-
样品SM-5锆石粒度较小,长轴一般介于60~100 μm,长宽比以1.5∶1~2∶1为主。锆石多呈自形至半自形、棱角状至次圆状的形态特征,少数表面发育裂纹。阴极发光(CL)图像中,绝大部分锆石显示岩浆振荡环带结构,指示岩浆成因。根据磨蚀程度,这些锆石可大致分为两类:第一类以自形为主,棱角分明;第二类有不同程度的磨圆,多呈自形至半自形、次棱角状至次圆状的形态特征(图4)。
图 4 旺苍地区火地垭群上两组绢云千枚岩样品SM⁃5代表性锆石CL图像(比例尺均为50 μm)
Figure 4. Cathodeluminescence (CL) images of typical zircon grains of sericite phyllite sample SM⁃5 from the Shangliang Formation of the Huodiya Group in the Wangcang area
对该样品的41颗锆石进行了41个分析点的U-Pb同位素年龄测定,分析结果列于表1。其中40颗给出了有效年龄(谐和度≥90%),这些有效年龄颗粒的Th和U的含量分别介于13×10-6~315×10-6和29×10-6~492×10-6,Th/U比介于0.30~1.22,也说明它们为岩浆结晶的产物。40个有效年龄介于832~988 Ma,集中分布于832~843 Ma、855~883 Ma、895~936 Ma和952~973 Ma四个区间;相对概率峰值为ca. 840 Ma、ca. 868 Ma、ca. 918 Ma、ca. 954 Ma(图5)。最年轻一组锆石206Pb/238U年龄的加权平均值为837.6±6.0 Ma(MSWD=0.60,n=5)(图5a),代表了该样品的最大沉积年龄。
表 1 旺苍地区火地垭群上两组绢云千枚岩样品SM⁃5锆石U⁃Pb 同位素定年结果
Table 1. Zircon U⁃Pb isotope data of the sericite phyllite sample SM⁃5 from the Shangliang Formation of the Huodiya Group in the Wangcang area
测试点号 Th/U 同位素比值 同位素年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 谐和度/% 1 0.54 0.071 7 0.002 2 1.577 7 0.045 9 0.159 5 0.001 5 976 57.0 961 18.1 954 8.6 99 2 0.55 0.069 7 0.002 6 1.388 6 0.051 3 0.144 6 0.001 4 918 78.0 884 21.8 871 8.0 98 3 0.75 0.070 9 0.002 4 1.510 8 0.048 2 0.154 2 0.001 2 955 68.0 935 19.5 924 6.5 98 4 0.53 0.073 2 0.002 4 1.611 6 0.050 7 0.159 8 0.001 5 1 020 68.0 975 19.7 956 8.6 98 5 0.69 0.081 4 0.002 8 1.610 0 0.052 5 0.143 3 0.001 5 1 232 67.0 974 20.4 863 8.3 87 6 0.66 0.070 5 0.001 9 1.406 8 0.037 4 0.144 0 0.001 2 943 54.2 892 15.8 867 6.6 97 7 0.71 0.066 0 0.002 5 1.303 6 0.048 7 0.143 4 0.001 8 807 78.9 847 21.5 864 10.2 98 8 0.75 0.067 5 0.001 8 1.324 8 0.035 9 0.142 2 0.001 5 852 55.6 857 15.7 857 8.7 99 9 0.43 0.069 2 0.001 9 1.332 0 0.035 8 0.139 3 0.001 2 906 52.8 860 15.6 841 7.1 97 10 0.30 0.071 1 0.001 6 1.573 5 0.034 3 0.159 7 0.001 1 961 44.4 960 13.6 955 5.9 99 11 0.47 0.072 2 0.002 6 1.588 8 0.053 5 0.161 2 0.002 0 992 74.1 966 21.0 963 11.3 99 12 0.63 0.068 2 0.001 8 1.445 6 0.039 7 0.153 4 0.001 7 876 55.6 908 16.5 920 9.3 98 13 1.22 0.065 9 0.002 2 1.251 9 0.040 7 0.137 9 0.001 4 806 70.4 824 18.4 833 7.7 98 14 0.43 0.068 0 0.003 6 1.402 