Advanced Search
Volume 42 Issue 6
Dec.  2024
Turn off MathJax
Article Contents

CAI XinYu, WANG Wei, TIAN Yang. Neoproterozoic Tectonic Evolution in the Middle Segment of the Jiangnan Orogenic Belt: Implications from detrital zircon U-Pb and Lu-Hf isotopes[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1986-2005. doi: 10.14027/j.issn.1000-0550.2024.036
Citation: CAI XinYu, WANG Wei, TIAN Yang. Neoproterozoic Tectonic Evolution in the Middle Segment of the Jiangnan Orogenic Belt: Implications from detrital zircon U-Pb and Lu-Hf isotopes[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1986-2005. doi: 10.14027/j.issn.1000-0550.2024.036

Neoproterozoic Tectonic Evolution in the Middle Segment of the Jiangnan Orogenic Belt: Implications from detrital zircon U-Pb and Lu-Hf isotopes

doi: 10.14027/j.issn.1000-0550.2024.036
Funds:

National Natural Science Foundation of China 42272228

National Natural Science Foundation of China 41972242

Fok Ying-Tong Education Foundation, China 171013

  • Received Date: 2023-09-27
  • Accepted Date: 2024-04-09
  • Rev Recd Date: 2024-03-04
  • Available Online: 2024-04-09
  • Publish Date: 2024-12-10
  • Objective Determining the depositional age, sedimentary sources and tectonic background of Neoproterozoic sedimentary strata in Hunan province is one of the keys to understanding tectonic evolution in the middle segment of the Jiangnan orogenic belt. Methods Six clastic rock samples were collected from the Lengjiaxi Group and Banxi Group in the middle segment of the Jiangnan orogenic belt. Provenance and tectonic setting of the sedimentary basins were determined by studying the morphology, trace elements, and U-Pb/Lu-Hf isotopic composition of detrital zircons, and collating published data for detrital zircons and zircons from source areas. Results The results indicated that the Lengjiaxi Group was formed at about 852⁃825 Ma, and the Banxi Group was formed at about 820⁃720 Ma. The most important detrital zircon age peaks in the Lengjiaxi Group and Banxi Group occur at 920⁃790 Ma; age peaks also appear at 1 750⁃1 620 Ma and 2 500⁃2 450 Ma in the Lengjiaxi Group, and at 1 950⁃1 790 Ma and 2 420⁃2 330 Ma in the Banxi Group. The Hf isotopic characteristics show that the Lengjiaxi Group mainly received sediments from the Yangtze Block, and the Banxi Group received detritus from both the Yangtze and Cathaysia Blocks. Conclusions The U-Pb and Lu-Hf isotopic compositions of detrital zircons indicate that deposition in the Lengjiaxi Group and Banxi Group occurred before and after the amalgamation of the Yangtze and Cathaysia Blocks, respectively. The Lengjiaxi Group was deposited in the back-arc basin of a trench-arc-basin system which was closed by 825 Ma accompanied by strong folding in the sedimentary strata and a large number of S-type granite intrusions. The Banxi Group was deposited in an intraplate rift setting related to post-collision extension. Rifting-related magma erupted around 780⁃760 Ma, and gradually weakened along the sedimentation of the Banxi Group.
  • [1] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
    [2] 周传明,袁训来,肖书海,等. 中国埃迪卡拉纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):7-25.

    Zhou Chuanming, Yuan Xunlai, Xiao Shuhai, et al. Ediacaran integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 49(1): 7-25.
    [3] Zhao L, Zhai M G, Zhou X W, et al. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: Implications for petrogenesis and tectonic setting[J]. Lithos, 2015, 236-237: 226-244.
    [4] Yao J L, Cawood P A, Shu L S, et al. Jiangnan orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872.
    [5] 王孝磊,周金城,陈昕,等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报,2017,36(5):714-735.

    Wang Xiaolei, Zhou Jincheng, Chen Xin, et al. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 714-735.
    [6] 张克信,徐亚东,何卫红,等. 中国新元古代青白口纪早期(1000~820Ma)洋陆分布[J]. 地球科学,2018,43(11):3837-3852.

    Zhang Kexin, Xu Yadong, He Weihong, et al. Oceanic and continental blocks distribution during Neoproterozoic Early Qingbaikouan period (1000-820 Ma) in China[J]. Earth Science, 2018, 43(11): 3837-3852.
    [7] 田洋. 江南造山带西段青白口系—寒武系火山—沉积建造及对华南构造演化的启示[D]. 武汉:中国地质大学,2021.

    Tian Yang. The Qingbaikouan-Cambrian volcanic and sedimentary sequences in the western Jiangnan orogen and its implication for tectonic evolution of South China[D]. Wuhan: China University of Geosciences, 2021.
    [8] 黄思访. 江南造山带的形成与演化:来自新元古代岩浆岩的启示[D]. 武汉:中国地质大学,2021.

