, Sun M, et al. Early Paleozoic subduction processes of the Paleo-Asian Ocean: Insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane[J]. Lithos, 2016, 262: 546-560. [53] Liu Q, Zhao G C, Han Y G, et al. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 2017, 274-275: 19-30. [54] Zhang S H, Zhao Y, Song B, et al. Petrogenesis of the Middle Devonian Gushan diorite pluton on the northern margin of the North China Block and its tectonic implications[J]. Geological Magazine, 2007, 144(3): 553-568. [55] 李锦秩,张进,杨天南,等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版),2009,39(4):584-605. Li Jinyi, Zhang Jin, Yang Tiannan, et al. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 584-605. [56] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224. [57] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6): 1069. [58] Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. [59] Liu Y J, Li W M, Feng Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123-148. [60] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. [61] Zhao P, Xu B, Zhang C H. A rift system in southeastern Central Asian Orogenic Belt: Constraint from sedimentological, geochronological and geochemical investigations of the Late Carboniferous-Early Permian strata in northern Inner Mongolia (China)[J]. Gondwana Research, 2017, 47: 342-357. [62] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. [63] 王鸿祯. 中国古地理图集[M]. 北京:地图出版社,1985. Wang Hongzhen. Atlas of the palaeogeography of China[M]. Beijing: China Cartographic Publishing House, 1985. [64] 郑和荣,胡宗全. 中国前中生代构造:岩相古地理图集[M]. 北京:地质出版社,2010. Zheng Herong, Hu Zongquan. Atlas of tectonic-lithofacies paleogeography of Pre-Mesozoic in China[M]. Beijing: Geological Publishing House, 2010. [65] [66] [67] 张运强,陈海燕,魏文通,等. 冀北三叠系二马营组凝灰岩夹层的发现及其地质意义[J]. 地质通报,2016,35(1):20-26. Zhang Yunqiang, Chen Haiyan, Wei Wentong, et al. The discovery of tuff interlayer from the Triassic Ermaying Formation in northern Hebei province and its geological significance[J]. Geological Bulletin of China, 2016, 35(1): 20-26. [68] 杨明慧,刘池洋,曾鹏,等. 华北克拉通晚三叠世沉积盆地原型与破坏早期构造变形格局[J]. 地质论评,2012,58(1):1-18. Yang Minghui, Liu Chiyang, Zeng Peng, et al. Prototypes of Late Triassic sedimentary bsins of North China Craton (NCC) and deformation pattern of its early destruction[J]. Geological Review, 2012, 58(1): 1-18. [69] 陈海燕,张运强,刘蓓蓓,等. 冀北承德盆地杏石口组沉积特征及时代讨论[J]. 中国地质调查,2015,2(8):31-34. Chen Haiyan, Zhang Yunqiang, Liu Beibei, et al. Sedimentary characteristics and stratigraphic age of Xingshikou Formation in Chengde Basin of northern Hebei[J]. Geological Survey of China, 2015, 2(8): 31-34. [70] [71] 刘超,孙蓓蕾,曾凡桂. 太原西山上二叠统—下三叠统地层最大沉积年龄的碎屑锆石U-Pb定年约束[J]. 地质学报,2014,88(8):1579-1587. Liu Chao, Sun Beilei, Zeng Fangui. Constraints on U-Pb dating of detrital zircon of the maximum depositional age for Upper Permian to Lower Triassic strata in Xishan, Taiyuan[J]. Acta Geologica Sinica, 2014, 88(8): 1579-1587. [72] 彭深远,杨文涛,王艳鹏,等. 济源地区中—下三叠统碎屑锆石年代学特征及其物源分析[J]. 地质科技情报,2019,38(5):126-137. Peng Shenyuan, Yang Wentao, Wang Yanpeng, et al. Detrital zircon chronology of the Lower-Middle Triassic strata in Jiyuan area and its implication for provenance analysis[J]. Geological Science and Technology Information, 2019, 38(5): 126-137. [73] 乔向阳,林进,朱晴,等. 