3 0.067 5 0.152 2 0.002 0 878 105.0 890 28.5 913 11.4 97 15 0.58 0.072 1 0.003 3 1.449 3 0.065 0 0.146 9 0.002 0 991 93.4 910 26.9 883 11.3 97 16 0.53 0.072 0 0.001 5 1.454 4 0.032 4 0.145 9 0.001 3 985 42.6 912 13.4 878 7.3 96 17 0.46 0.069 0 0.002 1 1.431 5 0.040 8 0.150 7 0.001 3 898 65.7 902 17.0 905 7.4 99 18 0.71 0.073 3 0.001 8 1.527 3 0.037 1 0.151 2 0.001 4 1 022 51.1 941 14.9 907 7.6 96 19 0.76 0.069 4 0.001 7 1.489 8 0.037 4 0.155 4 0.001 5 909 50.8 926 15.2 931 8.4 99 20 0.51 0.074 9 0.003 0 1.550 6 0.059 2 0.151 0 0.001 7 1 065 80.1 951 23.6 907 9.8 95 21 0.90 0.072 6 0.001 3 1.665 5 0.032 6 0.165 6 0.001 5 1 003 36.7 995 12.4 988 8.1 99 22 0.54 0.071 1 0.001 4 1.601 7 0.031 6 0.162 8 0.001 4 961 39.7 971 12.3 973 7.5 99 23 0.45 0.073 1 0.001 7 1.551 7 0.035 7 0.153 7 0.001 3 1 017 48.2 951 14.2 922 7.4 96 24 0.67 0.071 1 0.002 1 1.516 6 0.045 8 0.154 2 0.001 6 961 61.1 937 18.5 924 9.0 98 25 0.64 0.069 7 0.001 5 1.470 3 0.033 3 0.152 4 0.001 4 920 44.4 918 13.7 914 7.6 99 26 0.30 0.070 1 0.001 3 1.546 3 0.028 9 0.159 2 0.001 1 931 37.0 949 11.5 952 6.2 99 27 0.73 0.070 3 0.001 7 1.360 5 0.032 7 0.139 7 0.001 0 939 49.2 872 14.1 843 5.9 96 28 0.81 0.072 4 0.001 7 1.516 9 0.034 3 0.151 5 0.001 3 998 47.1 937 13.9 909 7.2 96 29 0.76 0.071 8 0.001 9 1.511 5 0.038 7 0.152 2 0.001 2 989 53.2 935 15.6 913 7.0 97 30 0.64 0.068 1 0.002 0 1.455 7 0.042 0 0.154 5 0.001 6 872 60.0 912 17.4 926 8.9 98 31 0.34 0.069 8 0.002 2 1.456 8 0.043 8 0.151 2 0.001 5 924 64.8 913 18.1 908 8.4 99 32 0.62 0.068 0 0.001 7 1.295 7 0.030 5 0.137 7 0.001 0 878 50.0 844 13.5 832 5.9 98 33 0.56 0.069 5 0.001 6 1.472 0 0.032 8 0.153 0 0.001 2 922 47.1 919 13.5 918 6.7 99 34 0.58 0.068 5 0.002 2 1.336 3 0.040 3 0.141 9 0.001 5 883 65.6 862 17.5 855 8.4 99 35 0.58 0.067 4 0.002 6 1.294 6 0.050 0 0.139 3 0.001 6 850 79.6 843 22.1 840 9.1 99 36 0.49 0.070 5 0.001 7 1.584 8 0.040 6 0.162 2 0.001 5 944 50.0 964 16.0 969 8.3 99 37 0.46 0.068 7 0.001 9 1.480 7 0.041 3 0.155 9 0.001 5 900 57.4 923 16.9 934 8.1 98 38 1.00 0.069 3 0.001 5 1.465 8 0.031 6 0.153 1 0.001 2 906 45.2 916 13.0 918 6.7 99 39 0.66 0.069 0 0.002 3 1.480 6 0.047 7 0.156 3 0.001 6 900 70.4 922 19.5 936 8.8 98 40 1.05 0.073 9 0.001 9 1.581 2 0.039 1 0.154 9 0.001 3 1 039 50.0 963 15.4 928 7.2 96 41 0.54 0.071 4 0.001 9 1.469 1 0.037 9 0.148 9 0.001 3 969 49.5 918 15.6 895 7.5 97
