-
白杨河扇上发育的两种河道都属于粗粒砂砾质河道,但其沉积特征具有明显的差异。从河道几何形态来观察(表 1),季节性河道的平均曲率从上扇向下扇具有变小的趋势,上扇河道在限制性峡谷中流动,河道分叉较少,但弯曲度平均为1.29,到中扇部分河道限制性减弱,河道平均曲率变为1.13,下扇地区河道的限制性进一步减弱,平均河道曲率变为1.12。与之相对应,暂时性河道的平均曲率显示从上扇向下扇变大的趋势,上扇河道弯曲度平均为1.05,中扇河道平均曲率变为1.10,下扇地区平均河道曲率变为1.13。季节性河道的河道带宽度从上扇的347.6 m向下游变宽到平均753.25 m;暂时性河道的单个河道带具有上下扇较窄,中扇较宽的特征。
表 1 季节性河道和暂时性河道几何形态特征参数对比表
Table 1. Dimensions of ephemeral and intermittent channels
位置 河道特征 季节性河道 暂时性河道 上扇 河段长度 10.61 km 4.90 km 河道类型 辫状—曲流河 辫状河 曲率 1.29(N=32) 1.05(N=15) 河道带宽度
过水宽度347.6 m(N=5)
17.40 m(N=45)40.60 m(N=22)
0 m中扇 河段长度 21.75 km 14.77 km 河道类型 辫状河 辫状河 曲率 1.13(N=66) 1.10(N=30) 河道带宽度
过水宽度334.23(N=13)
18.17 m(N=77)58.14 m(N=50)
0 m下扇 河段长度
河道类型
曲率8.51 km
辫状河
1.12(N=101)8.34 km
辫状河
1.13(N=45)河道带宽度
过水宽度753.25(N=5)
13.49 m(N=93)38.50 m(N=36)
0 m从物质来源来看,季节性河道沉积物主要来自白杨河上游较远的源区,是经过较长距离搬运而来的沉积物,而暂时性河道的沉积物来源于冲积扇扇根附近基岩风化形成的倒石锥、塌积扇和山地泥石流沉积,也有一部分来自对冲积扇原有沉积物的改造、搬运和再沉积;从搬运方式来看,季节性河道的河道径流以牵引流为主,暂时性河道主要以片流、泥石流等方式搬运沉积物,以重力流为主,兼有高含沙水流和牵引流;从水动力的持续性来看,季节性河道水动力强、持续时间长,暂时性河道水动力持续时间短,为阵发性,强弱受降雨量的影响。因而这两类河道所形成的沉积物在成分和结构上存在明显的差异。
比较白杨河扇季节性河道和暂时性河道的沉积特征可以看出,季节性河道沉积的砾石粒度更粗,分选更好,颗粒磨圆度更高,沉积物中泥质含量较少,沉积结构以颗粒支撑或多级颗粒支撑为主,多发育粗糙的板状交错层理、平行层理,形成的沉积物单层厚度较大。与之相比暂时性辫状河道沉积物的颗粒更细,结构成熟度更低,扁平状、棱角状砾石较多,沉积物中泥质含量较高,以杂基支撑和颗粒杂基支撑为主,多发育块状层理或者粗糙的平行层理,沉积物的单层厚度较小。表 2对季节性河道与暂时性河道沉积的差异性进行了比较和总结。
表 2 季节性河道和暂时性河道沉积特征对比表
Table 2. Brief comparison of sedimentary characteristics of ephemeral and intermittent channels
沉积特征 季节性河道 暂时性河道 粒度 中—巨砾,砂质薄层 细—中砾,少量粗砾 分选性 中等 差 磨圆度 次棱角状—圆状 棱角状—次棱角状,少量次圆状 支撑方式 颗粒支撑、多级颗粒支撑 颗粒—杂基支撑、杂基支撑 层理类型 槽状交错层理、板状交错层理、平行层理、砂岩透镜体 块状、粗糙的平行层理 颜色 灰色、灰褐色、深灰色 褐色、紫红色、红褐色 泥质含量 低 高 单层厚度 较厚,一般大于1 m 相对较薄,一般小于1 m 沉积方式 牵引流 泥石流、片流、高含沙水流 水流来源 有流域盆地,较稳定水道、源远流长 无稳定水源、无固定水道
Sedimentary Characteristics of Ephemeral and Intermittent Channels: A case study of the Baiyanghe fan, Xinjiang, China
-
摘要: 通过对新疆现代白杨河冲积扇的地貌和现代沉积进行调查,发现冲积扇表面发育两种不同类型的河道,一种为季节性河道,另一种为暂时性河道。暂时性河道内水流占有率小于50%直至接近于0,主要由暴雨形成突发性洪水造成,季节性河流河道内流水占据率为50%左右,输出水流特征介于暂时性河道和常年性河流河道之间。白杨河主河道属于季节性河道,河道占冲积扇表面面积2.1%,沉积物以砾石质为主,颗粒粗、磨圆度高、分选较好,泥质含量低、叠瓦状排列特征明显,沉积物具有向下游变细的趋势,河道形态沿程变化明显。暂时性河道占冲积扇表面面积97.9%,沉积物粒度相对较细,磨圆度低、分选差、泥质含量高,河道规模向下游减小,分叉增多。季节性河道以河道径流为主,暂时性河道主要以片流、泥石流等方式搬运沉积物。季节性河道沉积物主要来自上游较远的源区,暂时性河道的沉积物来源于冲积扇扇根附近基岩风化形成的倒石锥,塌积扇和山地泥石流沉积,一部分来自于对冲积扇原有沉积物的改造、搬运和再沉积。季节性河道是形成冲积扇扇体的主要动力,暂时性河道主要对冲积扇起改造作用。研究深化了对干旱地区冲积扇沉积过程和沉积特征的认识,丰富了冲积扇的沉积模式。Abstract: A topographical investigation of modern deposits of the Baiyanghe fan in Xinjiang show that two types of fluvial channels are developed on the surface of the fan:intermittent channels and ephemeral channels. The latter, which have flow occupancy between < 50% and zero, are mainly formed by occasional flooding during summer rains. The occupancy rate of intermittent channel flow is about 50%, and their flow output is between that of ephemeral and perennial channels. The main Baiyanghe channel is intermittent, occupying 2.1% of the fan surface area. Its deposits