Advanced Search
Volume 43 Issue 6
Dec.  2025
Turn off MathJax
Article Contents

YUAN Jing, ZHANG YuXiang, ZHAO GuangHao, HOU XuBo. Genetic Analysis of Multi-stage Carbonate Cementation in Shallow Burial and Its Geological Implications: Case study of the Neogene Shawan Formation, eastern side of Chepaizi uplift, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2015-2027. doi: 10.14027/j.issn.1000-0550.2024.092
Citation: YUAN Jing, ZHANG YuXiang, ZHAO GuangHao, HOU XuBo. Genetic Analysis of Multi-stage Carbonate Cementation in Shallow Burial and Its Geological Implications: Case study of the Neogene Shawan Formation, eastern side of Chepaizi uplift, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2015-2027. doi: 10.14027/j.issn.1000-0550.2024.092

Genetic Analysis of Multi-stage Carbonate Cementation in Shallow Burial and Its Geological Implications: Case study of the Neogene Shawan Formation, eastern side of Chepaizi uplift, Junggar Basin

doi: 10.14027/j.issn.1000-0550.2024.092
  • Received Date: 2024-05-21
  • Accepted Date: 2024-09-14
  • Rev Recd Date: 2024-08-07
  • Available Online: 2024-09-14
  • Publish Date: 2025-12-10
  • Objective The First member of the Neogene Shawan Formation located at the eastern side of the Chepaizi uplift in the Junggar Basin displays significant carbonate cementation and strongly heterogeneous oil-bearing potential. The reasons for the development of the carbonate cements in the study area were thoroughly analyzed, and its effects on the physical properties and oil content of the reservoir are discussed. Methods The types, distribution, formation stages and genesis of these shallow-depth carbonate cements were studied by core observation and cathode luminescence (CL) and X-ray diffraction (XRD) examination of thin sections. Results At least three stages of carbonate cementation were identified. The first stage is mainly dominated by shell-like calcite and granular siderite. Polarized microscopy indicated that the edges of some mineral particles have been replaced, and at the later stage the influence of acidic fluids has resulted in poor connectivity of the cement. The CL showed the calcite as bright yellow. The carbonate cement formation was mainly influenced by paleoclimate and depositional water; in the study area there is also evidence of the presence of algae. The second and third stages are dominated by poikilitic calcite, which is most widely distributed in the second stage. Also, CL of the second stage shows the calcite cement as almost non-luminous, and with a high Mg content. The calcite cement in the third stage is seen as orange-yellow color under CL. Signs of corrosion at the boundary between the second and third stages are clearly seen under the polarizing microscope. In both the second and third stages, the effect of hydrocarbon generation and expulsion from Middle and Lower Jurassic source rocks in the Changji Depression is indicated. Organic acid fluid dissolved the early carbonate cements and acid-soluble particles, providing the main material source for the development of subsequent carbonate cements. It was found that the carbonate cement causes the poor physical properties of the Shawan Formation reservoir in the early stage. Subsequent injection of acidic fluid in the later stages increased the porosity and permeability of the reservoir to a limited extent. Continuous planar development formed thin interlayers of carbonate cement sealed by capillary pressure, restricting hydrocarbon migration and trap types in the reservoir by blocking their migration path, so that migration and accumulation of oil and gas only occurs along a few structural fractures. This has led to obvious oil heterogeneity in the sandstone within the study area. Also, where high-carbonate cement occurs over large areas, it overlies the sand body. Because it is mostly basement cementation, it may form a better cap layer, affecting the accumulation of oil and gas. Conclusions The types, distribution, formation and geological significance of the multistage carbonate cements are defined, providing support for continued exploration and development as well as the search for new exploration targets.
  • [1] Rossi C, Marfil R, Ramseyer K, et al. Facies-related diagenesis and multiphase siderite cementation and dissolution in the reservoir sandstones of the Khatatba Formation, Egypt's western desert[J]. Journal of Sedimentary Research, 2001, 71(3): 459-472.
    [2] 王清斌,臧春艳,赖维成,等. 渤中坳陷古近系中、深部碎屑岩储层碳酸盐胶结物分布特征及成因机制[J]. 石油与天然气地质,2009,30(4):438-443.

    Wang Qingbin, Zang Chunyan, Lai Weicheng, et al. Distribution characteristics and origin of carbonate cements in the middle and deep clastic reservoirs of the Paleogene in the Bozhong Depression[J]. Oil & Gas Geology, 2009, 30(4): 438-443.
    [3] Yang Z, Zou C N, He S, et al. Formation mechanism of carbonate cemented zones adjacent to the top overpressured surface in the central Junggar Basin, NW China[J]. Science China Earth Sciences, 2010, 53(4): 529-540.
    [4] Bjørkum P A, Walderhaug O. Geometrical arrangement of calcite cementation within shallow marine sandstones[J]. Earth-Science Reviews, 1990, 29(1/2/3/4): 145-161.
    [5] Morad S. Carbonate cementation in sandstones: distribution patterns and geochemical evolution[M]//Morad S. Carbonate cementation in sandstones. Oxford, UK: Blackwell Publishing Ltd., 1998: 1-26.
    [6] 朱筱敏,米立军,钟大康,等. 济阳坳陷古近系成岩作用及其对储层质量的影响[J]. 古地理学报,2006,8(3):295-305.

    Zhu Xiaomin, Mi Lijun, Zhong Dakang, et al. Paleogene diagenesis and its control on reservoir quality in Jiyang Depression[J]. Journal of Palaeogeography, 2006, 8(3): 295-305.
    [7] 于景维, 郑荣才, 殷新花, 等. 准噶尔盆地阜东斜坡区头屯河组储集层非均质性综合研究[J]. 成都理工大学学报(自然科学版), 2014, 41(5): 567-576.