Depositional Age, Provenance and Tectonic Significance of the Huodiya Group in the Wangcang Area, Northwestern Margin of the Yangtze Block: Constraints from detral zircon U-Pb geochronology
-
摘要: 目的 火地垭群是扬子陆块西北缘前寒武纪重要的地层单元,同时也是中国重要的石墨矿含矿层位,但其沉积时代、物源及形成的构造背景长期存在争论。 方法 对旺苍地区火地垭群上两组的绢云千枚岩进行了LA-ICP-MS锆石U-Pb定年研究。 结果与结论 获得碎屑锆石的年龄范围为832~988 Ma,集中分布于832~843 Ma 、855~883 Ma 、895~936 Ma 和952~973 Ma 四个区间,最大沉积年龄为837.6±6.0 Ma(MSWD=0.60,n=5)。结合已有研究成果,将旺苍地区火地垭群的沉积时代限定为910~835 Ma,而非前人长期认为的中元古代;物源主要来自周围的岩体,主体方向为东(南)和西北;综合沉积时代、物源、碎屑锆石年龄及区域地质特征,旺苍地区火地垭群上两组形成于接收双向物源的弧后盆地,是Rodinia超大陆聚合晚期在扬子陆块西北缘的响应。Abstract: Objective The Huodiya Group is an important Precambrian stratigraphic unit in the northwestern margin of the Yangtze Block and an important graphite-bearing stratum in China. However, its depositional age, provenance, and tectonic attribution have long been debated. Methods In this study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating was conducted on the sericite phyllite from the Shangliang Formation of the Huodiya Group, Wangcang area. [Results and Conclusions] The results show that maximum depositional age of the sample is 837.6±6.0 Ma (MSWD=0.60, n=5). Combined with existing data, the depositional age of Huodiya Group in the Wangcang area is constrained between ca. 910 Ma and ca. 835 Ma, rather than previously-considered Mesoproterozoic strata. The age populations of detrital zircons are concentrated in four peaks of 832-843 Ma, 855-883 Ma, 895-936 Ma, and 952-973 Ma, and the detrital provenance is mainly from the southeast and northwest magmatic rocks. A synthesis of depositional age, provenance and regional geological background indicates that the Shangliang Formation of the Huodiya Group in the Wangcang area were likely deposited in a back-arc basin receiving provenance from both sides, which is a response to the late-stage convergence of the Rodinia supercontinent in the northwestern margin of the Yangtze Block.