are mainly coarse-grained gravels, highly rounded, well sorted, and with low mud content and higher imbricated characteristics. The course of the channels change, with sediments fining downstream. Ephemeral channels, which are distributed over about 97.9% of the fan surface area, contain finer sediment with low roundness, poor sorting and higher mud content. The scale of ephemeral channels decreases downstream and bifurcation increases. Intermittent channels are dominated by seasonal runoff, and the source of the sediment load is mainly remote from the fan. The sediment carried by ephemeral channels is dominated by sheet flow and debris flow from colluvium and debris-flow deposits near the apex of the fan, together with some sediment from earlier deposits within the fan itself. The fan lobe are mainly constructed by intermittent channels, whereas ephemeral channels play a role in re-shaping the fan. This study has increased the understanding of the sedimentary process and characteristics of alluvial fans in arid areas and enriched the sedimentary model of fan research.
-
Key words:
- ephemeral river /
- intermittent river /
- Baiyanghe fan /
- modern deposits investigation /
- Junggar Basin /
- Xinjiang
-
图 1 暂时性、季节性和常年性河流的水文学特征(据Fryirs et al.[11])
本图显示从暂时性河流到常年性河流是一个受多因素组合控制而变化的连续谱系,在其端点的河流显得尤为特殊
Figure 1. Hydrograph of ephemeral river, intermittent river and perennial rivers (after Fryirs et al.[11])
showing that the transition of rivers from ephemeral to perennial is a continuous spectrum controlled by a combination of multiple factors, especially for the end-member rivers in this chart
图 4 白杨河洪水过程路线图(据滕波[18])
(a)730水文站1996年7月18日暴雨洪水;(b)730水文站1995年5月6日融雪型洪水;(c)水库站1988年5月2日暴雨融雪混合型洪水
Figure 4. Hydrographical records of flooding of the Baiyang River (after Teng[18] )
(a)rainstorm flood on July 18, 1996, data from hydrological station No. 730; (b)snowmelt flood on May 6, 1995, data from hydrological station No. 730; (c)snowmelt and rainstorm mixed flood on May 2, 1988, data from the Reservoir hydrological station
图 5 白杨河冲积扇数字高程图(a)与典型剖面(b~f)的形态
剖面AEE′为白杨河主河道(季节性河道)沿程剖面,其他剖面为暂时性河道覆盖区的冲积扇扇面坡度变化图。剖面位置见a
Figure 5. (a) Digital elevation model (DEM) map, and (b-f) typical topographic profiles of Baiyanghe fan
AEE' is the profile of the main Baiyang River channel (intermittent channel); the others are profiles along the alluvial fan surface covered by ephemeral channels. See (a) for the position of the profiles
图 6 白杨河主河道具有季节性河流的特征
河段平面图显示从扇顶向扇端(从A到E)河谷逐渐变宽,分叉增多,弯曲度不断增大,细粒沉积物逐渐增多
Figure 6. The main Baiyanghe channel characterized as an intermittent steam
showing that the river gradually widens on the fan from proximal (A) to distal (E). Bifurcation and curvature gradually increase with increasing fines content in sediments
图 7 现代白杨河冲积扇上的河道特征
(a)季节性白杨河在限制性河段的特征;(b)季节性白杨河在扇中半限制性河段的特征;(c)季节性白杨河在扇缘无限制河段的特征;(d)白杨河扇中地区植被发育的暂时性河道带和无植被的河间砾石滩;(e)暂时性河道带内部的次级辫状河道和沙坝;(f)次级沙坝上生长的多年生灌木