    Huang Sifang. The formation and evolution of the Jiangnan orogen: Implication from the Neoproterozoic magmatic rock[D]. Wuhan: China University of Geosciences, 2021.
    [9] 郭令智,施央申,马瑞士,等. 中国东南部地体构造的研究[J]. 南京大学学报(自然科学版),1984,20(4):732-739.

    Guo Lingzhi, Shi Yangshen, Ma Ruishi, et al. Tectonostratigraphic terranes of southeast China[J]. Journal of Nanjing University (Natural Sciences), 1984, 20(4): 732-739.
    [10] 陈旭,张元动,樊隽轩,等. 广西运动的进程:来自生物相和岩相带的证据[J]. 中国科学:地球科学,2012,42(11):1617-1626.

    Chen Xu, Zhang Yuandong, Fan Junxuan, et al. Onset of the Kwangsian orogeny as evidenced by biofacies and lithofacies[J]. Science China: Earth Sciences, 2012, 42(11): 1617-1626.
    [11] Zhao G C. Jiangnan orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 2015, 27(3): 1173-1180.
    [12] Shu L S, Wang J Q, Yao J L. Tectonic evolution of the eastern Jiangnan region, South China: New findings and implications on the assembly of the Rodinia supercontinent[J]. Precambrian Research, 2019, 322: 42-65.
    [13] Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere?[J]. Geology, 2013, 41(8): 903-906.
    [14] Chen X, Wang X L, Wang D, et al. Contrasting mantle-crust melting processes within orogenic belts: Implications from two episodes of mafic magmatism in the western segment of the Neoproterozoic Jiangnan orogen in South China[J]. Precambrian Research, 2018, 309: 123-137.
    [15] Guo L H, Gao R. Potential-field evidence for the tectonic boundaries of the central and western Jiangnan belt in South China[J]. Precambrian Research, 2018, 309: 45-55.
    [16] Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1/2): 117-131.
    [17] Li Z X, Zhang L H, Powell C M. South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia?[J]. Geology, 1995, 23(5): 407-410.
    [18] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca.825 Ma?[J]. Precambrian Research, 2003, 122(1/2/3/4): 45-83.
    [19] Ye M F, Li X H, Li W X, et al. SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an Early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block[J]. Gondwana Research, 2007, 12(1/2): 144-156.
    [20] Li W X, Li X H, Li Z X, et al. Obduction-type granites within the NE Jiangxi ophiolite: Implications for the final amalgamation between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 2008, 13(3): 288-301.
    [21] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(1/2): 117-128.
    [22] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67.
    [23] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1/2): 127-150.
    [24] 舒良树. 华南构造演化的基本特征[J]. 地质通报,2012,31(7):1035-1053.

    Shu Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053.
    [25] Shu L S, Yao J L, Wang B, et al. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth-Science Reviews, 2021, 216: 103596.
    [26] Xia Y, Xu X S, Niu Y L, et al. Neoproterozoic amalgamation between Yangtze and Cathaysia Blocks: The magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 2018, 309: 56-87.
    [27] Yao J L, Cawood P A, Shu L S, et al. An Early Neoproterozoic accretionary prism ophiolitic mélange from the western Jiangnan orogenic belt, South China[J]. The Journal of Geology, 2016, 124(5): 587-601.
    [28] Zhou J C, Wang X L, Qiu J S, et al. Geochemistry of Meso- and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: Arc or plume magmatism?[J]. Geochemical Journal, 2004, 38(2): 139-152.
    [29] Zhang K J. A mediterranean-style model for Early Neoproterozoic amalgamation of South China[J]. Journal of Geodynamics, 2017, 105: 1-10.
    [30] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302.
    [31] Yao J L, Shu L S, Santosh M, et al. Neoproterozoic arc-related mafic–ultramafic rocks and syn-collision granite from the western segment of the Jiangnan orogen, South China: Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2014, 243: 39-62.
    [32] Zhang C L, Zou H B, Zhu Q B, et al. Late Mesoproterozoic to Early Neoproterozoic ridge subduction along southern margin of the Jiangnan orogen: New evidence from the northeastern Jiangxi ophiolite (NJO), South China[J]. Precambrian Research, 2015, 268: 1-15.
    [33] Zhang H, Li T D, Xie Y, et al. Geochronology and tectonic evolution of the west section of the Jiangnan orogenic belt[J]. Acta Geologica Sinica - English Edition, 2015, 89(5): 1497-1515.
    [34] Wang X S, Gao J, Klemd R, et al. Early Neoproterozoic multiple arc-back-arc system formation during subduction-accretion processes between the Yangtze and Cathaysia Blocks: New constraints from the supra-subduction zone NE Jiangxi ophiolite (South China)[J]. Lithos, 2015, 236-237: 90-105.
    [35] Zhang C L, Li H K, Santosh M. Revisiting the tectonic evolution of South China: Interaction between the Rodinia superplume and plate subduction?[J]. Terra Nova, 2013, 25(3): 212-220.
    [36] Merdith A S, Collins A S, Williams S E, et al. A full-plate global reconstruction of the Neoproterozoic[J]. Gondwana Research, 2017, 50: 84-134.
    [37] Zhang Y Z, Wang Y J, Zhang Y H, et al. Neoproterozoic assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and associated rocks along the central Jiangnan orogen, South China[J]. Precambrian Research, 2015, 269: 18-30.
    [38] 杨雪,张玉芝,崔翔,等. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学[J]. 地球科学,2020,45(9):3461-3474.

