[1]
|
Algeo T J, Berner R A, Maynard J B, et al. Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular land plants?[J]. GSA Today, 1995, 5(3): 63-66. |
[2]
|
van Geldern R, Joachimski M M, Day J, et al. Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 47-67. |
[3]
|
Percival L M E, Selby D, Bond D P G, et al. Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: Evidence from osmium-isotope compositions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 240-249. |
[4]
|
Streel M, Caputo M V, Loboziak S, et al. Late Frasnian-Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 121-173. |
[5]
|
Joachimski M M, van Geldern R, Breisig S, et al. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian[J]. International Journal of Earth Sciences, 2004, 93(4): 542-553. |
[6]
|
Joachimski M M, Breisig S, Buggisch W, et al. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 599-609. |
[7]
|
Over D J. The Frasnian/Famennian boundary in central and eastern United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 153-169. |
[8]
|
Chen D Z, Qing H R, Li R W. The Late Devonian Frasnian–Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg and 87Sr/86Sr isotopic systematics[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 151-166. |
[9]
|
Racki G, Rakociński M, Marynowski L, et al. Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved?[J]. Geology, 2018, 46(6): 543-546. |
[10]
|
McGhee G R, Jr. The Late Devonian mass extinction: The Frasnian/Famennian crisis[M]. New York: Columbia University Press, 1996. |
[11]
|
Racki G. Frasnian–Famennian biotic crisis: Undervalued tectonic control?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 141(3/4): 177-198. |
[12]
|
Sandberg C A, Morrow J R, Ziegler W. Late Devonian sea-level changes, catastrophic events, and mass extinctions[M]//Koeberl C, MacLeod K G. Catastrophic events and mass extinctions: Impacts and beyond. Boulder: Geological Society of America, 2002: 473-488. |
[13]
|
Chen D Z, Tucker M E. The Frasnian–Famennian mass extinction: Insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193(1): 87-111. |
[14]
|
Kaiser S I, Aretz M, Becker R T. The global Hangenberg Crisis (Devonian–Carboniferous transition): Review of a first-order mass extinction[J]. Geological Society, London, Special Publications, 2016, 423(1): 387-437. |
[15]
|
戎嘉余,黄冰. 生物大灭绝研究三十年[J]. 中国科学(D辑):地球科学,2014,44(3):377-404.
Rong Jiayu, Huang Bing. Study of Mass Extinction over the past thirty years: A synopsis[J]. Science China (Seri. D): Earth Sciences, 2014, 44(3): 377-404. |
[16]
|
Whiteside J H, Grice K. Biomarker records associated with mass extinction events[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 581-612. |
[17]
|
Erlykin A D, Harper D A T, Sloan T, et al. Mass extinctions over the last 500 myr: An astronomical cause?[J]. Palaeontology, 2017, 60(2): 159-167. |
[18]
|
沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135.
Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135. |
[19]
|
Copper P. Reef development at the Frasnian/Famennian mass extinction boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 27-65. |
[20]
|
Olempska E. The Late Devonian Upper Kellwasser Event and entomozoacean ostracods in the Holy Cross Mountains, Poland[J]. Acta Palaeontologica Polonica, 2002, 47(2): 247-266. |
[21]
|
Ma X P, Gong Y M, Chen D Z, et al. The Late Devonian Frasnian-Famennian Event in South China: Patterns and causes of extinctions, sea level changes, and isotope variations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 224-244. |
[22]
|
Sorauf J E, Pedder A E H. Late Devonian rugose corals and the Frasnian-Famennian crsis[J]. Canadian Journal of Earth Sciences, 1986, 23(9): 1265-1287. |
[23]
|
廖卫华. 华南中泥盆世两次重要的珊瑚群更替事件[J]. 古生物学报,2015,54(3):305-315.
Liao Weihua. Two major faunal turnover events of Middle Devonian corals in South China[J]. Acta Palaeontologica Sinica, 2015, 54(3): 305-315. |
[24]
|
董俊彦,龚一鸣. 层孔虫研究进展与展望[J]. 古地理学报,2019,21(5):783-802.
Dong Junyan, Gong Yiming. Progress and prospects of studies on stromatoporoids[J]. Journal of Palaeogeography, 2019, 21(5): 783-802. |
[25]
|
王玉珏,梁昆,陈波,等. 晚泥盆世F-F大灭绝事件研究进展[J]. 地层学杂志,2020,44(3):277-298.
Wang Yujue, Liang Kun, Chen Bo, et al. Research progress in the Late Devonian F-F mass extinction[J]. Journal of Stratigraphy, 2020, 44(3): 277-298. |
[26]
|
宋俊俊,龚一鸣. 古生代介形类的研究现状及展望[J]. 古生物学报,2015,54(3):404-424.