    Yu Jingwei, Zheng Rongcai, Yin Xinhua, et al. A comprehensive research on reservoir heterogeneity of Toutunhe Formation in slope area,east of Fukang Sag, Junggar Basin, Xinjiang, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(5): 567-576.
    [8] 郭佳,曾溅辉,宋国奇,等. 东营凹陷中央隆起带沙河街组碳酸盐胶结物发育特征及其形成机制[J]. 地球科学:中国地质大学学报,2014,39(5):565-576.

    Guo Jia, Zeng Jianhui, Song Guoqi, et al. Characteristics and origin of carbonate cements of Shahejie Formation of central uplift belt in Dongying Depression[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(5): 565-576.
    [9] Kantorowicz J D, Bryant I D, Dawans J M. Controls on the geo-metry and distribution of carbonate cements in Jurassic sandstones: Bridport sands, southern England and Viking Group, Troll field, Norway[J]. Geological Society, London, Special Publications, 1987, 36(1): 103-118.
    [10] Wang Q, Zhuo X Z, Chen G J, et al. Carbon and oxygen isotopic composition of carbonate cements of different phases in terrigenous siliciclastic reservoirs and significance for their origin: A case study from sandstones of the Triassic Yanchang Formation, southwestern Ordos Basin, China[J]. Chinese Journal of Geochemistry, 2008, 27(3): 249-256.
    [11] 吴仕玖,范彩伟,招湛杰,等. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义[J]. 地球科学,2019,44(8):2686-2694.

    Wu Shijiu, Fan Caiwei, Zhao Zhanjie, et al. Origin of carbonate cement in reservoirs of Ledong area, Yinggehai Basin and its geological significance[J]. Earth Science, 2019, 44(8): 2686-2694.
    [12] 商丰凯,张奎华,石好果,等. 准噶尔盆地车排子凸起新近系沙湾组一段1砂组钙质隔层“三元复合”成因及其油气地质意义[J]. 中国石油勘探,2020,25(1):112-125.

    Shang Fengkai, Zhang Kuihua, Shi Haoguo, et al. “Ternary composite” genesis and petroleum geological significance of calcareous barriers in the 1st sand group of Shawan-1 member of Neogene in the Chepaizi bulge of the Junggar Basin[J]. China Petroleum Exploration, 2020, 25(1): 112-125.
    [13] 王晔桐,孙国强,张顺存,等. 柴北缘腹部砂岩中碳酸盐胶结物特征及成因探讨[J]. 天然气地球科学,2021,32(7):1037-1046.

    Wang Yetong, Sun Guoqiang, Zhang Shuncun, et al. Characteristics and genesis of carbonate cement in abdomen sandstone in northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2021, 32(7): 1037-1046.
    [14] 王雨辰,胡荣,陈庆,等. 春光油田春17井区白垩系钙质砂岩夹层分布特征及成因分析[J]. 石油地质与工程,2017,31(5):44-46.

    Wang Yuchen, Hu Rong, Chen Qing, et al. Distribution characteristics and genetic analysis of Cretaceous calcareous sandstone interlayers in well area Chun 17, Chunguang oilfield[J]. Petroleum Geology and Engineering, 2017, 31(5): 44-46.
    [15] 于景维,丁韦,张欣,等. 准噶尔盆地AH5井区八道湾组碳酸盐胶结物成因及对储层影响分析[J]. 现代地质,2023,37(5):1336-1344.

    Yu Jingwei, Ding Wei, Zhang Xin, et al. Genesis of carbonate cement and influence on reservoir quality of the Badaowan Formation in AH5 well block of Junggar Basin[J]. Geoscience, 2023, 37(5): 1336-1344.
    [16] Surdam R C, Yin P G. Organic acids and carbonate stability, the key to predicting positive porosity anomalies[M]//Pittman E D, Lewan M D. Organic acids in geological processes. Berlin: Springer, 1994: 398-448.
    [17] Carothers W W, Kharaka Y K. Aliphatic acid anions in oil-field waters: Implications for origin of natural gas[J]. AAPG Bulletin, 1978, 62(12): 2441-2453.
    [18] Dias R F, Freeman K H, Lewan M D, et al. δ13C of low-molecular-weight organic acids generated by the hydrous pyrolysis of oil-prone source rocks[J]. Geochimica et Cosmochimica Acta, 2002, 66(15): 2755-2769.
    [19] Means J L, Hubbard N. Short-chain aliphatic acid anions in deep subsurface brines: A review of their origin, occurrence, properties, and importance and new data on their distribution and geochemical implications in the Palo Duro Basin, Texas[J]. Organic Geochemistry, 1987, 11(3): 177-191.
    [20] Surdam Ronald C, Crossey L J, Hagen E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
    [21] 钟大康,祝海华,孙海涛,等. 鄂尔多斯盆地陇东地区延长组砂岩成岩作用及孔隙演化[J]. 地学前缘,2013,20(2):61-68.

    Zhong Dakang, Zhu Haihua, Sun Haitao, et al. Diagenesis and porosity evolution of sandstones in Longdong area, Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 61-68.
    [22] Hendry J P, Wilkinson M, Fallick A E, et al. Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North Sea[J]. Journal of Sedimentary Research, 2000, 70(1): 227-239.
    [23] 明玉坤. 春风油田沙湾组一段钙质砂砾岩成因研究[J]. 石油地质与工程,2017,31(3):42-44.

    Ming Yukun. Genesis of calcareous conglomerate in the First member of Shawan Formation, Chunfeng oilfield[J]. Petroleum Geology and Engineering, 2017, 31(3): 42-44.
    [24] 温雅茹,杨少春,赵晓东,等. 砂岩储层中碳酸盐胶结物定量识别及对含油性影响:以准噶尔盆地车北地区新近系沙湾组为例[J]. 地质论评,2015,61(5):1099-1106.

    Wen Yaru, Yang Shaochun, Zhao Xiaodong, et al. Quantitative identification of carbonate cements in sandstone reservoirs and the influence to reservoir oil-bearing: A case study on the Neogene Shawan Formation in northern part of Chepaizi area, Junggar Basin[J]. Geological Review, 2015, 61(5): 1099-1106.
    [25] 马立驰. 准噶尔盆地车排子凸起沙湾组二段油气成藏特征及其主控因素[J]. 现代地质,2013,27(5):1147-1152.