    Yang Xue, Zhang Yuzhi, Cui Xiang, et al. Geochemistry and detrital zircon U-Pb ages of sedimentary rocks from Neoproterozoic Lengjiaxi Group in NE Hunan pro-vince[J]. Earth Science, 2020, 45(9): 3461-3474.
    [39] 柏道远,蒋启生,李彬,等. 湘东北冷家溪群沉积岩地球化学特征及其构造意义[J]. 地质科技通报,2021,40(1):1-13,26.

    Bai Daoyuan, Jiang Qisheng, Li Bin, et al. Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 1-13, 26.
    [40] Yao J L, Shu L S, Cawood P A, et al. Constraining timing and tectonic implications of Neoproterozoic metamorphic event in the Cathaysia Block, South China[J]. Precambrian Research, 2017, 293: 1-12.
    [41] Wang Y J, Zhang A M, Cawood P A, et al. Geochronological, geochemical and Nd–Hf–Os isotopic fingerprinting of an Early Neoproterozoic arc–back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Research, 2013, 231: 343-371.
    [42] 田洋,金巍,王晶,等. 江南造山带中段冷家溪群沉积物源及构造背景:以岳阳地区黄浒洞组为例[J]. 地球科学,2021,46(4):1328-1348.

    Tian Yang, Jin Wei, Wang Jing, et al. Provenance and tectonic setting of Lengjiaxi Group in the central Jiangnan orogen: A case study of Huanghudong Formation, Yueyang area[J]. Earth Science, 2021, 46(4): 1328-1348.
    [43] 湖南省地质矿产局. 湖南省区域地质志[M]. 北京:地质出版社,1988.

    Hunan Bureau of Geology and Mineral Resources. Regional geology of Hunan province[M]. Beijing: Geological Publishing House, 1988.
    [44] 广西壮族自治区地质矿产局. 广西壮族自治区区域地质志[M]. 北京:地质出版社,1985.

    Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region. Regional geology of Guangxi Zhuang Autonomous Region[M]. Beijing: Geological Publishing House, 1985.
    [45] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社,1987.

    Bureau of Geology and Mineral Resources of Guizhou Province. Regional geology of Guizhou province[M]. Beijing: Geological Publishing House, 1987.
    [46] 江西省地质矿产局. 江西省区域地质志[M]. 北京:地质出版社,1984.

    Jiangxi Bureau of Geology and Mineral Resources. Regional geology of Jiangxi province[M]. Beijing: Geological Publishing House, 1984.
    [47] 陈建书,戴传固,彭成龙,等. 湘黔桂地区新元古代“下江群”地层划分对比研究:重新启用下江系的探讨[J]. 地质论评,2016,62(5):1093-1114.

    Chen Jianshu, Dai Chuangu, Peng Chenglong, et al. Study on stratigraphical division and correlation of the Neoproterozoic “Xiajiang Group” in Hunan, Guizhou and Guangxi province: Discuss on the reboot of Xiajiang System[J]. Geological Review, 2016, 62(5): 1093-1114.
    [48] 伍实. 广西晚元古代本洞岩体同位素年代学研究[J]. 地球化学,1979,8(3):187-194.

    Wu Shi. A study on isotopic geochronology of Late Protorozoic Bendong intrusive massif, Guangxi, China[J]. Geochimica, 1979, 8(3): 187-194.
    [49] 车勤建,伍光英,唐晓珊,等. 湘东北中元古代冷家溪群的解体及其地质意义[J]. 华南地质与矿产,2005(1):47-53,71.

    Che Qinjian, Wu Guangying, Tang Xiaoshan, et al. Disintegration of the Mesoproterozoic Lengjiaxi Group in northeast Hunan province[J]. Geology and Mineral Resources of South China, 2005(1): 47-53, 71.
    [50] 唐晓珊. 湖南冷家溪群岩石地层的研究[J]. 湖南地质,1989,8(2):1-9.