Song Junjun, Gong Yiming. Progresses and prospects of palaeozoic ostracod study[J]. Acta Palaeontologica Sinica, 2015, 54(3): 404-424. |
[27]
|
Huang C, Joachimski M M, Gong Y M. Did climate changes trigger the Late Devonian Kellwasser Crisis? Evidence from a high-resolution conodont δ18OPO4 record from South China[J]. Earth and Planetary Science Letters, 2018, 495: 174-184. |
[28]
|
Li Y X. Famennian tentaculitids of China[J]. Journal of Paleontology, 2000, 74(5): 969-975. |
[29]
|
Becker R T. Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity[M]//House M R. The ammonoidea: Environment, ecology, and evolutionary change. Oxford: Clarendon Press, 1993, 47: 115-163. |
[30]
|
Johnson J G, Klapper G, Sandberg C A. Devonian eustatic fluctuations in Euramerica[J]. GSA Bulletin, 1985, 96(5): 567-587. |
[31]
|
Bond D P G, Wignall P B. The role of sea-level change and marine anoxia in the Frasnian–Famennian (Late Devonian) mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 263(3/4): 107-118. |
[32]
|
Murphy A E, Sageman B B, Hollander D J. Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass extinction[J]. Geology, 2000, 28(5): 427-430. |
[33]
|
Bond D, Wignall P B, Racki G. Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France[J]. Geological Magazine, 2004, 141(2): 173-193. |
[34]
|
Marynowski L, Rakociński M, Borcuch E, et al. Molecular and petrographic indicators of redox conditions and bacterial communities after the F/F mass extinction (Kowala, Holy Cross Mountains, Poland)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(1/2): 1-14. |
[35]
|
Whalen M T, Śliwiński M G, Payne J H, et al. Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian-Famennian transition in western Canada and southern China: Implications for carbon and nutrient cycling and mass extinction[J]. Geological Society, London, Special Publications, 2015, 414(1): 37-72. |
[36]
|
White D A, Elrick M, Romaniello S, et al. Global seawater redox trends during the Late Devonian mass extinction detected using U isotopes of marine limestones[J]. Earth and Planetary Science Letters, 2018, 503: 68-77. |
[37]
|
Joachimski M M, Buggisch W. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction[J]. Geology, 2002, 30(8): 711-714. |
[38]
|
Zhang L Y, Chen D Z, Huang T Y, et al. An abrupt oceanic change and frequent climate fluctuations across the Frasnian-Famennian transition of Late Devonian: Constraints from conodont Sr isotope[J]. Geological Journal, 2020, 55(6): 4479-4492. |
[39]
|
Wang K, Orth C J, Attrep M, Jr, et al. Geochemical evidence for a catastrophic biotic event at the Frasnian/Famennian boundary in South China[J]. Geology, 1991, 19(8): 776-779. |
[40]
|
Golonka J. Phanerozoic palaeoenvironment and palaeolithofacies maps of the Arctic region[J]. Geological Society, London, Memoirs, 2011, 35(1): 79-129. |
[41]
|
Thompson J B, Newton C R. Late Devonian mass extinction: Episodic climatic cooling or warming?[M]//McMillan N J, Embry A F, Glass D J. Devonian of the world. Calgary: Canadian Society of Petroleum Geologists, 1988: 29-34. |
[42]
|
Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250. |
[43]
|
Chen D Z, Tucker M. Palaeokarst and its implication for the extinction event at the Frasnian-Famennian boundary (Guilin, South China)[J]. Journal of the Geological Society, 2004, 161(6): 895-898. |
[44]
|
Le Houedec S, Girard C, Balter V. Conodont Sr/Ca and δ18O record seawater changes at the Frasnian–Famennian boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376: 114-121. |
[45]
|
Gereke M, Schindler E. “Time-Specific Facies” and biological crises: The Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 367-368: 19-29. |
[46]
|
Zhang L Y, Chen D Z, Kuang G D, et al. Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China[J]. Global and Planetary Change, 2020, 195: 103350. |
[47]
|
Zhang X S, Joachimski M M, Gong Y M. Late Devonian greenhouse-icehouse climate transition: New evidence from conodont δ18O thermometry in the eastern Palaeotethys (Lali section, South China)[J]. Chemical Geology, 2021, 581: 120383. |
[48]
|
Joachimski M M, Pancost R D, Freeman K H, et al. Carbon isotope geochemistry of the Frasnian-Famennian transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 91-109. |
[49]
|
Chang J Q, Bai Z Q, Sun Y L, et al. High resolution bio- and chemostratigraphic framework at the Frasnian-Famennian boundary: Implications for regional stratigraphic correlation between different sedimentary facies in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108299. |
[50]
|
Gong Y M, Xu R, Tang Z D, et al. Relationships between bacterial-algal proliferating and mass extinction in the Late Devonian Frasnian-Famennian transition: Enlightening from carbon isotopes and molecular fossils[J]. Science in China Series D: Earth Sciences, 2005, 48(10): 1656-1665. |
[51]
|
Simon L, Goddéris Y, Buggisch W, et al. Modeling the carbon and sulfur isotope compositions of marine sediments: Climate evolution during the Devonian[J]. Chemical Geology, 2007, 246(1/2): 19-38. |
[52]
|
Hayes J M, Strauss H, Kaufman A J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma[J]. Chemical Geology, 1999, 161(1/2/3): 103-125. |
[53]
|
Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161(1/2/3): 181-198. |
[54]
|
陈代钊,王卓卓,汪建国. 晚泥盆世地球各圈层相互作用与海洋生态危机:来自高分辨率的沉积和同位素地球化学证据[J]. 自然科学进展,2006,16(4):439-448.