    Ma Lichi. Petroleum accumulation characteristics and the main controlling factors of the Second member of Shawan Formation in Chepaizi uplift, Junggar Basin[J]. Geoscience, 2013, 27(5): 1147-1152.
    [26] 董大伟. 准噶尔盆地车排子凸起断层特征及对油气成藏的控制[D]. 青岛:中国石油大学(华东),2015.

    Dong Dawei. Fault characteristics of Chepaizi uplift in Junggar Basin and its control to oil-gas accumulation[D]. Qingdao: China University of Petroleum (East China), 2015.
    [27] 吴孔友,刘波,刘寅,等. 准噶尔盆地中拐凸起断裂体系特征及形成演化[J]. 地球科学与环境学报,2017,39(3):406-418.

    Wu Kongyou, Liu Bo, Liu Yin, et al. Characteristics, formation and evolution of fault system in Zhongguai uplift of Junggar Basin, China[J]. Journal of Earth Sciences and Environment, 2017, 39(3): 406-418.
    [28] 徐常胜,杜社宽,黄建良,等. 车排子凸起沙湾组油藏特征与成藏主控因素[J]. 新疆石油地质,2013,34(3):258-261.

    Xu Changsheng, Du Shekuan, Huang Jianliang, et al. Characteristics and key controlling factors for oil-gas accumulation of Neogene Shawan reservoir in Chepaizi swell, Junggar Basin[J]. Xinjiang Petroleum Geology, 2013, 34(3): 258-261.
    [29] 李严,吴朝东,张学才,等. 准噶尔盆地车排子凸起新近系沙湾组重矿物、U-Pb年代学特征及物源分析[J]. 北京大学学报(自然科学版),2021,57(6):1058-1070.

    Li Yan, Wu Chaodong, Zhang Xuecai, et al. Heavy minerals characteristics, U-Pb geochronology and provenance analysis of Neogene Shawan Formation in Chepaizi uplift, Junggar Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 1058-1070.
    [30] 苏朝光,仲维苹. 准噶尔盆地车排子凸起新近系沙湾组物源分析[J]. 石油与天然气地质,2010,31(5):648-655.

    Su Chaoguang, Zhong Weiping. An analysis on the provenance of the Neogene Shawan Formation in the Chepaizi uplift of the Junggar Basin[J]. Oil & Gas Geology, 2010, 31(5): 648-655.
    [31] 叶茂松,解习农,李祥权,等. 准噶尔盆地车排子凸起春光区块沙湾组沉积特征新认识[J]. 沉积学报,2015,33(5):951-964.

    Ye Maosong, Xie Xinong, Li Xiangquan, et al. A new discussion on the sedimentary characteristics of Shawan Formation in Chepaizi area, Junggar Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 951-964.
    [32] 董大伟,李理,王晓蕾,等. 准噶尔盆地西缘车排子凸起构造演化及断层形成机制[J]. 吉林大学学报(地球科学版),2015,45(4):1132-1141.

    Dong Dawei, Li Li, Wang Xiaolei, et al. Structural evolution and dislocation mechanism of western margin Chepaizi uplift of Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 1132-1141.
    [33] 吕成福,李小燕,陈国俊,等. 酒东坳陷下白垩统砂岩中碳酸盐胶结物特征与储层物性[J]. 沉积学报,2011,29(6):1138-1144.

    Chengfu Lü, Li Xiaoyan, Chen Guojun, et al. Characteristics of carbonate cements and reservoir quality of the Lower Cretaceous sandstone in Jiudong Sag[J]. Acta Sedimentologica Sinica, 2011, 29(6): 1138-1144.
    [34] 尚锁贵,高科超,高强勇,等. 裂缝发育程度对低孔隙度岩石渗流特性的影响[J]. 科学技术与工程,2023,23(23):9809-9819.

    Shang Suogui, Gao Kechao, Gao Qiangyong, et al. Influence of fracture development on seepage characteristics of low-porosity rocks[J]. Science Technology and Engineering, 2023, 23(23): 9809-9819.
    [35] 梁宇生. 准噶尔盆地西部车排子凸起的地质结构及形成演化[D]. 北京:中国地质大学(北京),2019.

    Liang Yusheng. Geological structure, formation and evolution of Chepaizi high in western Junggar Basin[D]. Beijing: China University of Geosciences (Beijing), 2019.
    [36] 徐兴友. 准噶尔盆地车排子地区油气成藏期次研究[J]. 石油天然气学报,2008,30(3):40-44,49.

    Xu Xingyou. Study on pool-forming stages of oil in Chepaizi area of Junggar Basin[J]. Journal of Oil and Gas Technology, 2008, 30(3): 40-44, 49.
    [37] 王明振,吴朝东,房亚男,等. 准噶尔盆地南缘坡缕石矿物学特征及古气候指示意义[J]. 岩石矿物学杂志,2013,32(6):833-841.

    Wang Mingzhen, Wu Chaodong, Fang Yanan, et al. Mineralogical characteristics of palygorskite in the southern margin of Junggar Basin and their implications for paleoclimate[J]. Acta Petrologica et Mineralogica, 2013, 32(6): 833-841.
    [38] Weaver C E. Clays, Muds, and Shales[M]. Amsterdam: Elsevier, 1989: 1-819.
    [39] 毛广振. 准噶尔盆地西部车排子地区新近系沙湾组铀矿化特征、控矿因素及找矿方向[J]. 铀矿地质,2023,39(4):569-580.

    Mao Guangzhen. Uranium mineralization characteristics, ore-controlling factors and prospecting direction of Neogene Shawan Formation in Chepaizi area, western Junggar Basin[J]. Uranium Geology, 2023, 39(4): 569-580.
    [40] 刘丽,鲍志东,秦智,等. 超低渗透储层钙质夹层分布控制因素分析:来自岩石学及成岩作用研究的微观证据[J]. 天然气地球科学,2016,27(6):1035-1045.