    Tang Xiaoshan. Lithostratigraphic study of Lengjiaxi Group in Hunan[J]. Hunan Geology, 1989, 8(2): 1-9.
    [51] 钟玉芳,马昌前,佘振兵,等. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学[J]. 地球科学,2005,30(6):685-691.

    Zhong Yufang, Ma Changqian, She Zhenbing, et al. SHRIMP U-Pb zircon geochronology of the Jiuling granitic complex batholith in Jiangxi province[J]. Earth Science, 2005, 30(6): 685-691.
    [52] 张芳荣,黄新曙. 江西九岭南缘九仙汤侵入体的锆石U-Pb定年[J]. 资源调查与环境,2008,29(4):252-256.

    Zhang Fangrong, Huang Xinshu. Zircon U-Pb dating of Jiuxiantang intrusion in the southern margin of Jiuling Mountain range, Jiangxi province[J]. Resources Survey & Environment, 2008, 29(4): 252-256.
    [53] 薛怀民,马芳,宋永勤,等. 江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子地块与华夏地块拼合时间与过程的约束[J]. 岩石学报,2010,26(11):3215-3244.

    Xue Huaimin, Ma Fang, Song Yongqin, et al. Geochronology and geochemisty of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China: Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia Blocks[J]. Acta Petrologica Sinica, 2010, 26(11): 3215-3244.
    [54] Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from northern Guangxi, South China: Implications for tectonic evolution[J]. Precambrian Research, 2006, 145(1/2): 111-130.
    [55] Wang X L, Jiang S Y, Dai B Z, et al. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830Ma) gabbros on the southern margin of the North China Craton[J]. Precambrian Research, 2011, 190(1/2/3/4): 35-47.
    [56] Wang X L, Zhou J C, Griffin W L, et al. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 2014, 242: 154-71.
    [57] Wang X L, Zhou J C, Qiu J S, et al. Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China: Implications for petrogenesis and post-orogenic extension[J]. Geological Magazine, 2008, 145(2): 215-233.
    [58] Zhou J C, Wang X L, Qiu J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation[J]. Precambrian Research, 2009, 170(1/2): 27-42.
    [59] 高林志,杨明桂,丁孝忠,等. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄:对江南新元古代造山带演化的制约[J]. 地质通报,2008,27(10):1744-1751.

    Gao Linzhi, Yang Minggui, Ding Xiaozhong, et al. SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen Groups in South China: Constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt[J]. Geological Bulletin of China, 2008, 27(10): 1744-1751.
    [60] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158.
    [61] 孙海清,黄建中,郭乐群,等. 湖南冷家溪群划分及同位素年龄约束[J]. 华南地质与矿产,2012,28(1):20-26.

    Sun Haiqing, Huang Jianzhong, Guo Lequn, et al. Subdivision and isotopic age of Lengjiaxi Group in Hunan province[J]. Geology and Mineral Resources of South China, 2012, 28(1): 20-26.
    [62] 湖南省地质调查院. 中国区域地质志湖南志[M]. 北京:地质出版社,2017.

    Hunan Provincial Geological Survey. Regional geology of China: Hunan chronicles[M]. Beijing: Geological Publishing House, 2017.
    [63] Wang W, Zhou M F. Sedimentary records of the Yangtze Block (South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents[J]. Sedimentary Geology, 2012, 265-266: 126-142.
    [64] 覃永军,杜远生,牟军,等. 黔东南地区新元古代下江群的地层年代及其地质意义[J]. 地球科学,2015,40(7):1107-1120.

    Qin Yongjun, Du Yuansheng, Mou Jun, et al. Geochronology of Neoproterozoic Xiajiang Group in southeast Guizhou, South China, and its geological implications[J]. Earth Science, 2015, 40(7): 1107-1120.
    [65] 崔晓庄,江新胜,邓奇,等. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示[J]. 大地构造与成矿学,2016,40(5):1049-1063.