Figure 7. Fluvial channels on the modern Baiyanghe fan
(a)intermittent channel in confined reach; (b)semi-confined intermittent channel in the mid-fan area; (c)unconfined channel at the fan margin; (d)vegetated ephemeral channel with unvegetated interchannel bank at the mid-fan area; (e)secondary braided channels and bars in ephemeral channels on the fan surface; (f)perennial shrubs on a secondary bar in an ephemeral channel
图 8 现代白杨河季节性河道河流地貌与沉积学特征
(a)白杨河主河道内叠瓦状排列的砾石;(b)砾石之间被砂质沉积物充填;(c)白杨河水道中的砾石坝及其尾部的粉砂质沉积物;(d)开放骨架颗粒支撑的砾石层;(e)颗粒支撑和多级颗粒支撑砾石层交替出现;(f)白杨河水库库尾植被发育湖沼湿地景观特点显著
Figure 8. Geomorphological and sedimentological characteristics of the modern Baiyang River intermittent channel
(a)imbricated gravels in the main channel bed; (b)sandy sediments filling the intergravel pores; (c)gravel bar and silty sediments in the fore area of the bar; (d)openwork gravel; (e)interbedded openwork gravel and multi-grain supported gravel developed on the profile beside the river bank; (f)trees and other vegetation marking the wetland landscape at the fan margin, the Baiyang River reservoir
图 9 白杨河扇扇面暂时性河道形态(据Google卫星地图,2016)
由上扇到下扇暂时性河道表现为上扇河道相对窄深,中扇宽浅、下扇窄浅的变化特征。(a)上扇辫状河道带;(b)中扇辫状河道带;(c)下扇和扇缘河道带
Figure 9. Ephemeral surface channels on Baiyanghe fan (Google satellite image, 2016)
showing decreasing width downstream from the upper fan area. (a)Braided channels in upper fan and (b)middle fan; (c)Margin channels in lower fan
图 10 现代白杨河冲积扇扇面沉积物特征
(a)上扇暂时性河道带间砾石坝沉积物呈棱角到次棱角状砾石;(b)白杨河扇上扇剖面沉积物中粗糙的平行层理,显示暂时性河流沉积特征;(c)白杨河扇扇中地区砾石滩表面砾石多为细砾到中砾;(d)白杨河扇缘地区砾石层上覆含砾砂泥质片流沉积;(e)(f)白杨河现代沉积剖面显示由季节性河道形成的砂砾岩体发育大型交错层理
Figure 10. Sediments on the surface of modern Baiyanghe fan
(a)angular to sub-angular gravel deposited on the gravel bars of the intermittent channel area of upper fan area; (b)high mud content in roughly parallel bedding in the ephemeral channel deposits in the upper fan; (c)mid-fan gravel banks dominated by pebbly to granular-to-pebbly clasts; (d)pebbly conglomerate overlain by pebbly sand sheet flow deposits at fan margin; (e)(f)large-scale cross-bedded conglomerate formed in intermittent channels
图 11 白杨河冲积扇上两种类型河道的分布及其沉积过程模式(据Crews et al.[23]修改)
(a)冲积扇上发育暂时性河道和季节性河道,季节性河道形成砂砾岩透镜体(1);(b)季节性河道摆动到新的位置,遗留下老的砂砾岩透镜体(1)并形成新的透镜体(2);(c)季节性河道形成新的透镜体(3),期间被暂时性河道沉积物分隔;(d)多个季节性河道透镜体与暂时性河道沉积在垂向交互出现
Figure 11. Two types of fluvial channel and their sedimentary process-response models in Baiyanghe fan (modified from Crews et al.[23])
(a)Ephemeral channel and intermittent channel are developed on alluvial fan; the intermittent channel forms conglomerate lens 1. (b)Intermittent channel moves to new position, forming lens 2; lens 1 remains where it was formed. (c)Intermittent channel forms new lens 3; the three lenses are separated by ephemeral channel deposits. (d)Intermittent channel lens becomes vertically interbedded with ephemeral channel deposits