    Liu Li, Bao Zhidong, Qin Zhi, et al. Controlling factors of calcareous interlayers distribution in ultra-low permeability reservoirs: Micro evidence from petrology and diagenesis[J]. Natural Gas Geoscience, 2016, 27(6): 1035-1045.
    [41] 宋璠,杨少春,苏妮娜,等. 超浅层油藏成岩特征及对油气成藏的影响:以准噶尔盆地春风油田为例[J]. 石油实验地质,2015,37(3):307-313.

    Song Fan, Yang Shaochun, Su Nina, et al. Diagenetic characteristics of ultra-shallow reservoirs and influences on hydrocarbon accumulations: A case study of Chunfeng oilfield, Junggar Basin[J]. Petroleum Geology and Experiment, 2015, 37(3): 307-313.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(3)

Article Metrics

Article views(561) PDF downloads(20) Cited by()

Proportional views
Related
Publishing history
  • Received:  2024-05-21
  • Revised:  2024-08-07
  • Accepted:  2024-09-14
  • Published:  2025-12-10

Genetic Analysis of Multi-stage Carbonate Cementation in Shallow Burial and Its Geological Implications: Case study of the Neogene Shawan Formation, eastern side of Chepaizi uplift, Junggar Basin

doi: 10.14027/j.issn.1000-0550.2024.092

Abstract: Objective The First member of the Neogene Shawan Formation located at the eastern side of the Chepaizi uplift in the Junggar Basin displays significant carbonate cementation and strongly heterogeneous oil-bearing potential. The reasons for the development of the carbonate cements in the study area were thoroughly analyzed, and its effects on the physical properties and oil content of the reservoir are discussed. Methods The types, distribution, formation stages and genesis of these shallow-depth carbonate cements were studied by core observation and cathode luminescence (CL) and X-ray diffraction (XRD) examination of thin sections. Results At least three stages of carbonate cementation were identified. The first stage is mainly dominated by shell-like calcite and granular siderite. Polarized microscopy indicated that the edges of some mineral particles have been replaced, and at the later stage the influence of acidic fluids has resulted in poor connectivity of the cement. The CL showed the calcite as bright yellow. The carbonate cement formation was mainly influenced by paleoclimate and depositional water; in the study area there is also evidence of the presence of algae. The second and third stages are dominated by poikilitic calcite, which is most widely distributed in the second stage. Also, CL of the second stage shows the calcite cement as almost non-luminous, and with a high Mg content. The calcite cement in the third stage is seen as orange-yellow color under CL. Signs of corrosion at the boundary between the second and third stages are clearly seen under the polarizing microscope. In both the second and third stages, the effect of hydrocarbon generation and expulsion from Middle and Lower Jurassic source rocks in the Changji Depression is indicated. Organic acid fluid dissolved the early carbonate cements and acid-soluble particles, providing the main material source for the development of subsequent carbonate cements. It was found that the carbonate cement causes the poor physical properties of the Shawan Formation reservoir in the early stage. Subsequent injection of acidic fluid in the later stages increased the porosity and permeability of the reservoir to a limited extent. Continuous planar development formed thin interlayers of carbonate cement sealed by capillary pressure, restricting hydrocarbon migration and trap types in the reservoir by blocking their migration path, so that migration and accumulation of oil and gas only occurs along a few structural fractures. This has led to obvious oil heterogeneity in the sandstone within the study area. Also, where high-carbonate cement occurs over large areas, it overlies the sand body. Because it is mostly basement cementation, it may form a better cap layer, affecting the accumulation of oil and gas. Conclusions The types, distribution, formation and geological significance of the multistage carbonate cements are defined, providing support for continued exploration and development as well as the search for new exploration targets.

YUAN Jing, ZHANG YuXiang, ZHAO GuangHao, HOU XuBo. Genetic Analysis of Multi-stage Carbonate Cementation in Shallow Burial and Its Geological Implications: Case study of the Neogene Shawan Formation, eastern side of Chepaizi uplift, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2015-2027. doi: 10.14027/j.issn.1000-0550.2024.092
Citation: YUAN Jing, ZHANG YuXiang, ZHAO GuangHao, HOU XuBo. Genetic Analysis of Multi-stage Carbonate Cementation in Shallow Burial and Its Geological Implications: Case study of the Neogene Shawan Formation, eastern side of Chepaizi uplift, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(6): 2015-2027. doi: 10.14027/j.issn.1000-0550.2024.092
  • 碳酸盐胶结是碎屑岩储层中最为常见的胶结类型之一,具有分布范围广、形成期次多、成因复杂与多样化等特征[15]。碳酸盐胶结物对储层物性具有双重效应。早期形成的碳酸盐胶结物会造成原生孔隙的大量损失,同时也增强了岩石的抗压性。后期酸性流体进入储层中,对早期碳酸盐胶结物进行溶蚀,产生大量的次生溶孔,有利于油气聚集[67]。碳酸盐胶结物沉淀的机理及成岩机制是岩石学、沉积学及石油地质学等研究的重要内容之一[89]

    前人对碎屑岩储层中碳酸盐胶结物的形成机制已有较为全面的研究,目前的成因解释主要包括:早期碳酸盐胶结物是在常温常压条件下直接从过饱和碱性水介质中析出的自生矿物[1012]或是受大气淡水淋滤作用,沉积物中的钙质碎屑发生溶蚀,大量Ca2+和CO32-进入孔隙水,导致局部碳酸钙过饱和,并在原地沉淀、结晶[1315];中晚期碳酸盐胶结物的物质来源主要为有机质热解脱羧形成的酸性流体溶蚀长石颗粒及早期方解石或黏土矿物转化形成的Ca2+[1622]。目前碳酸盐胶结物成因研究主要针对中深部储层展开,关于近源体系浅埋藏地层中多期碳酸盐胶结的成因机制并未得到充分研究。

