-
东亚地区在进入新生代后经历了一系列剧烈的构造运动,包括太平洋板块的转向和俯冲后撤[1]、菲律宾板块和欧亚板块边缘的碰撞[2]、以及造成青藏高原隆升的印度板块与欧亚板块间的碰撞等事件[3]。这一系列的地质构造运动对东亚地区的构造、地质演化及气候等都产生了巨大的影响。南海就是在这一系列构造运动中形成的新生代边缘海,是研究新生代东亚地区板块构造运动的热点地区之一,其在新生代东亚大陆边缘大规模张裂作用的背景下[4],经历了海底扩张与消亡的旋回过程[5]。伴随着断陷扩张过程,南海盆地接受了巨厚的新生代沉积。然而,由于南海北部钻遇新生代早期的探井有限,极大地限制了通过沉积手段对南海早期的沉积演变过程的研究。台湾地区新生代始新世—中新世沉积属南海北部沉积的一部分,是南海北部陆源剥蚀—沉积充填过程的产物。由于菲律宾板块向西北方向的漂移并在中中新世开始与欧亚大陆发生拼合碰撞,使南海东北部新生代沉积层序变形抬升,最终形成台湾隆升岛屿[6-7]。因此,台湾地区作为南海北部新生代地层唯一的出露区,对揭示南海早期构造演化和沉积充填过程具有重要意义。前人对台湾地区新生代沉积环境的研究工作已取得了大量成果[7-8],但其物源演化尚存争议[9-11]。本研究通过对台湾岛中部、北部始新世—中新世样品的岩石学及沉积物源的研究,并结合南海北部的对比分析,揭示了沉积物的形成环境及物源演变信息(图 1)。
Eocene-Miocene Sediment Source and Environmental Study of Taiwan
-
摘要: 台湾地区出露的始新统-中新统地层属南海北侧的范畴,其物质组成及沉积环境为揭示南海新生代早期构造沉积演化提供了关键性依据。对台湾西部麓山带中部南投粗坑地区、国姓地区以及东北海岸新港-基隆地区的始新统-中新统地层进行了岩石学、矿物学、稀土元素地球化学特征以及碎屑锆石U-Pb定年分析等研究。结果显示:台湾中部和北部从始新世到中新世经历了从陆相河流-湖泊相沉积环境到滨浅海相的环境转变,其砂岩成分成熟度随时间由老变新呈现规律性变化;沉积物源分析表明研究区沉积物在始新世-早渐新世,物源以近源中生代源区为主,碎屑锆石年龄谱系出现120 Ma和230 Ma两个主要峰值,与周边及华南沿海地区中生代火山岩时代一致;进入晚渐新世以后,锆石年龄谱系出现900 Ma及1 800 Ma等古老峰值,说明古老地块物质明显增加,这可能反映了昆莺琼古河流由南海西部到东部的物质输送对台湾地区的影响作用。Abstract: The exposed Eocene-Miocene strata of Taiwan is within the range of north SCS, whose composition and sedimentary environment revealed the early tectonic and sedimentary development of the Early Cenozoic SCS. This study is based on the Eocene-Miocene strata of the Tsukeng area, central Western Foothills and northeast shoreline of Taiwan and analyzed the petrology, mineralogy, rare earth element geochemistry, and detrital zircon U-Pb age study. Results show that central and northeastern Taiwan experienced transformation from continental facies to marine facies during the Eocene-Miocene, and the sandstone maturity transitioned with time. Source analysis shows that sediment from the Eocene-Lower Oligocene strata was mainly provided by short-distance transported Mesozoic rock, whose zircon age is consistent with the igneous rock in the surrounding and coastal Cathay areas, with 120 Ma and 230 Ma peaks on the age frequency diagram. Since the upper Oligocene, 900 Ma and 1 800 Ma peaks appeared, indicating matter from old blocks started to deposit, which may be the result of the "Kontum-Ying-Qiong" river system transporting the sediment of west SCS to the east and thus influencing Taiwan.