表 1 季节性河道和暂时性河道几何形态特征参数对比表
Table 1. Dimensions of ephemeral and intermittent channels
位置 河道特征 季节性河道 暂时性河道 上扇 河段长度 10.61 km 4.90 km 河道类型 辫状—曲流河 辫状河 曲率 1.29(N=32) 1.05(N=15) 河道带宽度
过水宽度347.6 m(N=5)
17.40 m(N=45)40.60 m(N=22)
0 m中扇 河段长度 21.75 km 14.77 km 河道类型 辫状河 辫状河 曲率 1.13(N=66) 1.10(N=30) 河道带宽度
过水宽度334.23(N=13)
18.17 m(N=77)58.14 m(N=50)
0 m下扇 河段长度
河道类型
曲率8.51 km
辫状河
1.12(N=101)8.34 km
辫状河
1.13(N=45)河道带宽度
过水宽度753.25(N=5)
13.49 m(N=93)38.50 m(N=36)
0 m表 2 季节性河道和暂时性河道沉积特征对比表
Table 2. Brief comparison of sedimentary characteristics of ephemeral and intermittent channels
沉积特征 季节性河道 暂时性河道 粒度 中—巨砾,砂质薄层 细—中砾,少量粗砾 分选性 中等 差 磨圆度 次棱角状—圆状 棱角状—次棱角状,少量次圆状 支撑方式 颗粒支撑、多级颗粒支撑 颗粒—杂基支撑、杂基支撑 层理类型 槽状交错层理、板状交错层理、平行层理、砂岩透镜体 块状、粗糙的平行层理 颜色 灰色、灰褐色、深灰色 褐色、紫红色、红褐色 泥质含量 低 高 单层厚度 较厚,一般大于1 m 相对较薄,一般小于1 m 沉积方式 牵引流 泥石流、片流、高含沙水流 水流来源 有流域盆地,较稳定水道、源远流长 无稳定水源、无固定水道 -
[1] 钱宁.关于河流分类及成因问题的讨论[J].地理学报, 1985, 40(1):1-10. doi: 10.3321/j.issn:0375-5444.1985.01.001 Qian Ning. On the classification and causes of formation of different channel patterns[J]. Acta Geographica Sinica, 1985, 40(1):1-10. doi: 10.3321/j.issn:0375-5444.1985.01.001 [2] 裘亦楠.河流沉积学中的河型分类[J].石油勘探与开发, 1985, 12(2):72-74. Qiu Yinan. River patterns classification in fluvial sedimentology[J]. Petroleum Exploration and Development, 1985, 12(2):72-74. [3] 陈宝冲.河型分类[J].泥沙研究, 1992(1):100-104. http://d.old.wanfangdata.com.cn/Periodical/nsyj200704008 Chen Baochong. A classification of river pattern[J]. Journal of Sediment Research, 1992(1):100-104. http://d.old.wanfangdata.com.cn/Periodical/nsyj200704008 [4] Davis W M. The geographical cycle[J]. The Geographical Journal, 1899, 14(5):481-504. doi: 10.2307/1774538 [5] Blum M D, Marriott S B, Leclair S F. Fluvial sedimentology VII[M]. Malden, MA:Blackwell Pub, 2005:3-197. [6] Woolfe K J, Balzary J R. Fields in the spectrum of channel style[J]. Sedimentology, 1996, 43(5):797-805. doi: 10.1111/j.1365-3091.1996.tb01503.x [7] Douglas I. The fluvial system:S. A. Schumm, 1977. Wiley, New York, N. Y., 337 pp. 150 figures, 11 tables, £ 16. 50, U. S. $ 28. 00[J]. Earth-Science Reviews, 1979, 14(3):298-299. doi: 10.1016/0012-8252(79)90009-6 [8] 沈玉昌, 龚国元.河流地貌学概论[M].北京:科学出版社, 1986:32-33. Shen Yuchang, Gong Guoyuan. An introduction to fluvial geomorphology[M]. Beijing:Science Press, 1986:32-33. [9] 高志勇, 周川闽, 冯佳睿, 等.盆地内大面积砂体分布的一种成因机理:干旱气候下季节性河流沉积[J].沉积学报, 2015, 33(3):427-438. http://www.cjxb.ac.cn/CN/abstract/abstract3527.shtml Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, et al. Distribution of a large area of sand body formation mechanism:Ephemeral streams in arid climate[J]. Acta Sedimentologica Sinica, 2015, 33(3):427-438. http://www.cjxb.ac.cn/CN/abstract/abstract3527.shtml [10] North C P, Taylor K S. Ephemeral-fluvial deposits:Integrated outcrop and simulation studies reveal complexity[J]. AAPG Bulletin, 1996, 80(6):811-830. [11] Fryirs K A, Brierley G J. Geomorphic analysis of river systems:An approach to reading the landscape[M]. Chichester:Wiley-Blackwell, 2013. [12] 靳军, 刘大卫, 纪友亮, 等.