-
Key words:
- Huodiya Group /
- depositional age /
- provenance /
- zircon U-Pb dating /
- Yangtze Block /
- Neoproterozoic
注释:1) 脚注:1) 四川省地质局第2区测队. 南江幅I- 48- 35 1/20万区域地质测量报告[R]. 北京:全国地质资料馆,1965. -
图 1 (a)扬子陆块北缘及周缘构造纲要及研究区大地构造位置图(据文献[23]修改);(b)米仓山—汉南地区前寒武纪地质简图(据文献[19]修改);(c)研究区区域地质图
Figure 1. (a) Tectonic outline of the northwestern margin of the Yangtze Block and its periphery and the tectonic position of the study area (modified from reference [23]); (b) simplified geological map showing the distribution of Precambrian rocks in the Micangshan and Hannan area (modified from reference [19]); (c) regional geological map of the study area
表 1 旺苍地区火地垭群上两组绢云千枚岩样品SM⁃5锆石U⁃Pb 同位素定年结果
Table 1. Zircon U⁃Pb isotope data of the sericite phyllite sample SM⁃5 from the Shangliang Formation of the Huodiya Group in the Wangcang area
测试点号 Th/U 同位素比值 同位素年龄/Ma 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 谐和度/% 1 0.54 0.071 7 0.002 2 1.577 7 0.045 9 0.159 5 0.001 5 976 57.0 961 18.1 954 8.6 99 2 0.55 0.069 7 0.002 6 1.388 6 0.051 3 0.144 6 0.001 4 918 78.0 884 21.8 871 8.0 98 3 0.75 0.070 9 0.002 4 1.510 8 0.048 2 0.154 2 0.001 2 955 68.0 935 19.5 924 6.5 98 4 0.53 0.073 2 0.002 4 1.611 6 0.050 7 0.159 8 0.001 5 1 020 68.0 975 19.7 956 8.6 98 5 0.69 0.081 4 0.002 8 1.610 0 0.052 5 0.143 3 0.001 5 1 232 67.0 974 20.4 863 8.3 87 6 0.66 0.070 5 0.001 9 1.406 8 0.037 4 0.144 0 0.001 2 943 54.2 892 15.8 867 6.6 97 7 0.71 0.066 0 0.002 5 1.303 6 0.048 7 0.143 4 0.001 8 807 78.9 847 21.5 864 10.2 98 8 0.75 0.067 5 0.001 8 1.324 8 0.035 9 0.142 2 0.001 5 852 55.6 857 15.7 857 8.7 99 9 0.43 0.069 2 0.001 9 1.332 0 0.035 8 0.139 3 0.001 2 906 52.8 860 15.6 841 7.1 97 10 0.30 0.071 1 0.001 6 1.573 5 0.034 3 0.159 7 0.001 1 961 44.4 960 13.6 955 5.9 99 11 0.47 0.072 2 0.002 6 1.588 8 0.053 5 0.161 2 0.002 0 992 74.1 966 21.0 963 11.3 99 12 0.63 0.068 2 0.001 8 1.445 6 0.039 7 0.153 4 0.001 7 876 55.6 908 16.5 920 9.3 98 13 1.22 0.065 9 0.002 2 1.251 9 0.040 7 0.137 9 0.001 4 806 70.4 824 18.4 833 7.7 98 14 0.43 0.068 0 0.003 6 1.402 3 0.067 5 0.152 2 0.002 0 878 105.0 890 28.5 913 11.4 97 15 0.58 0.072 1 0.003 3 1.449 3 0.065 0 0.146 9 0.002 0 991 93.4 910 26.9 883 11.3 97 16 0.53 0.072 0 0.001 5 1.454 4 0.032 4 0.145 9 0.001 3 985 42.6 912 13.4 878 7.3 96 17 0.46 0.069 0 0.002 1 1.431 5 0.040 8 0.150 7 0.001 3 898 65.7 902 17.0 905 7.4 99 18 0.71 0.073 3 0.001 8 1.527 3 0.037 1 0.151 2 0.001 4 1 022 51.1 941 14.9 907 7.6 96 19 0.76 0.069 4 0.001 7 1.489 8 0.037 4 0.155 4 0.001 5 909 50.8 926 15.2 931 8.4 99 20 0.51 0.074 9 0.003 0 1.550 6 0.059 2 0.151 0 0.001 7 1 065 80.1 951 23.6 907 9.8 95 21 0.90 0.072 6 0.001 3 1.665 5 0.032 6 0.165 6 0.001 5 1 003 36.7 995 12.4 988 8.1 99 22 0.54 0.071 1 0.001 4 1.601 7 0.031 6 0.162 8 0.001 4 961 39.7 971 12.3 973 7.5 99 23 0.45 0.073 1 0.001 7 1.551 7 0.035 7 0.153 7 0.001 3 1 017 48.2 951 14.2 922 7.4 96 24 0.67 0.071 1 0.002 1 1.516 6 0.045 8 0.154 2 0.001 6 961 61.1 937 18.5 924 9.0 98 25 0.64 0.069 7 0.001 5 1.470 3 0.033 3 0.152 4 0.001 4 920 44.4 918 13.7 914 7.6 99 26 0.30 0.070 1 0.001 3 1.546 