    新近系沙湾组为准噶尔盆地车排子凸起的主要含油层系,前期勘探显示其北缘近源体系沙湾组一段(以下简称“沙一段”)储层为常压系统,埋藏浅(埋深小于1 700 m)。有学者注意到沙一段储层非均质性强、砂体内部普遍发育钙质砂砾岩,且研究发现钙质胶结物的形成与物源区含铀补给水以及炎热干燥的古气候相关[2324],但尚未对其期次及成因开展研究。本文基于岩心观察,采用薄片观察描述、阴极发光分析、X射线衍射分析等方法,对车排子凸起浅埋藏碳酸盐胶结物类型、期次和成因进行研究,探讨其对储层物性、含油性及圈闭类型的影响。

  • 车排子凸起位于准噶尔盆地西北缘,其西北部邻近扎伊尔山,南部为四棵树凹陷和伊林黑比尔根山,向东以红车断裂带与昌吉凹陷以及中拐凸起相接[25]图1a)。车排子凸起是海西运动晚期在石炭系火成岩基底之上发育起来的继承性凸起,整体是一个轴向为NW—SE、倾向为SE的三角形凸起。研究区毗邻的红车断裂带是近NS向的隐伏断裂带[26],经历了海西、印支、燕山和喜马拉雅等多期构造运动叠加改造[27]。近NS向红车断裂带和研究区喜马拉雅运动期近EW向的正断裂在横向上相交、垂向上相连,构成了良好的油气运移通道[28],对研究区油气成藏具有重要影响。石炭纪以来多次构造升降活动造成车排子凸起地层发育不全,自下而上依次发育石炭系、侏罗系、白垩系、古近系、新近系和第四系,缺失二叠系、三叠系。勘探开发结果表明,新近系沙一段储层是研究区主力含油层段。根据勘探开发实践经验,将研究区由北到南依次划分为排609—排634—排646区块、排631区块、排629区块、排614区块、排692区块等5个区块(图1b)。

    Figure 1.  Geographical location and structural unit division in Chepaizi area, Junggar Basin

    前期研究表明,车排子凸起存在北部扎伊尔山以及西南部伊林黑比尔根山两个物源体系[29],研究区沙湾组物源主要来自北部扎伊尔山,属于近物源体系。前人普遍认为车排子凸起地区沙湾组发育近源扇三角洲和远源辫状河三角洲沉积[3031]图1c)。深入研究发现,沙一段主要发育扇三角洲前缘亚相,包括碎屑流沉积、水下辫状河道、水下辫状河道间(分流间湾)、河口坝、席状砂等微相。

  • 对研究区岩心及岩石铸体薄片观察分析后发现,车排子凸起东翼沙湾组储层岩石类型主要包括各粒级砂岩、含砾砂岩、中细砾岩以及少量泥灰岩。砂岩类型主要为岩屑砂岩,其次为长石质岩屑砂岩(图2)。

    Figure 2.  Ternary diagram of sandstone composition in Shawan Formation, eastern side of Chepaizi uplift

    定量统计发现,碎屑颗粒中石英含量主要介于20%~66%,平均为55.68%;长石含量主要介于2%~23%,平均为8.13%。岩屑类型以岩浆岩岩屑为主,其次为变质岩岩屑和沉积岩岩屑,含量主要介于27%~71%,平均为36.19%。岩石碎屑中不稳定组分(长石+云母+岩屑)含量大于40%,总体上岩屑含量高,岩石成分成熟度低。研究区南部储层中还可以观察到藻屑等碳酸盐颗粒。结构上,沙一段储层碎屑颗粒粒度粗,分选差—中等,磨圆度为次棱角状—次圆状,接触关系以点接触为主,支撑类型以颗粒支撑为主。填隙物成分主要为灰泥杂基、黏土杂基和碳酸盐胶结物,碳酸盐胶结物包括方解石、菱铁矿、白云石,其中以方解石为主,胶结类型主要为嵌晶式胶结,胶结致密。

  • 通过对研究区岩心观察,发现含油砂岩段多被灰白色油迹或不含油砂岩段隔断开(图3a),表现出较强的含油非均质性。油迹或不含油砂岩段局部可见溶蚀孔隙和高角度构造缝,其内部有很好的含油性显示(图3b,c)。

    Figure 3.  Macroscopic features of Shawan Formation reservoir drilling cores on eastern side of Chepaizi uplift

    岩心及薄片分析显示,含油砂岩和油迹或不含油砂岩在沉积粒度方面差异较小,说明沉积作用对储层含油性影响较弱。部分砂岩岩心段发育溶蚀孔隙,在溶蚀孔隙附近及其所在岩心段其他未发育溶蚀孔隙的粒间填隙物部位滴稀盐酸后强烈起泡,表明该砂岩段发育碳酸盐胶结物,其溶蚀后形成了次生孔隙。含油砂岩段同样发育碳酸盐胶结物,但含量较低,主要是由于后期酸性流体沿裂缝运移至储层,造成早期形成的碳酸盐胶结物大量溶蚀,在岩心上呈现出不规则状溶蚀孔隙,局部溶蚀强烈的岩心段呈现出松散油砂状(图3d)。

    在观察排692区块浅3井不含油砂岩段岩心横向剖面的过程中,发现粒间孔隙中存在三期连续发育的碳酸盐胶结物。其中第一期、第二期碳酸盐胶结物发育完全,残余粒间孔隙中第三期碳酸盐胶结物尚未发育完全,孔隙空间仍处于未完全充填状态(图3e,f)。