鄂尔多斯盆地东南部延长组长6沉积碎屑锆石U-Pb年龄物源、构造指示意义:来自黄龙县、铜川市金锁关地区延长组碎屑锆石年代学证据[J]. 西北大学学报(自然科学版),2017,47(4):593-607. Qiao Xiangyang, Lin Jin, Zhu Qing, et al. The sedimentary source of Chang 6 formation in the Huanglong district-southern part of Ordos Basin: The evidence from U-Pb age in zircons[J]. Journal of Northwest University (Natural Science Edition), 2017, 47(4): 593-607. [74] Bao C, Chen Y L, Li D P, et al. Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC)[J]. Journal of Asian Earth Sciences, 2014, 96: 296-307. [75] 刘建峰,迟效国,张兴洲,等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报,2009,83(3):365-376. Liu Jianfeng, Chi Xiaoguo, Zhang Xingzhou, et al. Geochemical characteristic of Carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 2009, 83(3): 365-376. [76] Cao H H, Xu W L, Pei F P, et al. Zircon U–Pb geochronology and petrogenesis of the Late Paleozoic–Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block[J]. Lithos, 2013, 170-171: 191-207. [77] Li D P, Chen Y L, Wang Z, et al. Detrital zircon U-Pb ages, Hf isotopes and tectonic implications for Palaeozoic sedimentary rocks from the Xing-Meng orogenic belt, middle-east part of Inner Mongolia, China[J]. Geological Journal, 2011, 46(1): 63-81. [78] Meng E, Xu W L, Pei F P, et al. Permian bimodal volcanism in the Zhangguangcai range of eastern Heilongjiang province, NE China: Zircon U-Pb-Hf isotopes and geochemical evidence[J]. Journal of Asian Earth Sciences, 2011, 41(2): 119-132. [79] Su B X, Qin K Z, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2/3): 516-531. [80] Ge W C, Wu F Y, Zhou C Y, et al. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Range[J]. Chinese Science Bulletin, 2005, 50(18): 2097-2105. [81] Liu J M, Zhao Y, Sun Y L, et al. Recognition of the latest Permian to Early Triassic Cu-Mo mineralization on the northern margin of the North China Block and its geological significance[J]. Gondwana Research, 2010, 17(1): 125-134. [82] Shi Y R, Liu D Y, Miao L C, et al. Devonian A-type granitic magmatism on the northern margin of the North China Craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 17(4): 632-641. [83] Ling M X, Zhang H, Li H, et al. The Permian-Triassic granitoids in Bayan Obo, North China Craton: A geochemical and geochronological study[J]. Lithos, 2014, 190-191: 430-439. [84] Liao X D, Sun S, Chi H Z, et al. The Late Permian highly fractionated I-type granites from Sishijia pluton in southestern Inner Mongolia, North China: A post-collisional magmatism record and its implication for the closure of Paleo-Asian Ocean[J]. Lithos, 2019, 328-329: 262-275. [85] Lin S Z, Zhu G, Yan L J, et al. Structural and chronological constraints on a Late Paleozoic shortening event in the Yanshan Tectonic Belt[J]. Chinese Science Bulletin, 2013, 58(32): 3922-3936. [86] 张栓宏,赵越,刘建民,等. 华北地块北缘晚古生代—早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志,2010,29(6):824-842. Zhang Shuanhong, Zhao Yue, Liu Jianmin, et al. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842. [87] Wang Y P, Yang W T, Zheng D S, et al. Detrital zircon U-Pb ages from the Middle to Late Permian strata of the Yiyang area, southern North China Craton: Implications for the Mianlue oceanic crust subduction[J]. Geological Journal, 2019, 54(6): 3527-3541. [88] Zhao T P, Zhai M G, Xia B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49(23): 2495-2502. [89] Wan Y S, Wilde S A, Liu D Y, et al. Further evidence for ~1.85 Ga metamorphism in the central zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan province[J]. Gondwana Research, 2006, 9(1/2): 189-197. [90] Diwu C R, Sun R, Yuan H L, et al. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton[J]. Chinese Science Bulletin, 2008, 53(18): 2828-2839. [91] Xu X S, Griffin W L, Ma X, et al. The Taihua group on the southern margin of the North China Craton: Further insights from U-Pb ages and Hf isotope compositions of zircons[J]. Mineralogy and Petrology, 2009, 97(1/2): 43-59. [92] Cui M L, Zhang B L, Zhang L C. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: Constrains on the timing and tectonic setting of the Paleoproterozoic Xiong’er group[J]. Gondwana Research, 2011, 20(1): 184-193. [93] 时毓,于津海,徐夕生,等. 陕西小秦岭地区太华群的锆石U-Pb年龄和Hf同位素组成[J]. 岩石学报,2011,27(10):3095-3108. Shi Yu, Yu Jinhai, Xu Xisheng, et al. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area, Shaanxi province[J]. Acta Petrologica Sinica, 2011, 27(10): 3095-3108. [94] 时毓,于津海,杨启军,等. 小秦岭地区太华群锆石U-Pb年龄及华北克拉通南缘地壳演化[J]. 地球科学与环境学报,2014,36(1):218-229. Shi Yu, Yu Jinhai, Yang Qijun, et al. Zircon U-Pb ages from Taihua Group in Xiaoqinling area and crustal evolution of the southern North China Craton[J]. Journal of Earth Sciences and Environment, 2014, 36(1): 218-229. [95] Zhou Y Y, Zhao T P, Wang C Y, et al. Geochronology and geochemistry of 2.5 to 2.4 Ga granitic plutons from the southern margin of the North China Craton: Implications for a tectonic transition from arc to post-collisional setting[J]. Gondwana Research, 2011, 20(1): 171-183. [96] 时毓,于津海,徐夕生,等. 秦岭造山带东段秦岭岩群的年代学和地球化学研究[J]. 岩石学报,2009,25(10):2651-2670. Shi Yu, Yu Jinhai, Xu Xisheng, et al. Geochronology and geochemistry of the Qinling Group in the eastern Qinling orogen[J]. Acta Petrologica Sinica, 2009, 25(10): 2651-2670. [97] Shi Y, Yu J H, Santosh M. Tectonic evolution of the Qinling orogenic belt, central China: New evidence from geochemical, zircon U-Pb geochronology and Hf isotopes[J]. Precambrian Research, 2013, 231: 19-60. [98] Zhu X Y, Chen F K, Li S Q, et al. Crustal evolution of the north Qinling terrain of the Qinling orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194-204. [99] 苏文,刘景波,陈能松,等. 东秦岭—大别山及其两侧的岩浆和变质事件年代学及其形成的大地构造背景[J]. 岩石学报,2013,29(5):1573-1593,1849-1850. Su Wen, Liu Jingbo, Chen Nengsong, et al. Geochronology and tectonic background of magmatic and metamorphic events in the east Qinling-Dabie Mountains[J]. Acta Petrologica Sinica, 2013, 29(5): 1573-1593, 1849-1850. [100] 吴才来,杨经绥,杨宏仪,等. 北祁连东部两类I型花岗岩定年及其地质意义[J]. 岩石学报,2004,20(3):425-432. Wu Cailai, Yang Jingsui, Yang Hongyi, et al. Dating of two types of granite from north Qilian, China[J]. Acta Petrologica Sinica, 2004, 20(3): 425-432. [101] 史仁灯,杨经绥,吴才来,等. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报,2004,78(5):649-657. Shi Rendeng, Yang Jingsui, Wu Cailai, et al. First SHRIMP dating for the formation of the Late Sinian Yushigou ophiolite, north Qilian Mountains[J]. Acta Geologica Sinica, 2004, 78(5): 649-657. [102] Tseng C Y, Yang H Y, Wan Y S, et al. Finding of Neoproterozoic (~775 Ma) magmatism recorded in metamorphic complexes from the north Qilian orogen: Evidence from SHRIMP zircon U-Pb dating[J]. Chinese Science Bulletin, 2006, 51(8): 963-970. [103] Xu W C, Zhang H F, Liu X M. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications[J]. Chinese Science Bulletin, 2007, 52(4): 531-538. [104] 雍拥,肖文交,袁超,等. 中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义[J]. 岩石学报,2008,24(4):855-866. Yong Yong, Xiao Wenjiao, Yuan Chao, et al. Geochronology and geochemistry of Paleozoic granitic plutons from the eastern central Qilian and their tectonic implications[J]. Acta Petrologica Sinica, 2008, 24(4): 855-866. [105] 何世平,王洪亮,陈隽璐,等. 中祁连马衔山岩群内基性岩墙群锆石LA-ICP-MS U-Pb年代学及其构造意义[J]. 地球科学:中国地质大学学报,2008,33(1):35-45. He Shiping, Wang Hongliang, Chen Junlu, et al. LA-ICP-MS U-Pb zircon geochronology of basic dikes within Maxianshan rock group in the central Qilian Mountains and its tectonic implications[J]. Earth Science: Journal of China University of Geosciences, 2008, 33(1): 35-45. [106] 徐学义,王洪亮,陈隽璐,等. 中祁连东段兴隆山群基性火山岩锆石U-Pb定年及岩石成因研究[J]. 岩石学报,2008,24(4):827-840. Xu Xueyi, Wang Hongliang, Chen Junlu, et al. Zircon U-Pb dating and petrogenesis of Xinglongshan Group basic volcanic rocks at eastern segment of middle Qilian Mts[J]. Acta Petrologica Sinica, 2008, 24(4): 827-840. [107] 陈隽璐,徐学义,曾佐勋,等. 中祁连东段什川杂岩基的岩石化学特征及年代学研究[J]. 岩石学报,2008,24(4):841-854. Chen Junlu, Xu Xueyi, Zeng Zuoxun, et al. Geochemical characters and LA-ICPMS zircon U-Pb dating constraints on the petrogenesis and tectonic setting of the Shichuan intrusion, east segment of the central Qilian, NW China[J]. Acta Petrologica Sinica, 2008, 24(4): 841-854. [108] 余吉远,李向民,马中平,等. 南祁连化隆岩群LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 西北地质,2012,45(1):79-85. Yu Jiyuan, Li Xiangmin, Ma Zhongping, et al. The LA-ICP-MS U-Pb age and geological significance of Hualong rock group in south Qilian Mountains[J]. Northwestern Geology, 2012, 45(1): 79-85. [109] 武鹏,李向民,徐学义,等. 北祁连山扎麻什地区东沟蛇绿岩LA-ICP-MS锆石U-Pb测年及其地球化学特征[J]. 地质通报,2012,31(6):896-906. Wu Peng, Li Xiangmin, Xu Xueyi, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of Donggou ophiolites in Zamashi area of northern Qilian Mountain[J]. Geological Bulletin of China, 2012, 31(6): 896-906. [110] Zhang L Q, Zhang H F, Zhang S S, et al. Lithospheric delamination in post-collisional setting: Evidence from intrusive magmatism from the north Qilian orogen to southern margin of the Alxa block, NW China[J]. Lithos, 2017, 288-289: 20-34. [111] Li X Y, Li S Z, Yu S Y, et al. Early Paleozoic arc-back-arc system in the southeastern margin of the north Qilian orogen, China: Constraints from geochronology, and whole-rock elemental and Sr-Nd-Pb-Hf isotopic geochemistry of volcanic suites[J]. Gondwana Research, 2018, 59: 9-26. [112] Zhao S J, Li S Z, Cao H H, et al. A missing link of the Proto-Tethys Ocean between the Qinling and Qilian orogens, China: Insights from geochronology and structural geology[J]. Geoscience Frontiers, 2020, 11(5): 1495-1509. [113] 裴先治,丁仨平,李佐臣,等. 