    Cui Xiaozhuang, Jiang Xinsheng, Deng Qi, et al. Zircon U-Pb geochronological results of the Danzhou Group in northern Guangxi and their implications for the Neoproterozoic rifting stages in South China[J]. Geotectonica et Metallogenia, 2016, 40(5): 1049-1063.
    [66] Wang J Q, Shu L S, Santosh M. U-Pb and Lu-Hf isotopes of detrital zircon grains from Neoproterozoic sedimentary rocks in the central Jiangnan orogen, South China: Implications for Precambrian crustal evolution[J]. Precambrian Research, 2017, 294: 175-188.
    [67] Li D H, Yang Z N, Liu Y, et al. Timing and provenance transition of the Neoproterozoic Wuling unconformity and Xihuangshan unconformity of the Yangtze Block: Responses to peripheral orogenic events[J]. Minerals, 2022, 12(5): 596.
    [68] Chen X, Wang D, Wang X L, et al. Neoproterozoic chromite-bearing high-Mg diorites in the western part of the Jiangnan orogen, southern China: Geochemistry, petrogenesis and tectonic implications[J]. Lithos, 2014, 200-201: 35-48.
    [69] Sláma J, Košler J, Condon D J, et al. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.
    [70] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced Melt-Peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
    [71] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
    [72] Ludwig K R. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003.
    [73] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69.
    [74] Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(12): 1567-1574.
    [75] Jonathan Patchett P, Kouvo O, Hedge C E, et al. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 279-297.
    [76] Xu P, Wu F Y, Xie L W, et al. Hf isotopic compositions of the standard zircons for U-Pb dating[J]. Chinese Science Bulletin, 2004, 49(15): 1642-1648.
    [77] Machado N, Simonetti A. U-Pb dating and Hf isotopic composition of zircons by laser ablation-MC-ICP-MS[M]//Sylvester P. Laser-Ablation-ICPMS in the Earth sciences: Principles and applications. Ottawa: Mineralogical Association of Canada, 2001.
    [78] Iizuka T, Hirata T. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220(1/2): 121-137.
    [79] Song G Y, Wang X Q, Shi X Y, et al. New U-Pb age constraints on the upper Banxi Group and synchrony of the Sturtian glaciation in South China[J]. Geoscience Frontiers, 2017, 8(5): 1161-1173.
    [80] Wang X C, Li X H, Li Z X, et al. Episodic Precambrian crust growth: Evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 2012, 222-223: 386-403.
    [81] Wang W, Wang F, Chen F K, et al. Detrital zircon ages and Hf‐Nd isotopic composition of Neoproterozoic sedimentary rocks in the Yangtze Block: Constraints on the deposition age and provenance[J]. The Journal of Geology, 2010, 118(1): 79-94.
    [82] 孟庆秀,张健,耿建珍,等. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义[J]. 中国地质,2013,40(1):191-216.

    Meng Qingxiu, Zhang Jian, Geng Jianzhen, et al. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi Groups in middle Hunan pro-vince: Implications for the Neoproterozoic tectonic evolution in South China[J]. Geology in China, 2013, 40(1): 191-216.
    [83] 张玉芝,王岳军,范蔚茗,等. 江南隆起带新元古代碰撞结束时间:沧水铺砾岩上下层位的U-Pb年代学证据[J]. 大地构造与成矿学,2011,35(1):32-46.

    Zhang Yuzhi, Wang Yuejun, Fan Weiming, et al. Geochronological constraints on the Neoproterozoic collision along the Jiangnan uplift: Evidence from studies on the Neoproterozoic basal conglomerates at the Cangshuipu area, Hunan province[J]. Geotectonica et Metallogenia, 2011, 35(1): 32-46.
    [84] 张菲菲,王岳军,范蔚茗,等. 江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究[J]. 大地构造与成矿学,2011,35(1):73-84.

    Zhang Feifei, Wang Yuejun, Fan Weiming, et al. Zircon U-Pb geochronology and Hf isotopes of the Neoproterozoic granites in the central of Jiangnan uplift[J]. Geotectonica et Metallogenia, 2011, 35(1): 73-84.
    [85] Wang L J, Griffin W L, Yu J H, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 2010, 177(1/2): 131-134.
    [86] Gao L Z, Ding X Z, Zhang C H, et al. Revised chronostratigraphic framework of the metamorphic strata in the Jiangnan orogenic belt, South China and its tectonic implications[J]. Acta Geologica Sinica -English Edition, 2012, 86(2): 339-349.
    [87] 何垚砚,牛志军,宋芳,等. 鄂东南新元古界冷家溪群大药菇组地质特征及区域对比[J]. 地层学杂志,2017,41(2):195-208.

    He Yaoyan, Niu Zhijun, Song Fang, et al. Geological characteristics and stratigraphic correlation of the Neoproterozoic Dayaogu Formation of the Lengjiaxi Group in southeastern Hubei province[J]. Journal of Stratigraphy, 2017, 41(2): 195-208.
    [88] Wang W, Zhou M F, Yan D P, et al. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan orogen, South China[J]. Precambrian Research, 2013, 235: 1-19.
    [89] Wang W, Zhou M F, Yan D P, et al. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 2012, 192-195: 107-124.
    [90] Wang X L, Shu L S, Xing G F, et al. Post-orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800-760Ma volcanic rocks[J]. Precambrian Research, 2012, 222-223: 404-423.
    [91] 汪正江,许效松,杜秋定,等. 南华冰期的底界讨论:来自沉积学与同位素年代学证据[J]. 地球科学进展,2013,28(4):477-489.