3 0.028 9 0.159 2 0.001 1 931 37.0 949 11.5 952 6.2 99 27 0.73 0.070 3 0.001 7 1.360 5 0.032 7 0.139 7 0.001 0 939 49.2 872 14.1 843 5.9 96 28 0.81 0.072 4 0.001 7 1.516 9 0.034 3 0.151 5 0.001 3 998 47.1 937 13.9 909 7.2 96 29 0.76 0.071 8 0.001 9 1.511 5 0.038 7 0.152 2 0.001 2 989 53.2 935 15.6 913 7.0 97 30 0.64 0.068 1 0.002 0 1.455 7 0.042 0 0.154 5 0.001 6 872 60.0 912 17.4 926 8.9 98 31 0.34 0.069 8 0.002 2 1.456 8 0.043 8 0.151 2 0.001 5 924 64.8 913 18.1 908 8.4 99 32 0.62 0.068 0 0.001 7 1.295 7 0.030 5 0.137 7 0.001 0 878 50.0 844 13.5 832 5.9 98 33 0.56 0.069 5 0.001 6 1.472 0 0.032 8 0.153 0 0.001 2 922 47.1 919 13.5 918 6.7 99 34 0.58 0.068 5 0.002 2 1.336 3 0.040 3 0.141 9 0.001 5 883 65.6 862 17.5 855 8.4 99 35 0.58 0.067 4 0.002 6 1.294 6 0.050 0 0.139 3 0.001 6 850 79.6 843 22.1 840 9.1 99 36 0.49 0.070 5 0.001 7 1.584 8 0.040 6 0.162 2 0.001 5 944 50.0 964 16.0 969 8.3 99 37 0.46 0.068 7 0.001 9 1.480 7 0.041 3 0.155 9 0.001 5 900 57.4 923 16.9 934 8.1 98 38 1.00 0.069 3 0.001 5 1.465 8 0.031 6 0.153 1 0.001 2 906 45.2 916 13.0 918 6.7 99 39 0.66 0.069 0 0.002 3 1.480 6 0.047 7 0.156 3 0.001 6 900 70.4 922 19.5 936 8.8 98 40 1.05 0.073 9 0.001 9 1.581 2 0.039 1 0.154 9 0.001 3 1 039 50.0 963 15.4 928 7.2 96 41 0.54 0.071 4 0.001 9 1.469 1 0.037 9 0.148 9 0.001 3 969 49.5 918 15.6 895 7.5 97 -
[1] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210. [2] Campbell I H, Allen C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 2008, 1(8): 554-558. [3] Nance R D, Murphy J B, Santosh M. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25(1): 4-29. [4] 赵国春,韩以贵,李建华,等. 超大陆聚散的环境效应[J]. 地质学报,2022,96(9):3120-3127. Zhao Guochun, Han Yigui, Li Jianhua, et al. Environmental effects of assembly and breakup of supercontinents[J]. Acta Geologica Sinica, 2022, 96(9): 3120-3127. [5] Lan Z W, Huyskens M H, Le Hir G, et al. Massive volcanism may have foreshortened the Marinoan snowball Earth[J]. Geophysical Research Letters, 2022, 49(6): e2021GL097156. [6] Lan Z W, Mitchell R N, Gernon T M, et al. Did an asteroid impact cause temporary warming during snowball Earth?[J]. Earth and Planetary Science Letters, 2022, 581: 117407. [7] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2): 163-166. [8] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. [9] Zhou M F, Ma Y X, Yan D P, et al. The Yanbian Terrane (southern Sichuan province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144(1/2): 19-38. [10] Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan massif[J]. Precambrian Research, 2011, 189(1/2): 66-90. [11] Lu K, Li X H, Zhou J L, et al. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan complex[J]. Precambrian Research, 2020, 346: 105787. [12] 邓奇,崔晓庄,汪正江,等. 扬子陆块北缘构造演化新认识:来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质,2023,43(1):212-225. Deng Qi, Cui Xiaozhuang, Wang Zhengjiang, et al. New understanding of the tectonic evolution of the northern margin of Yangtze Block: Constraints from the geochronology and geochemistry of the Huashan Group[J]. Sedi- mentary Geology and Tethyan Geology, 2023, 43(1): 212-225. [13] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1/2): 117-131. [14] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302. [15] 邓奇,王剑,汪正江,等. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约[J]. 大地构造与成矿学,2016,40(4):753-771. Deng Qi, Wang Jian, Wang Zhengjiang, et al. Middle Neoproterozoic magmatic activities and their constraints on tectonic evolution of the Jiangnan orogen[J]. Geotectonica et Metallogenia, 2016, 40(4): 753-771. [16] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma[J]. Precambrian Research, 2003, 122(1/2/3/4): 45-83. [17] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67. [18] Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China[J]. Precambrian Research, 2008, 163(3/4): 351-383. [19] Dong Y P, Liu X M, Santosh M, et al. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: Constraints from zircon U-Pb geochronology and geochemistry[J]. Precambrian Research, 2012, 196-197: 247-274. [20] Deng Q, Wang J, Wang Z J, et al. Continental flood basalts of the Huashan Group, northern margin of the Yangtze Block: Implications for the breakup of Rodinia[J]. International Geology Review, 2013, 55(15): 1865-1884. [21] Luo B J, Liu R, Zhang H F, et al. Neoproterozoic continental back-arc rift development in the northwestern Yangtze Block: Evidence from the Hannan intrusive magmatism[J]. Gondwana Research, 2018, 59: 27-42. [22] Berkana W, Wu H, Ling W L, et al. Neoproterozoic metavolcanic suites in the Micangshan terrane and their implications for the tectonic evolution of the NW Yangtze Block, South China[J]. Precambrian Research, 2022, 368: 106476. [23] 邓奇,王剑,汪正江,等. 扬子北缘西乡群大石沟组和三郎铺组凝灰岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版),2013,43(3):797-808,819. Deng Qi, Wang Jian, Wang Zhengjiang, et al. Zircon U-Pb ages for tuffs from the Dashigou and Sanlangpu Formations of the Xixiang Group in the northern margin of Yangtze Block and their geological significance[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 797-808, 819. [24] 邓奇,王剑,汪正江,等. 扬子北缘元古宇马槽园群时代归属新证据:对地层对比和古地理格局的启示[J]. 地质通报,2013,32(4):631-638. Deng Qi, Wang Jian, Wang Zhengjiang, et al. New evidence for the age of the Macaoyuan Group on the northern margin of the Yangtze Block, South China: Implications for stratigraphic correlation and palaeogeographic framework[J]. Geological Bulletin of China, 2013, 32(4): 631-638. [25] 邓奇,汪正江,杨菲,等. 浙西北建德地区休宁组沉积时限的厘定:来自凝灰岩锆石U-Pb年代学的制约[J]. 地质学报,2019,93(2):414-427. Deng Qi, Wang Zhengjiang, Yang Fei, et al. Depositional age of the Xiuning Formation in the Jiande area, northwestern Zhejiang province: Constraints from U-Pb zircon tuff geochronology[J]. Acta Geologica Sinica, 2019, 93(2): 414-427. [26] 宁括步,邓奇,崔晓庄,等. 扬子陆块北缘大洪山地区莲沱组底部凝灰岩锆石U-Pb定年及其地层学意义[J]. 地质通报,2024,43(2/3):363-375. Ning Kuobu, Deng Qi, Cui Xiaozhuang, et al. Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze Block[J]. Geological Bulletin of China, 2024, 43(2/3): 363-375. [27] 韩志宇,王非,师文贝. 沉积岩定年及应用:问题与展望[J]. 