西秦岭北缘关子镇蛇绿岩的形成时代:来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J]. 地质学报,2007,81(11):1550-1561. Pei Xianzhi, Ding Saping, Li Zuochen, et al. LA-ICP-MS zircon U-Pb dating of the gabbro from the Guanzizhen ophiolite in the northern margin of the western Qinling and its geological significance[J]. Acta Geologica Sinica, 2007, 81(11): 1550-1561. [114] 裴先治,丁仨平,张国伟,等. 西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质学报,2007,81(6):772-786. Pei Xianzhi, Ding Saping, Zhang Guowei, et al. Zircons LA-ICP-MS U-Pb dating of Neoproterozoic granitoid gneisses in the north margin of west Qinling and geological implication[J]. Acta Geologica Sinica, 2007, 81(6): 772-786. [115] 何世平,王洪亮,徐学义,等. 北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. 地球科学进展,2007,22(2):143-151. He Shiping, Wang Hongliang, Xu Xueyi, et al. A LA-ICP-MS U-Pb chronological study of zircons from Hongtubu basic volcanic rocks and its geological significance in the east segment of north Qilian orogenic belt[J]. Advances in Earth Science, 2007, 22(2): 143-151. [116] [117] [118] Qin J F, Lai S C, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3/4): 259-276. [119] Zhu L M, Zhang G W, Yang T, et al. Geochronology, petrogenesis and tectonic implications of the Zhongchuan granitic pluton in the western Qinling metallogenic belt, China[J]. Geological Journal, 2013, 48(4): 310-334. [120] Wu G L, Meng Q R, Duan L, et al. Early Mesozoic structural evolution of the eastern west Qinling, northwest China[J]. Tectonophysics, 2014, 630: 9-20. [121] Yang L M, Song S G, Allen M B, et al. Oceanic accretionary belt in the west Qinling orogen: Links between the Qinling and Qilian orogens, China[J]. Gondwana Research, 2018, 64: 137-162. [122] Zhai M G, Santosh M. The early Precambrian odyssey of the North China Craton: A synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25. [123] Wan Y S, Liu D Y, Dong C Y, et al. Formation and evolution of Archean continental crust of the North China Craton[M]//Zhai M G. Precambrian geology of China. Berlin, Heidelberg: Springer, 2015: 59-136. [124] Zhang S H, Zhao Y, Song B. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: Implications for the tectonic evolution of the northern margin of North China Block[J]. Mineralogy and Petrology, 2006, 87(1/2): 123-141. [125] Zhu X Q, Zhu W B, Ge R F, et al. Late Paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth[J]. Gondwana Research, 2014, 25(1): 383-400. [126] Dan W, Li X H, Guo J H, et al. Paleoproterozoic evolution of the eastern Alxa block, westernmost North China: Evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research, 2012, 21(4): 838-864. [127] Shi X J, Wang T, Zhang L, et al. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 2014, 208-209: 158-177. [128] 李文厚,刘溪,张倩,等. 鄂尔多斯盆地中晚三叠世延长期沉积演化[J]. 西北大学学报(自然科学版),2019,49(4):605-621. Li Wenhou, Liu Xi, Zhang Qian, et al. Deposition evolution of Middle-Late Triassic Yanchang Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(4): 605-621. [129] Cai S H, Wang Q F, Liu X F, et al. Petrography and detrital zircon study of Late Carboniferous sequences in the southwestern North China Craton: Implications for the regional tectonic evolution and bauxite genesis[J]. Journal of Asian Earth Sciences, 2015, 98: 421-435. [130] 朱世发,崔航,陈嘉豪,等. 