-
Key words:
- Taiwan /
- provenance /
- sandstone /
- zircon /
- sedimentary environment
-
-
[1] Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-emperor bend records major change in pacific plate motion[J]. Science, 2006, 313(5791):1281-1284. doi: 10.1126/science.1128489 [2] Hall R. Reconstructing Cenozoic SE Asia[J]. Geological Society, London, Special Publications, 1996, 106(1):153-184. doi: 10.1144/GSL.SP.1996.106.01.11 [3] Wang C S, Li X H, Hu X M, et al. Latest marine horizon north of Qomolangma(Mt Everest):Implications for closure of Tethys seaway and collision tectonics[J]. Terra Nova, 2002, 14(2):114-120. doi: 10.1046/j.1365-3121.2002.00399.x [4] Taylor B, Hayes D E. The tectonic evolution of the South China Basin[M]//Hayes D E. The tectonic and geologic evolution of Southeast Asian seas and islands. Washington: American Geophysical Union, 1980: 89-104. [5] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea:Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B4):6299-6328. doi: 10.1029/92JB02280 [6] Suppe J. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan[J]. Memoir of the Geological Society of China, 1984, 6:21-33. [7] Huang C Y, Yuan P B, Lin C W, et al. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica[J]. Tectonophysics, 2000, 325(1/2):1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9571dd0adadcd87ab3e9aa3d917785ae [8] Huang C Y, Wu W Y, Chang C P, et al. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan[J]. Tectonophysics, 1997, 281(1/2):31-51. doi: 10.1016-S0040-1951(97)00157-1/ [9] Deng K, Yang S Y, Li C, et al. Detrital zircon geochronology of river sands from Taiwan:Implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164:31-47. doi: 10.1016/j.earscirev.2016.10.015 [10] Deng K, Yang S Y, Bi L. Reply to comment by Yonghang Xu on "Detrital zircon geochronology of river sands from Taiwan:Implications for sedimentary provenance of Taiwan and its source link with the east China mainland"[J]. Earth-Science Reviews, 2017, 168:235-239. doi: 10.1016/j.earscirev.2017.03.009 [11] Zhang X C, Yan Y, Huang C Y, et al. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance[J]. Journal of Asian Earth Sciences, 2014, 85:26-39. doi: 10.1016/j.jseaes.2014.01.021 [12] 黄奇瑜, 闫义, 赵泉鸿, 等.台湾新生代层序:反映南海张裂, 层序和古海洋变化机制[J].科学通报, 2012, 57(20):1842-1862. Huang Chiyue, Yen Yi, Zhao Quanhong, et al. Cenozoic stratigraphy of Taiwan:Window into rifting, stratigraphy and paleoceanography of South China Sea[J]. Chinese Science Bulletin, 2012, 57(20):1842-1862. [13] 姚伯初, 曾维军, 陈艺中, 等.南海北部陆缘东部的地壳结构[J].地球物理学报, 1994, 37(1):27-35. doi: 10.3321/j.issn:0001-5733.1994.01.004 Yao Bochu, Zeng Weijun, Chen Yizhong, et al. The crustal structure in the eastern part of the northern margin of the South China Sea[J]. Chinese Journal of Geophysics, 1994, 37(1):27-35. doi: 10.3321/j.issn:0001-5733.1994.01.004 [14] Yang T F, Lee T, Chen C H, et al. A double island arc between Taiwan and Luzon:Consequence of ridge subduction[J]. Tectonophysics, 1996, 258(1/2/3/4):85-101. [15] Li X H, Wei G J, Shao L, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea:A response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 2003, 211(3/4):207-220. [16] Sun S C. The Tertiary basins of offshore Taiwan[C]//Proceedings of the 2nd ASCOPE conference and exhibition. Manila, Philippines: 1982: 125-135. [17] Huang C Y, Shea K H, Li Q Y. A foraminiferal study on Middle Eocene-Oligocene break-up unconformity in northern Taiwan and its correlation with IODP Site U1435 to constrain the onset event of South China Sea opening[J]. Journal of Asian Earth Sciences, 2017, 138:439-465. doi: 10.1016/j.jseaes.2016.09.014 [18] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12):2164-2182. [19] Wei G J, Liu Y, Li X H, et al. Climatic impact on Al, K, Sc and Ti in marine sediments:Evidence from ODP Site 1144, South China Sea[J]. Geochemical Journal, 2003, 37(5):593-602. doi: 10.2343/geochemj.37.593 [20] 侯孟孜, 衣华鹏, 孙志高, 等.渤海北部海域碎屑矿物组成特征研究[J].干旱区资源与环境, 2017, 31(4):118-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201704019 Hou Mengzi, Yi Huapeng, Sun Zhigao, et al. Detrital mineral composition features of the northern Bohai Sea[J]. Journal of Arid Land Resources and Environment, 2017, 31(4):118-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201704019 [21] Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1):1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x [22] Sláma J, Košler J, Condon D J, et al. Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2):1-35. [23] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. doi: 10.1093-petrology-egp082/ [24] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79. [25] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2):171-184. doi: 10.1144/gsjgs.149.2.0171 [26] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313:190-194. doi: 10.1016/j.chemgeo.2012.04.021 [27] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 312. [28] 孙涛.