  • 通过对研究区岩石样品染色铸体薄片观察发现,油迹或不含油砂岩段多被碳酸盐胶结物致密胶结。胶结物包括方解石和菱铁矿,以方解石为主,含量介于2.00%~44.00%,平均为32.20%,是研究区最为重要的胶结物类型。镜下观察到围绕颗粒发育的第一期方解石胶结物多呈栉壳状发育,且对颗粒有部分交代(图4a,b);菱铁矿在单偏光下呈浅褐色,多以自形—半自形粒状围绕颗粒发育(图4c);第二期方解石胶结物多呈嵌晶状胶结充填孔隙,使碎屑颗粒“漂浮”于胶结物中,可见第二期胶结物对长石、岩屑等颗粒的交代现象(图4d);第三期方解石胶结物多呈连生状或自形—半自形粒状,镜下观察到其与第二期方解石胶结物依次发育,且二者界面存在局部溶蚀痕迹(图4e,f)。岩石中碎屑颗粒多呈点接触,未见明显压裂缝,表明沙湾组储层碳酸盐胶结物形成时间较早,主要为早期碳酸盐胶结物。

    Figure 4.  Microscopic features of carbonate cements in Shawan Formation, eastern side of Chepaizi uplift

    研究区储层储集空间多为残余原生孔隙、粒内溶蚀孔隙、粒间溶蚀孔隙、混合成因孔隙、填隙物溶蚀孔隙以及构造微裂缝(图5)。灰白色砂岩段经历较强成岩作用,被碳酸盐胶结物致密胶结,物性差,在镜下主要观察到残余原生孔隙,且含量较少。新近纪喜马拉雅运动使北天山强烈隆升并向北推覆,俯冲过程中受西准噶尔界山—扎伊尔山阻挡,车排子凸起石炭系基底之上的地层在逆时针左旋剪切力作用下发生扭动变形,其中白垩系—新近系发育浅部扭张性正断层,且存在部分断层断至地表[32],微观上表现为断层伴生的构造微裂缝切穿颗粒并具有一定的延伸性(图5f),为地层中的流体活动提供渗流通道。

    Figure 5.  Reservoir space types in Shawan Formation, eastern side of Chepaizi uplift

  • 车排子凸起沙湾组储层碳酸盐胶结物普遍较发育,但平面分布呈现一定的非均质性。对研究区碳酸盐含量进行统计分析,发现由北部向南部总体上呈递减趋势。北部排609—排634—排646区块碳酸盐含量较高,含量主要介于17%~42%,平均值高达35.20%,胶结作用强;中部排629区块含量相对低,平均含量低于30%;排692区块位于研究区西南部,存在碳酸盐含量异常高值,含量介于2%~43%,平均为34.52%(表1)。前人对车排子地区沙湾组钙质砂砾岩累计厚度统计后发现,研究区北部和西部地区是厚度高值区,碳酸盐胶结最大厚度在6 m以上,且向东部和南部方向呈逐渐减薄的趋势[23]

    区块碳酸盐胶结物含量范围/%碳酸盐胶结物平均含量/%
    排609—排634—排646区块17.00~42.0035.20
    排631区块23.00~38.0032.00
    排629区块8.00~40.0026.83
    排614区块2.00~44.0030.48
    排692区块2.00~43.0034.52

    Table 1.  Carbonate cement content in different blocks in Shawan Formation, eastern side of Chepaizi uplift

    研究区主要发育水下辫状河道、水下辫状河道间(分流间湾)和碎屑流沉积微相,其中水下辫状河道微相的碳酸盐胶结物总体更为发育,平均值达36.84%,物性较差的碎屑流沉积微相中碳酸盐胶结物相对不发育(表2)。通过对车排子东翼沙湾组储层不同沉积微相方解石含量及面孔率进行统计,发现研究区水下辫状河道微相方解石含量及面孔率均高于碎屑流沉积微相。

    微相类型碳酸盐胶结物含量范围/%碳酸盐胶结物平均含量/%
    水下辫状河道6.40~44.0036.84
    水下辫状河道间(分流间湾)18.00~41.0033.38
    碎屑流沉积8.00~39.0030.60

    Table 2.  Carbonate cement content of different microfacies in Shawan Formation, eastern side of Chepaizi uplift

    早期碳酸盐胶结物是在常温常压条件下直接从过饱和碱性水介质中析出的自生矿物[1012]。研究区在沙湾组沉积时期处于干旱的古气候条件,湖水环境盐度高、Ca2+含量高。孔隙发育、渗透性较好、原始储集空间相对优越的水下辫状河道微相中保存有更充足的原生孔隙水,且未饱和孔隙水可以在地层中顺畅运移并进行物质交换[33],增加水体中的Ca2+浓度。水体中Ca2+浓度经早期压实作用后趋于过饱和,与原生孔隙水中CO32-结合后形成早期碳酸盐胶结物,因此研究区原始物性较好的水下辫状河道微相相对更有利于发育碳酸盐胶结物。

    水下辫状河道微相原始物性条件优越,经历各成岩作用后储层中仍保存有更多的残余原生孔隙,并且微裂缝的发育为储层后期接受流体改造提供有利因素,多因素共同作用使得该微相在前期碳酸盐胶结相对更为致密的情况下,仍能保持较高的面孔率。同碎屑流沉积微相相比,水下辫状河道微相成分成熟度和结构成熟度更高,碎屑颗粒分选好、塑性矿物含量低,更有利于裂缝的发育。前人通过数字岩心模型研究发现,当单条裂缝孔隙度大于0.4%时,裂缝对模型渗透率具有显著影响,当低于0.4%时,则影响并不明显[34]。研究区水下辫状河道中微裂缝孔隙度普遍介于0.1%~1.5%,平均值为0.47%;碎屑流沉积微相则主要介于0.1%~0.5%,平均值为0.18%。水下辫状河道中含量更高、规模更大的微裂缝对储层物性的改善起到极为显著的贡献作用(图6)。

    Figure 6.  Scatter plots of calcite cement content in Shawan Formation reservoir, eastern side of Chepaizi uplift

  • 通过对车排子凸起东翼沙湾组储层的岩石学特征、自生矿物间交代关系、颗粒溶蚀现象、次生孔隙类型、成岩环境演化特征的研究,综合铸体薄片观察、阴极发光分析、黏土矿物X衍射分析以及区域构造演化等资料,按照中华人民共和国石油天然气行业标准碎屑岩成岩阶段划分(SY/T5477—2003),将车排子凸起东翼沙湾组储层成岩作用阶段划分为同生期、早成岩A期、早成岩B期(表3)。