砾质辫状河型冲积扇岩相类型、成因及分布规律:以准噶尔盆地西北缘现代白杨河冲积扇为例[J].沉积学报, 2019, 37(2):254-267. http://www.cjxb.ac.cn/CN/abstract/abstract3974.shtml Jin Jun, Liu Dawei, Ji Youliang, et al. Research on lithofacies types, cause mechanisms and distribution of a gravel braided-river alluvial fan:A case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2):254-267. http://www.cjxb.ac.cn/CN/abstract/abstract3974.shtml [13] 刘大卫, 纪友亮, 高崇龙, 等.砾质辫状河型冲积扇沉积微相及沉积模式:以准噶尔盆地西北缘现代白杨河冲积扇为例[J].古地理学报, 2018, 20(3):435-451. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201803007 Liu Dawei, Ji Youliang, Gao Chonglong, et al. Microfacies and sedimentary models of gravelly braided-river alluvial fan:A case study of modern Baiyanghe-river alluvial fan in northwestern margin of Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(3):435-451. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201803007 [14] 邵雨, 汪仁富, 张越迁, 等.准噶尔盆地西北缘走滑构造与油气勘探[J].石油学报, 2011, 32(6):976-984. http://d.old.wanfangdata.com.cn/Periodical/syxb201106007 Shao Yu, Wang Renfu, Zhang Yueqian, et al. Strike-slip structures and oil-gas exploration in the NW margin of the Junggar Basin, China[J]. Acta Petrolei Sinica, 2011, 32(6):976-984. http://d.old.wanfangdata.com.cn/Periodical/syxb201106007 [15] 吕辉河, 杜国云, 吴恙, 等.新疆准噶尔盆地西缘白杨河扇形地边缘沉积分析[J].鲁东大学学报(自然科学版), 2013, 29(1):71-74. doi: 10.3969/j.issn.1673-8020.2013.01.016 Lü Huihe, Du Guoyun, Wu Yang, et al. Sediment dynamic analysis on the Fan Edge of Baiyang River in the western of Junggar Basin, Xinjiang province[J]. Ludong University Journal(Natural Science Edition), 2013, 29(1):71-74. doi: 10.3969/j.issn.1673-8020.2013.01.016 [16] 李银芳, 刘玉芸, 周华荣, 等.白杨河-艾里克湖水现状分析[J].干旱区地理, 2008, 31(3):416-421. http://d.old.wanfangdata.com.cn/Periodical/ghqdl200803014 Li Yinfang, Liu Yuyun, Zhou Huarong, et al. Water resources in the Baiyang River-Eric Lake basin[J]. Arid Land Geography, 2008, 31(3):416-421. http://d.old.wanfangdata.com.cn/Periodical/ghqdl200803014 [17] 吕辉河.新疆西准噶尔白杨河流域地貌特征及演化分析[D].烟台: 鲁东大学, 2013: 6-38. Lü Huihe. Analysis of geomorphic features and evolution of Baiyanghe River in West Junggar, Xinjiang, China[D]. Yantai: Ludong University, 2013: 6-38. [18] 滕波.白杨河水文特性分析[J].新疆水利, 2009(4):50-52. http://d.old.wanfangdata.com.cn/Periodical/dixs201706064 Teng Bo. Analysis on hydrological characteristic of the Baiyang river[J]. Xinjiang Water Resources, 2009(4):50-52. http://d.old.wanfangdata.com.cn/Periodical/dixs201706064 [19] 冉玲, 朱海江, 阿依努尔·孜牙别克. 1962-2007年新疆塔城白杨河流域气候变化对水文情势的影响[J].