沉积学报,2022,40(2):360-379. Han Zhiyu, Wang Fei, Shi Wenbei. Dating and application for sedimentary rocks: Problems and prospects[J]. Acta Sedimentologica Sinica, 2022, 40(2): 360-379. [28] Xiong G Q, Deng Q, Zheng X, et al. Geochemistry and geochronology of Early Triassic tephra from SW China: Implications for biological evolution and tectonics[J]. International Geology Review, 2024, 66(16): 2843-2868. [29] 王平,陈玺贇,朱龙辰,等. 碎屑锆石UPb年代学定量物源分析的基本原理与影响因素:以现代河流砂为例[J]. 沉积学报,2022,40(6):1599-1614. Wang Ping, Chen Xiyun, Zhu Longchen, et al. Principles and biases of quantitative provenance analysis using detrital zircon U-Pb geochronology: Insight from modern river sands[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1599-1614. [30] Zimmermann U, Spalletti L A. Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires province, Argentina): Implications for paleogeographic reconstructions of SW Gondwana[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 7-23. [31] Rodrigues J B, Pimentel M M, Dardenne M A, et al. Age, provenance and tectonic setting of the Canastra and Ibiá Groups (Brasília Belt, Brazil): Implications for the age of a Neoproterozoic glacial event in central Brazil[J]. Journal of South American Earth Sciences, 2010, 29(2): 512-521. [32] Zhang Y, Jia D, Shen L, et al. Provenance of detrital zircons in the Late Triassic Sichuan Foreland Basin: Constraints on the evolution of the Qinling orogen and Longmen Shan thrust-fold belt in central China[J]. International Geology Review, 2015, 57(14): 1806-1824. [33] Zhu M, Chen H L, Zhou J, et al. Provenance change from the Middle to Late Triassic of the southwestern Sichuan Basin, southwest China: Constraints from the sedimentary record and its tectonic significance[J]. Tectonophysics, 2017, 700-701: 92-107. [34] Cui X Z, Lin S F, Wang J, et al. Latest Mesoproterozoic provenance shift in the southwestern Yangtze Block, South China: Insights into tectonic evolution in the context of the supercontinent cycle[J]. Gondwana Research, 2021, 99: 131-148. [35] 四川省地质矿产局. 四川省岩石地层[M]. 武汉:中国地质大学出版社,1997:1-471. Bureau of Geology and Mineral Resources of Sichuan Province. Stratigraphy (Lithostratic) of Sichuan province[M]. Wuhan: China University of Geosciences Press, 1997: 1-471. [36] 何政伟,刘援朝,魏显贵,等. 扬子克拉通北缘米仓山地区基底变质岩系同位素地质年代学[J]. 矿物岩石,1997,17(增刊1):86-90. He Zhengwei, Liu Yuanchao, Wei Xiangui, et al. Isotopic geochronology of basement metamorphic rock series in the Micangshan area along the northern margin of Yangtze Craton, China[J]. Mineralogy and Petrology, 1997, 17(Suppl.1): 86-90. [37] 汪正江,王剑,江新胜,等. 华南扬子地区新元古代地层划分对比研究新进展[J]. 地质论评,2015,61(1):1-22. Wang Zhengjiang, Wang Jian, Jiang Xinsheng, et al. New progress for the stratigraphic division and correlation of Neoproterozoic in Yangtze Block, South China[J]. Geological Review, 2015, 61(1): 1-22. [38] 耿元生,旷红伟,柳永清,等. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报,2017,91(10):2151-2174. Geng Yuansheng, Kuang Hongwei, Liu Yongqing, et al. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 91(10): 2151-2174. [39] 邓奇,汪正江,任光明,等. 扬子地块西北缘~2.09 Ga和~1.76 Ga花岗质岩石:Columbia超大陆聚合—裂解的岩浆记录[J]. 