新编华南花岗岩分布图及其说明[J].地质通报, 2006, 25(3):332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 Sun Tao. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 2006, 25(3):332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 [29] Li X H. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 2000, 18(3):293-305. doi: 10.1016/S1367-9120(99)00060-7 [30] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3/4):269-287. [31] Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episodes, 2006, 29(1):26-33. doi: 10.18814/epiiugs/2006/v29i1/004 [32] Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction mode[J]. Geology, 2007, 35(2):179-182. doi: 10.1130/G23193A.1 [33] Xu X S, O'Reilly S Y, Griffin W L, et al. The crust of Cathaysia:Age, assembly and reworking of two terranes[J]. Precambrian Research, 2007, 158(1/2):51-78. doi: 10.1016-j.precamres.2007.04.010/ [34] Lan Q, Yan Y, Huang C Y, et al. Topographic architecture and drainage reorganization in Southeast China:Zircon U-Pb chronology and Hf isotope evidence from Taiwan[J]. Gondwana Research, 2016, 36:376-389. doi: 10.1016/j.gr.2015.07.008 [35] Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 2005, 136(1):51-66. doi: 10.1016/j.precamres.2004.09.008 [36] Wang Q, Wyman D A, Li Z X, et al. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China:Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia[J]. Precambrian Research, 2010, 178(1/2/3/4):185-208. [37] Usuki T, Lan C Y, Yui T F, et al. Early Paleozoic medium-pressure metamorphism in central Vietnam:Evidence from SHRIMP U-Pb zircon ages[J]. Geosciences Journal, 2009, 13(3):245-256. [38] Yang Z N, Yang K G, Ali P, et al. Early crustal evolution of the eastern Yangtze Block:Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area[J]. Precambrian Research, 2018, 309:248-270. doi: 10.1016/j.precamres.2017.05.011 [39] Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China:Tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Research, 2007, 12(1/2):166-183. doi: 10.1016-j.gr.2006.10.016/ [40] Yao J L, Shu L S, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry-New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(2/3):553-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b5416d3ad7ea790042e0e925a57ddea [41] Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19):7556-7561. doi: 10.1073/pnas.1216241110 [42] 王扬扬, 范代读.长江流域岩体锆石U-Pb年龄与Hf同位素特征及沉积物源示踪意义[J].海洋地质与第四纪地质, 2013, 33(5):97-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201305011 Wang Yangyang, Fan Daidu. U-Pb ages and Hf isotopic composition of crystalline zircons from igneous rocks of the Changjiang drainage basin and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2013, 33(5):97-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201305011 [43] 范代读, 李从先, Yokoyama K, 等.长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究[J].中国科学(D辑):地球科学, 2004, 34(11):1015-1022. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200411003 Fan Daidu, Li Congxian, Yokoyama K, et al. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science China(Seri. D):Earth Sciences, 2004, 34(1):1015-1022. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200411003 [44] 贾军涛, 郑洪波, 黄湘通, 等.长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J].科学通报, 2010, 55(4/5):350-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201004007 Jia Juntao, Zheng Hongbo, Huang Xiangtong, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta:Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(4/5):350-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201004007 [45] 袁胜元, 李长安, 张玉芬, 等.江汉盆地沉积物微量元素特征与长江上游水系拓展[J].中国地质, 2012, 39(4):1042-1048. doi: 10.3969/j.issn.1000-3657.2012.04.020 Yuan Shengyuan, Li Chang'an, Zhang Yufen, et al. Trace element characteristics of sediments in Jianghan Basin:Implications for expansion of the upper reaches of the Yangtze River[J]. Geology in China, 2012, 39(4):1042-1048. doi: 10.3969/j.issn.1000-3657.2012.04.020 [46] Yuan X C. Atlas of geophysics in China[M]. Beijing: Geological Publishing House, 1996. [47] Shao L, Cao L C, Pang X, et al. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2):255-269. doi: 10.1002/2015GC006113 [48] 邵磊, 庞雄, 乔培军, 等.珠江口盆地的沉积充填与珠江的形成演变[J].沉积学报, 2008, 26(2):179-185. http://www.cjxb.ac.cn/CN/abstract/abstract293.shtml Shao Lei, Pang Xiong, Qiao Peijun, et al. Sedimentary filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River[J]. Acta Sedimentologica Sinica, 2008, 26(2):179-185. http://www.cjxb.ac.cn/CN/abstract/abstract293.shtml [49] Shao L, Cui Y C, Stattegger K, et al. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian plate[J]. GSA Bulletin, 2018, 131(3/4):461-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f32b61e7f00d6f9db8d5fe7c68cd973f [50] Cui Y C, Shao L, Qiao P J, et al. Upper Miocene-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea[J]. Marine Geophysical Research, 2018, doi:10. 1007/s11001-018-9359-2.