冰川冻土, 2010, 32(5):921-926. http://d.old.wanfangdata.com.cn/Periodical/bcdt201005009 Ran Ling, Zhu Haijiang, Ayinuer·Ziyabieke. Impact of climate change on hydrological regime in the Baiyanghe river basin in Tacheng, Xinjiang during 1962-2007[J]. Journal of Glaciology and Geocryology, 2010, 32(5):921-926. http://d.old.wanfangdata.com.cn/Periodical/bcdt201005009 [20] 刘宝珺.沉积岩石学[M].北京:地质出版社, 1980:345-493. Liu Baojun. Sedimentology[M]. Beijing:Geological Pulishing House, 1980:345-493. [21] 冯增昭.沉积岩石学[M]. 2版.北京:石油工业出版社, 1993:77-83. Feng Zengzhao. Sedimentology[M]. 2nd ed. Beijing:Petroleum Industry Press, 1993:77-83. [22] 姜在兴.沉积学[M]. 2版.北京.石油工业出版社, 2010:130-137. Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing:Petroleum Industry Press, 2010:130-137. [23] Crews S G, Ethridge F G. Laramide Tectonics and humid alluvial fan sedimentation, NE Uinta uplift, Utah and Wyoming[J]. Journal of Sedimentary Research, 1993, 63(3):420-436. [24] 孙枢, 王成善."深时"(Deep Time)研究与沉积学[J].沉积学报, 2009, 27(5):792-810. http://www.cjxb.ac.cn/CN/abstract/abstract21.shtml Sun Shu, Wang Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5):792-810. http://www.cjxb.ac.cn/CN/abstract/abstract21.shtml [25] 黄成敏, Retallack G J, 王成善.白垩纪钙质古土壤的发生学特征及古环境意义[J].土壤学报, 2010, 47(6):1029-1038. Huang Chengmin, Retallack G J, Wang Chengshan. Cretaceous calcareous paleosols:Pedogenetic characteristics and paleoenvironmental implications[J]. Acta Pedologica Sinica, 2010, 47(6):1029-1038. [26] 张昌民, 朱锐, 赵康, 等.从端点走向连续:河流沉积模式研究进展述评[J].沉积学报, 2017, 35(5):926-944. http://www.cjxb.ac.cn/CN/abstract/abstract3806.shtml Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum:Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5):926-944. http://www.cjxb.ac.cn/CN/abstract/abstract3806.shtml [27] Fielding C R, Allen J P, Alexander J, et al. Facies model for fluvial systems in the seasonal tropics and subtropics[J]. Geology, 2009, 37(7):623-626. doi: 10.1130/G25727A.1 [28] Plink-Björklund P. Morphodynamics of rivers strongly affected by monsoon precipitation:Review of depositional style and forcing factors[J]. Sedimentary Geology, 2015, 323:110-147. doi: 10.1016/j.sedgeo.2015.04.004 [29] Gall R D, Birgenheier L P, Vanden Berg M D. Highly seasonal and perennial fluvial facies:Implications for climatic control on the Douglas creek and parachute creek members, green river formation, southeastern Uinta Basin, Utah, U. S. A.[J]. Journal of Sedimentary Research, 2017, 87(9):1019-1047. doi: 10.2110/jsr.2017.54 [30] Zhang L, Bao Z D, Dou L X, et al. New discovery of red paleosols with calcite and zeolitic rhizoliths in the Late Cretaceous Yaojia Formation, southern Songliao Basin, NE China[J]. Acta Geologica Sinica(English Edition), 2018, 92(6):2462-2463. http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201806037 [31] Fielding C R, Alexander J, Allen J P. The role of discharge variability in the formation and preservation of alluvial sediment bodies[J]. Sedimentary Geology, 2018, 365:1-20. doi: 10.1016/j.sedgeo.2017.12.022