    Wang Zhengjiang, Xu Xiaosong, Du Qiuding, et al. Discussion on the bottom of Nanhua System: Evidences from sedimentology and isotopic geochronology[J]. Advances in Earth Science, 2013, 28(4): 477-489.
    [92] 田伟伦. 桂北四堡群物源分析与构造环境探讨[D]. 北京:中国地质大学(北京),2018.

    Tian Weilun. A discussion on sedimentary provenance and tectonic setting of Sibao Group in northern Guangxi Zhuang autonomous region, South China[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [93] 李利阳. 华南四堡群的年代与沉积地质特征[D]. 北京:中国地质大学(北京),2015.

    Li Liyang. A discussion on the stratigraphic chronology and sedimentary characteristics of Sibao Group in South China[D]. Beijing: China University of Geosciences (Beijing), 2015.
    [94] 王敏,戴传固,王雪华,等. 贵州梵净山群沉积时代:来自原位锆石U-Pb测年证据[J]. 岩石矿物学杂志,2012,31(6):843-857.

    Wang Min, Dai Chuangu, Wang Xuehua, et al. Sedimentation age of the Fanjingshan Group in east Guizhou province: Evidence from in-situ zircon LA-ICP-MS U-Pb dating[J]. Acta Petrologica et Mineralogica, 2012, 31(6): 843-857.
    [95] Zhao J H, Zhou M F, Zheng J P. Constraints from zircon U–Pb ages, O and Hf isotopic compositions on the origin of Neoproterozoic peraluminous granitoids from the Jiangnan fold belt, South China[J]. Contributions to Mineralogy and Petrology, 2013, 166(5): 1505-1519.
    [96] 陈文西,王剑,付修根,等. 黔东南新元古界下江群甲路组沉积特征及其下伏岩体的锆石U-Pb年龄意义[J]. 地质论评,2007,53(1):126-131.

    Chen Wenxi, Wang Jian, Fu Xiugen, et al. Sedimentary characteristics of the Jialu Formation and its underlying granite's U- Pb zircon age in southeast Guizhou, China[J]. Geological Review, 2007, 53(1): 126-131.
    [97] 马铁球,陈立新,柏道远,等. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征[J]. 中国地质,2009,36(1):65-73.

    Ma Tieqiu, Chen Lixin, Bai Daoyuan, et al. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in southeastern Hunan[J]. Geology in China, 2009, 36(1): 65-73.
    [98] 高林志,陈峻,丁孝忠,等. 湘东北岳阳地区冷家溪群和板溪群凝灰岩SHRIMP锆石U-Pb年龄:对武陵运动的制约[J]. 地质通报,2011,30(7):1001-1008.

    Gao Linzhi, Chen Jun, Ding Xiaozhong, et al. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi Groups, northeastern Hunan: Constraints on the Wuling movement[J]. Geological Bulletin of China, 2011, 30(7): 1001-1008.
    [99] 王剑,李献华, Duan T Z,等. 沧水铺火山岩锆石SHRIMP U-Pb年龄及“南华系”底界新证据[J]. 科学通报,2003,48(16):1726-1731.

    Wang Jian, Li Xianhua, Duan T Z, et al. New evidence of the SHRIMP U-Pb age and the "South China" bottom boundary of the zircon of Cangshuipu volcanic rocks[J]. Chinese Science Bulletin, 2003, 48(16): 1726-1731.
    [100] 高林志,刘燕学,丁孝忠,等. 江南古陆中段沧水铺群锆石U-Pb年龄和构造演化意义[J]. 中国地质,2012,39(1):12-20.

    Gao Linzhi, Liu Yanxue, Ding Xiaozhong, et al. SHRIMP dating of Cangshuipu Group in the middle part of the Jiangnan orogen and its implications for tectonic evolutions[J]. Geology in China, 2012, 39(1): 12-20.
    [101] 张世红,蒋干清,董进,等. 华南板溪群五强溪组SHRIMP锆石U-Pb年代学新结果及其构造地层学意义[J]. 中国科学:地球科学,2008,38(12):1496-1503.

    Zhang Shihong, Jiang Ganqing, Dong Jin, et al. New results of SHRIMP zircon U-Pb chronology and their tectonic stratigraphic significance in the Wuqiangxi Formation of Banxi Group in South China[J]. Science China: Earth Sciences, 2008, 38(12): 1496-1503.
    [102] Zhang Q R, Li X H, Feng L J, et al. A new age constraint on the onset of the Neoproterozoic glaciations in the Yangtze Platform, South China[J]. The Journal of Geology, 2008, 116(4): 423-429.
    [103] 杜秋定,汪正江,王剑,等. 湘中长安组碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评,2013,59(2):334-344.