浅水三角洲沉积体系与储层岩石学特征:以鄂尔多斯盆地西部地区山1—盒8段为例[J]. 沉积学报,2021,39(1):126-139. Zhu Shifa, Cui Hang, Chen Jiahao, et al. Sedimentary system and sandstone reservoir petrology of a shallow water delta: Case study of the Shan-1 and He-8 members in the western Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 126-139. [131] [132] 罗顺社,潘志远,吕奇奇,等. 鄂尔多斯盆地西南部上古生界碎屑锆石U-Pb年龄及其构造意义[J]. 中国地质,2017,44(3):556-574. Luo Shunshe, Pan Zhiyuan, Qiqi Lü, et al. The Upper Paleozoic detrital zircon U-Pb geochronology and its tectonic significance in southwestern Ordos Basin[J]. Geology in China, 2017, 44(3): 556-574. [133] 白斌,杨文敬,周立发,等. 鄂尔多斯盆地西缘山西组沉积物源及源区大地构造属性分析[J]. 煤田地质与勘探,2007,35(4):8-11. Bai Bin, Yang Wenjing, Zhou Lifa, et al. Sediment provenance analysis and tectonic setting discrimination of Shanxi Formation on west edge of Ordos Basin[J]. Coal Geology & Exploration, 2007, 35(4): 8-11. [134] 杨农,陈正乐,雷伟志,等. 冀北燕山地区印支期构造特征研究[M]. 北京:地质出版社,1996. Yang Nong, Chen Zhengle, Lei Weizhi, et al. The research of Indosinian tectonic feature in Yanshan area, north Hebei[M]. Beijing: Geological Publishing House, 1996. [135] 赵越. 燕山地区中生代造山运动及构造演化[J]. 地质论评,1990,36(1):1-13. Zhao Yue. The Mesozoic orogenies and tectonic evolution of the Yanshan area[J]. Geological Review, 1990, 36(1): 1-13. [136] Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M]//Hendrix M S, Davis G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Boulder: Geological Society of America, 2001: 171-197. [137] 任康绪,阎国翰,牟保磊,等. 阿拉善断块富碱侵入岩岩石地球化学和Nd、Sr、Pb同位素特征及其意义[J]. 地学前缘,2005,12(2):292-301. Ren Kangxu, Yan Guohan, Mu Baolei, et al. Geochemistry and Nd, Sr, Pb isotopic characteristics of the alkali-rich intrusive rocks in Alxa fault block, western Inner Mongolia and their implications[J]. Earth Science Frontiers, 2005, 12(2): 292-301. [138] Ritts B D, Hanson A D, Darby B J, et al. Sedimentary record of Triassic intraplate extension in North China: Evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan[J]. Tectonophysics, 2004, 386(3/4): 177-202. [139] 杨华,付金华,欧阳征健,等. 鄂尔多斯盆地西缘晚三叠世构造—沉积环境分析[J]. 沉积学报,2011,29(3):427-439. Yang Hua, Fu Jinhua, Ouyang Zhengjian, et al. Analysis of tectonic-sedimentory setting in Middle and Upper Triassic in the west margin of the Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 427-439. [140] 李相博,刘化清,完颜容,等. 鄂尔多斯晚三叠世盆地构造属性及后期改造[J]. 石油实验地质,2012,34(4):376-382,394. Li Xiangbo, Liu Huaqing, Wan Yanrong, et al. Tectonic properties and post-reformation in Late Triassic, Ordos Basin[J]. Petroleum Geology and Experiment, 2012, 34(4): 376-382, 394. [141] 刘池洋,赵红格,王锋,等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报,2005,79(6):737-747. Liu Chiyang, Zhao Hongge, Wang Feng, et al. Attributes of the Mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 2005, 79(6): 737-747. [142] 付金华,郭正权,邓秀芹. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报,2005,7(1):34-44. Fu Jinhua, Guo Zhengquan, Deng Xiuqin. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin[J]. Journal of Palaeogeography, 2005, 7(1): 34-44.