    成岩阶段微观特征成岩环境
    同生期发育方解石(Ⅰ期)、菱铁矿等碳酸盐胶结物碱性
    早成岩A期沥青质残余以及伴生的黄铁矿胶结酸性
    发育大面积半自形—他形晶粒状方解石(Ⅱ期)碱性
    早成岩B期碳酸盐胶结物、长石颗粒边缘及粒内发生溶蚀,可见溶蚀孔隙及微裂缝中发育的黄铁矿颗粒等酸性
    方解石胶结(Ⅲ期),石英质组分发生粒内溶蚀,形成碱性溶蚀孔隙碱性

    Table 3.  Diagenetic sequence of Shawan Formation reservoir, eastern side of Chepaizi uplift

    同生期储层成岩流体中相对富集Ca2+、Fe2+,主要发育方解石(Ⅰ期)、菱铁矿等碳酸盐胶结物,镜下主要表现为碳酸盐胶结物围绕颗粒呈栉壳状发育、连生状发育或与碎屑颗粒发生交代作用(图4a~c),整体表现为碱性—弱碱性成岩环境。

    新近纪喜马拉雅运动在车排子地区浅部形成的扭张性正断层规模较大[32],构成了有效的油源断裂,沟通了昌吉凹陷侏罗系油源及油藏,使部分原油沿不整合面和断层向沙湾组储层多次运移[27,35]。研究区沙湾组在新近纪早期接受昌吉凹陷八道湾组烃源岩排出的少量油气。新近纪中晚期以后,八道湾组及三工河组烃源岩相继进入生烃高峰期,为车排子地区新近纪地层提供持续的油气充注[36]

    储层在早成岩期经历了油气充注,镜下可以观察到早成岩A早期形成的沥青质残余和伴生的黄铁矿胶结(酸性)(图7a~d)、早成岩A晚期发育的大面积半自形—他形晶粒状方解石(Ⅱ期)(碱性)(图4d)、早成岩B早期形成的碳酸盐胶结物、长石边缘及粒内溶蚀孔隙(图5b,e)和溶蚀孔隙或微裂缝中发育的黄铁矿颗粒(酸性)(图7e,f)以及早成岩B晚期发育的方解石胶结(Ⅲ期)和石英质组分(多为脉石英)溶蚀所形成的碱性溶蚀孔隙(碱性)(图5c)。

    Figure 7.  Microscopic asphaltic residue and pyrite in Shawan Formation, eastern side of Chepaizi uplift

  • 在观察沙湾组储层岩心的过程中发现,排692-浅3井岩心孔隙内发育三期碳酸盐胶结物(图3e,f),铸体薄片图像显示三期碳酸盐胶结物呈不同的生长形式(图4e,f)。通过对铸体薄片进行铁氰化钾和茜素红染色发现,研究区碳酸盐胶结物主要呈现红色,反映储层主要发育方解石胶结。阴极发光结果显示,充填孔隙的碳酸盐胶结物多数呈亮黄色、橙黄色和几乎不发光(图8),这在一定程度上反映出三期胶结。下面针对上述三期次碳酸盐胶结物进行成因分析。

    Figure 8.  Cathode luminescence (CL) images of multistage carbonate cements in Shawan Formation reservoir, eastern side of Chepaizi uplift

  • 第一期碳酸盐胶结物以方解石为主,存在少量菱铁矿。方解石经染色后呈红色,阴极发光结果显示方解石呈亮黄色,部分矿物颗粒边缘被交代,且受后期酸性流体影响,连续性较差,部分薄片中可见亮黄色方解石胶结物呈连续条带状围绕颗粒发育(图8a,c)。

    此类方解石胶结物通常是在常温常压条件下直接从碳酸盐物质过饱和的水介质中析出的产物[1012]。准噶尔盆地存在多个层段处于干旱、浅水广盆的沉积背景。王明振等[37]在对准噶尔盆地沙湾组露头的研究中发现了一种特殊的自生黏土矿物——坡缕石。自然界中,坡缕石常形成于干旱—半干旱地区的沉积物中[38],且形成的水介质条件一般为碱性环境,这指示了研究区沙一段沉积时处于干旱、富盐基的碱性环境。干旱强蒸发的古气候使得沉积水体具有高盐度的特点,碱性过饱和的湖水环境造成碎屑颗粒间的原生孔隙水中存在相对较高的Ca2+。同时,受古气候和沉积水体条件的影响,研究区内局部发育藻类(图5f、图8d、图9c,d)。藻类生长时起到沉淀和黏结CaCO3的作用,同时藻屑中丰富的矿物质可以为碳酸盐胶结物的发育提供Ca2+、Mg2+,当沉积的有机物质发生微生物分解和代谢时,也会生成CO2和H2O。

    Figure 9.  Scatter plots of calcite content and plane porosity in Shawan Formation reservoir, eastern side of Chepaizi uplift

    前人在对准噶尔盆地西北部放射性水化学调查的过程中发现,来自扎伊尔山的补给水源具有高含铀量[39]。其中排609-12井和排612-11井铀含量分别为27.8 μg/g和29 μg/g,远大于正常范围值(小于10 μg/g),并且主要以UO2(CO334-的形式存在于油田水中。UO2(CO334-在还原沉淀成固体氧化物时释放出大量的CO32-[23],与水体中Ca2+结合,为碳酸盐胶结物的形成提供有利条件(图10)。

    Figure 10.  Multistage carbonate cement development model in Shawan Formation reservoir, eastern side of the Chepaizi uplift