Chen Daizhao, Wang Zhuozhuo, Wang Jianguo. Earth’s sphere interactions and marine ecological crisis in the Late Devonian: High-resolution sedimentary and isotopic geochemical evidence[J]. Progress in Natural Science, 2006, 16(4): 439-448. |
[55]
|
Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy: Potential resolution and event correlation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 65-77. |
[56]
|
Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science, 2001, 301(2): 112-149. |
[57]
|
Averbuch O, Tribovillard N, Devleeschouwer X, et al. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian-Famennian boundary (c. 376 Ma)?[J]. Terra Nova, 2005, 17(1): 25-34. |
[58]
|
Algeo T J, Scheckler S E. Land plant evolution and weathering rate changes in the Devonian[J]. Journal of Earth Science, 2010, 21(Suppl.1): 75-78. |
[59]
|
Joachimski M M, Buggisch W. Anoxic events in the Late Frasnian: Causes of the Frasnian-Famennian faunal crisis?[J]. Geology, 1993, 21(8): 675-678. |
[60]
|
Riquier L, Tribovillard N, Averbuch O, et al. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): Two oxygen-deficient periods resulting from different mechanisms[J]. Chemical Geology, 2006, 233(1/2): 137-155. |
[61]
|
Bond D, Wignall P B. Evidence for Late Devonian (Kellwasser) anoxic events in the Great Basin, western United States[J]. Developments in Palaeontology and Stratigraphy, 2005, 20: 225-262. |
[62]
|
Haddad E E, Boyer D L, Droser M L, et al. Ichnofabrics and chemostratigraphy argue against persistent anoxia during the Upper Kellwasser Event in New York State[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 178-190. |
[63]
|
Sim M S, Ono S, Hurtgen M T. Sulfur isotope evidence for low and fluctuating sulfate levels in the Late Devonian ocean and the potential link with the mass extinction event[J]. Earth and Planetary Science Letters, 2015, 419: 52-62. |
[64]
|
Joachimski M M, Ostertag-Henning C, Pancost R D, et al. Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian-Famennian boundary (Kowala—Holy Cross Mountains/Poland)[J]. Chemical Geology, 2001, 175(1/2): 109-131. |
[65]
|
Carmichael S K, Waters J A, Königshof P, et al. Paleogeography and paleoenvironments of the Late Devonian Kellwasser Event: A review of its sedimentological and geochemical expression[J]. Global and Planetary Change, 2019, 183: 102984. |
[66]
|
John E H, Wignall P B, Newton R J, et al. δ34SCAS and δ18OCAS records during the Frasnian–Famennian (Late Devonian) transition and their bearing on mass extinction models[J]. Chemical Geology, 2010, 275(3/4): 221-234. |
[67]
|
George A D, Chow N, Trinajstic K M. Oxic facies and the Late Devonian mass extinction, Canning Basin, Australia[J]. Geology, 2014, 42(4): 327-330. |
[68]
|
Tissot F L H, Dauphas N. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta, 2015, 167: 113-143. |
[69]
|
Lau K V, Macdonald F A, Maher K, et al. Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth[J]. Earth and Planetary Science Letters, 2017, 458: 282-292. |
[70]
|
Clarkson M O, Stirling C H, Jenkyns H C, et al. Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2918-2923. |
[71]
|
Song H Y, Song H J, Algeo T J, et al. Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction[J]. Geology, 2017, 45(10): 887-890. |
[72]
|
Cai C F, Xu C L, Fakhraee M, et al. Significant fluctuation in the global sulfate reservoir and oceanic redox state during the Late Devonian event[J]. PNAS Nexus, 2022, 1(4): pgac122. |
[73]
|
Kazmierczak J, Kremer B, Racki G. Late Devonian marine anoxia challenged by benthic cyanobacterial mats[J]. Geobiology, 2012, 10(5): 371-383. |
[74]
|
Zhao Y Y, Zheng Y F, Chen F K. Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3/4): 345-362. |
[75]
|
常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.
Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. |
[76]
|
Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 37-57. |
[77]
|
Tanaka K, Tani Y, Takahashi Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2[J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5463-5477. |
[78]
|
Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127. |
[79]
|
Carmichael S K, Waters J A, Suttner T J, et al. A new model for the Kellwasser Anoxia Events (Late Devonian): Shallow water anoxia in an open oceanic setting in the Central Asian Orogenic Belt[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 394-403. |
[80]
|
Percival L M E, Davies J H F L, Schaltegger U, et al. Precisely dating the Frasnian-Famennian boundary: Implications for the cause of the Late Devonian mass extinction[J]. Scientific Report, 2018, 8(1): 9578. |