    Du Qiuding, Wang Zhengjiang, Wang Jian, et al. LA-ICP-MS U-Pb ages of detrital zircons from the Neoproterozoic Chang’an Formation in central Hunan and its geological implicatons[J]. Geological Review, 2013, 59(2): 334-344.
    [104] 赵彦彦,郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报,2011,27(2):545-565.

    Zhao Yanyan, Zheng Yongfei. Record and time of Neoproterozoic glaciations on Earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565.
    [105] Fanning C M, Link P K. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho[J]. Geology, 2004, 32(10): 881-884.
    [106] Macdonald F A, Schmitz M D, Crowley J L, et al. Calibrating the Cryogenian[J]. Science, 2010, 327(5970): 1241-1243.
    [107] Ma X, Yang K G, Li X G, et al. Neoproterozoic Jiangnan orogeny in southeast Guizhou, South China: Evidence from U–Pb ages for detrital zircons from the Sibao Group and Xiajiang Group[J]. Canadian Journal of Earth Sciences, 2016, 53(3): 219-230.
    [108] Su H M, Jiang S Y, Mao J W, et al. U-Pb ages and Lu-Hf isotopes of detrital zircons from sedimentary units across the Mid-Neoproterozoic unconformity in the western Jiangnan orogen of South China and their tectonic implications[J]. The Journal of Geology, 2018, 126(2): 207-228.
    [109] 高林志,戴传固,刘燕学,等. 黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及其地层意义[J]. 中国地质,2010,37(4):1071-1080.

    Gao Linzhi, Dai Chuangu, Liu Yanxue, et al. Zircon SHRIMP U-Pb dating of the tuffaceous bed of Xiajiang Group in Guizhou province and its stratigraphic implication[J]. Geology in China, 2010, 37(4): 1071-1080.
    [110] Yin C Y, Liu D Y, Gao L Z, et al. Lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMP II dating[J]. Chinese Science Bulletin, 2003, 48(16): 1657-1662.
    [111] Shu L S, Faure M, Yu J H, et al. Geochronological and geochemical features of the Cathaysia Block (South China): New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011, 187(3/4): 263-276.
    [112] Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 2006, 146(3/4): 179-212.
    [113] Wang J Q, Shu L S, Santosh M, et al. The Pre-Mesozoic crustal evolution of the Cathaysia Block, South China: Insights from geological investigation, zircon U-Pb geochronology, Hf isotope and REE geochemistry from the Wugongshan complex[J]. Gondwana Research, 2015, 28(1): 225-245.
    [114] 王鹏鸣,于津海,孙涛,等. 湘东新元古代沉积岩的地球化学和碎屑锆石年代学特征及其构造意义[J]. 岩石学报,2012,28(12):3841-3857.

    Wang Pengming, Yu Jinhai, Sun Tao, et al. Geochemistry and detrital zircon geochronology of Neoproterozoic sedimentary rocks in eastern Hunan province and their tectonic significance[J]. Acta Petrologica Sinica, 2012, 28(12): 3841-3857.
    [115] Li H, Zhou Z K, Algeo T J, et al. Geochronology and geochemi-stry of tuffaceous rocks from the Banxi Group: Implications for Neoproterozoic tectonic evolution of the southeastern Yangtze Block, South China[J]. Journal of Asian Earth Sciences, 2019, 177: 152-176.
    [116] Wang K, Dong S W, Yao W H, et al. Nature and evolution of Pre-Neoproterozoic continental crust in South China: A review and tectonic implications[J]. Acta Geologica Sinica - English Edition, 2020, 94(6): 1731-1756.
    [117] Xia Y, Xu X S, Zhu K Y. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement[J]. Precambrian Research, 2012, 216-219: 177-207.
    [118] Yu J H, Wang L J, O’Reilly S Y, et al. A Paleoproterozoic oro-geny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 2009, 174(3/4): 347-363.
    [119] Jiang C H, Wang X L, Wang S, et al. Paleoproterozoic basement beneath the eastern Cathaysia Block revealed by zircon xenocrysts from Late Mesozoic volcanics[J]. Precambrian Research, 2020, 350: 105922.
    [120] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151(1/2): 79-100.
    [121] Zheng Y F, Zhang S B. Formation and evolution of Precambrian continental crust in South China[J]. Chinese Science Bulletin, 2007, 52(1): 1-12.
    [122] Cheng X M, Cao S Y, Li J Y, et al. Early Paleoproterozoic tectono-magmatic and metamorphic evolution of the Yuanmou complex in the southwestern Yangzte Block[J]. Precambrian Research, 2022, 371: 106572.
    [123] Yu J H, O’Reilly S Y, Wang L J, et al. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 2010, 181(1/2/3/4): 97-114.
    [124] Yao J L, Shu L S, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry: New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(2/3): 553-567.
    [125] 周金城,王孝磊,邱检生. 江南造山带是否格林威尔期造山带?:关于华南前寒武纪地质的几个问题[J]. 高校地质学报,2008,14(1):64-72.