地球科学,2020,45(9):3295-3312. Deng Qi, Wang Zhengjiang, Ren Guangming, et al. Identification of the ~2.09 Ga and ~1.76 Ga granitoids in the northwestern Yangtze Block: Records of the assembly and break-up of Columbia supercontinent[J]. Earth Science, 2020, 45(9): 3295-3312. [40] Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze Craton, South China: Implications for amalgamation and break-up of the Rodinia supercontinent[J]. Precambrian Research, 2003, 122(1/2/3/4): 111-140. [41] Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of Early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan orogen, southern Central Asian orogenic belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. [42] 刘登忠,魏显贵,杜思清,等. 米仓山西段地质研究新进展[J]. 矿物岩石,1997,17(增刊):1-8. Liu Dengzhong, Wei Xiangui, Du Siqing, et al. Advance of geologic study in western of Micangshan area[J]. Journal of Mineralogy and Petrology, 1997, 17(Suppl.): 1-8. [43] Li J Y, Wang X L, Wang D, et al. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction-accretion[J]. Precambrian Research, 2021, 355: 106081. [44] 邓奇,汪正江,王剑,等. 扬子地块西北缘碑坝地区白玉~1.79 Ga A型花岗岩的发现及其对构造演化的制约[J]. 地质学报,2017,91(7):1454-1466. Deng Qi, Wang Zhengjiang, Wang Jian, et al. Discovery of the Baiyu ~1.79 Ga A-type granite in the Beiba area of the northwestern margin of Yangtze Block: Constraints on tectonic evolution of South China[J]. Acta Geologica Sinica, 2017, 91(7): 1454-1466. [45] DeCelles P G, Carrapa B, Gehrels G E. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina[J]. Geology, 2007, 35(4): 323-326. [46] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. [47] Zhou J L, Li X H, Tang G Q, et al. Ca. 890 Ma magmatism in the northwest Yangtze Block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications[J]. Journal of Asian Earth Sciences, 2018, 151: 101-111. [48] 凌文黎,高山,程建萍,等. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义:来自黄陵和汉南侵入杂岩ELA-ICPMS锆石U-Pb同位素年代学的约束[J]. 岩石学报,2006,22(2):387-396. Ling Wenli, Gao Shan, Cheng Jianping, et al. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: Constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes[J]. Acta Petrologica Sinica, 2006, 22(2): 387-396. [49] Wu P, Zhang S B, Zheng Y F, et al. Amalgamation of South China into Rodinia during the Grenvillian accretionary orogeny: Geochemical evidence from Early Neoproterozoic igneous rocks in the northern margin of the South China Block[J]. Precambrian Research, 2019, 321: 221-243. [50] Wu P, Zhang S B, Zheng Y F, et al. The accretion history of the South China Block at its northwest margin in the Neoproterozoic: Records from the Changba complex in the Mianlue zone[J]. Precambrian Research, 2021, 352: 106006. [51] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. [52] Hui B, Dong Y P, Liu G, et al. Origin of mafic intrusions in the Micangshan massif, central China: Implications for the Neoproterozoic tectonic evolution of the northwestern Yangtze Block[J]. Journal of Asian Earth Sciences, 2020, 190: 104132. [53] Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200-203: 26-37. -
附表1 旺苍地区火地垭群上两组绢云千枚岩样品SM-5锆石U-Pb 同位素定年结果.docx