    研究区第一期碳酸盐胶结物的发育揭示了沉积初期古气候环境、沉积水体条件以及生物因素等对储层中碳酸盐胶结物形成所产生的影响。

  • 红车断裂带和喜马拉雅运动期形成的正断裂相交,构成了良好的油气运移通道[27]。昌吉凹陷侏罗系烃源岩的多次生排烃活动为沙湾组储层提供多期次油源供给[36]。油气沿裂缝为主的输导体系进入储层,造成储层成岩环境酸碱性的多次转变,为碳酸盐胶结物的发育及次生溶蚀孔隙的形成提供条件。

    第二期碳酸盐胶结物以半自形—他形晶粒状方解石为主,发育于埋藏成岩环境中,显微镜下观察到其与第一期方解石胶结物之间存在明显溶蚀痕迹。阴极发光结果显示,第二期方解石胶结物近于不发光,具有高镁的特点(图8)。新近纪早期,昌吉凹陷中下侏罗统八道湾组烃源岩进入大量生烃阶段,形成的油气充注到沙湾组储层中时带来的有机酸流体及CO2使成岩环境转变为酸性(公式1)。

    有机质有机酸(C3HCOOH)CO4+CO2 (1)

    有机酸流体及CO2溶于水形成的碳酸溶蚀早期胶结物以及酸溶性碎屑颗粒[1620],释放大量Ca2+、Mg2+、CO32-,形成次生溶蚀孔隙。随着有机酸被逐渐消耗,成岩环境从酸性演化为碱性,进而碳酸盐胶结物沉淀下来并对孔隙进行大规模充填。

  • 第三期碳酸盐胶结物仍以方解石为主,包含少量白云石。阴极发光结果显示,方解石胶结物表现为橙黄色,形成于第一期、第二期方解石之后,存在部分长石、岩屑颗粒被第三期方解石交代的现象(图8)。

    新近纪中晚期,昌吉凹陷中下侏罗统中处于生烃高峰阶段的八道湾组和三工河组烃源岩、进入大量生烃阶段的西山窑组烃源岩排出大量油气[36],生烃过程中产生有机酸及CO2继续沿运移通道进入沙湾组储层,造成碳酸盐胶结物、长石、岩屑的强烈溶蚀,形成长石粒内溶蚀孔隙、粒间溶蚀孔隙及胶结物溶蚀孔隙,同时产生大量Ca2+、Mg2+及Fe2+。油气在运移过程中携带一定的H2S,强还原性使运移通道周围Fe3+还原为Fe2+,这为黄铁矿的形成创造了环境和物质条件。显微镜下可以观察到研究区微裂缝和长石粒内溶蚀孔隙内发育不规则粒状黄铁矿颗粒(图7e,f)。随着长石的不断溶蚀,流体中H+被消耗,成岩环境酸性减弱,向碱性转变,并逐渐析出碳酸盐胶结物。综合分析认为,第三期和第二期碳酸盐胶结物的形成均受到了有机酸流体的影响。

    综上所述,同生期储层主要受古气候、沉积水体及局部藻类发育的影响,发育第一期碳酸盐胶结物;生排烃活动形成的有机酸流体为早成岩A晚期、早成岩B晚期发育的第二期和第三期碳酸盐胶结物提供有利条件(图10)。

  • 综合分析认为,碳酸盐胶结物的发育对研究区储层物性、含油非均质性及圈闭类型都产生一定程度的影响。

  • 受古环境影响而发育的第一期碳酸盐胶结物在占据储层储集空间的同时,增加了岩石的抗压实能力,为后期溶蚀作用的发生、溶蚀孔隙的形成提供条件,可以在一定程度上改善储层物性。前人研究发现,钙质砂岩相较于长石砂岩和岩屑砂岩,受压实损失的孔隙度要低3.58%~8.50%[40],这在一定程度上验证了早期碳酸盐胶结物对储层物性的保护作用。然而,致密碳酸盐胶结物占据了相当数量的储层孔隙,同时造成岩石不能为流体活动提供有效运移通道,使得后期流体活动所造成的溶蚀作用变弱,进而对储层物性的改善有限。在对水下辫状河道微相中方解石含量和砂岩面孔率统计后可以发现,方解石含量与面孔率呈现较为明显的负相关关系。

  • 当碳酸盐胶结物在平面呈连续性发育时,会形成毛细管压力封闭的薄夹层,对上下砂层间的流体运移进行有效遮挡,阻断油气的运移路径,油气只能沿少量构造裂缝运移和聚集,导致研究区同一套砂岩内部含油非均质性明显(图3a,c)。实际勘探开发过程中发现,碳酸盐胶结致密的井多为干井,含油性差。

  • 前人对车排子凸起研究发现,沙湾组储层中碳酸盐胶结程度的平面差异使得北部和西北部等地区会形成胶结遮挡条件,晚期充注的油气到达碳酸盐致密胶结的地层,因无法突破毛细管阻力而发生原地聚集成藏,造成该区域油水倒置的现象,形成超浅层胶结遮挡型的成岩圈闭[41]。因此,当储层中发育的碳酸盐胶结物分布面积大、含量高、出现在砂体顶部且多呈基底式胶结时,会形成较好的盖层,在一定程度上影响油气聚集成藏。

  • (1) 研究区浅部沙湾组储层岩石类型以岩屑砂岩、长石质岩屑砂岩为主,成分成熟度低;砂岩胶结物以方解石胶结为主,含量由北向南逐渐减少。

    (2) 沙湾组储层大体经历了(弱)碱性—酸性—碱性—酸性—碱性的多重成岩环境。三期碳酸盐胶结中,第一期碳酸盐胶结物主要受古气候、沉积水体及局部藻类聚集发育影响;生排烃活动形成的有机酸流体为第二期、第三期碳酸盐胶结物的发育提供有利条件。

    (3) 碳酸盐胶结物的双重效应对储层物性、含油非均质性及圈闭类型均会产生影响。碳酸盐胶结物使沙湾组储层早期物性差的同时,也会由于后期酸性流体的注入而使储层孔渗性得到有效改善;致密胶结所形成的薄夹层在一定程度上控制了储层中油气运移及圈闭类型。

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return