    Zhou Jincheng, Wang Xiaolei, Qiu Jiansheng. Is the Jiangnan orogenic belt a Grenvillian orogenic belt: Some problems about the Precambrian geology of South China[J]. Geological Journal of China Universities, 2008, 14(1): 64-72.
    [126] 李江海,穆剑. 我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约[J]. 地质科学,1999,34(3):259-272.

    Li Jianghai, Mu Jian. Tectonic constraints from Chinese cratonic blocks for the reconstruction of Rodinia[J]. Chinese Journal of Geology, 1999, 34(3): 259-272.
    [127] 陆松年. 从罗迪尼亚到冈瓦纳超大陆:对新元古代超大陆研究几个问题的思考[J]. 地学前缘,2001,8(4):441-448.

    Lu Songnian. From Rodinia to Gondwanaland supercontinents: Thinking about problems of researching Neoproterozoic supercontinents[J]. Earth Science Frontiers, 2001, 8(4): 441-448.
    [128] 周金城,王孝磊,邱检生. 江南造山带形成过程中若干新元古代地质事件[J]. 高校地质学报,2009,15(4):453-459.

    Zhou Jincheng, Wang Xiaolei, Qiu Jianshneg. Some Neoproterozoic geological events involved in the development of the Jiangnan orogen[J]. Geological Journal of China Universities, 2009, 15(4): 453-459.
    [129] 周金城,王孝磊,邱检生,等. 南桥高度亏损N-MORB的发现及其地质意义[J]. 岩石矿物学杂志,2003,22(3):211-216.

    Zhou Jincheng, Wang Xiaolei, Qiu Jiansheng, et al. The discovery of Nanqiao highly depleted N-MORB and geological significance[J]. Acta Petrologica et Mineralogica, 2003, 22(3): 211-216.
    [130] 贺安生,韩雄刚. 益阳火山岩特征及其形成构造环境分析[J]. 湖南地质,1992,11(4):269-274,277.

    He Ansheng, Han Xionggang. Characteristics of the volcanic rocks in Yiyang and discussion about its tectonic setting[J]. Hunan Geology, 1992, 11(4): 269-274, 277.
    [131] 王孝磊,周金城,邱检生,等. 湖南中—新元古代火山—侵入岩地球化学及成因意义[J]. 岩石学报,2003,19(1):49-60.

    Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, et al. Geochemi-stry of the Meso- Neoproterozoic volcanic-intrusive rocks from Hunan province and its petrogenic significances[J]. Acta Petrologica Sinica, 2003, 19(1): 49-60.
    [132] 凌长富,莫耀支,王砚耕. 贵州梵净山区层状超基性岩特征及其成因的初步探讨[J]. 地质科学,1975,10(4):343-351.

    Ling Changfu, Mo Yaozhi, Wang Yangeng. Features of bedded ultrabasic rocks in Fanjinshan region of Guizhou province and a preliminary discussion of their origin[J]. Chinese Journal of Geology, 1975, 10(4): 343-351.
    [133] 肖禧砥. 湖南益阳元古代科马提岩发现鬣刺结构[J]. 科学通报,1988,33(4):286-288.

    Xiao Xidi. Proterozoic Komati rock in Yiyang, Hunan province found hyena structure[J]. Chinese Science Bulletin, 1988, 33(4): 286-288.
    [134] Zhang S B, Wu R X, Zheng Y F. Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J]. Precambrian Research, 2012, 220-221: 45-64.
    [135] Zhang G W, Guo A L, Wang Y J, et al. Tectonics of South China continent and its implications[J]. Science China Earth Sciences, 2013, 56(11): 1804-1828.
    [136] Zhang Y Z, Wang Y J, Geng H Y, et al. Early Neoproterozoic (∼850 Ma) back-arc basin in the central Jiangnan orogen (eastern South China): Geochronological and petrogenetic constraints from meta-basalts[J]. Precambrian Research, 2013, 231: 325-342.
    [137] Zhang Y Z, Wang Y J, Fan W M, et al. Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (∼825Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan province) along the Jiangnan domain and their tectonic implications[J]. Precambrian Research, 2012, 220-221: 139-157.
    [138] Huang S F, Wang W, Pandit M K, et al. Neoproterozoic S-type granites in the western Jiangnan orogenic belt, South China: Implications for petrogenesis and geodynamic significance[J]. Lithos, 2019, 342-343: 45-58.
    [139] Wan L, Zeng Z X, Asimow P D, et al. Mid-Neoproterozoic mafic rocks in the western Jiangnan orogen, South China: Intracontinental rifting or subduction?[J]. Journal of Asian Earth Sciences, 2019, 185: 104039.
    [140] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878.
    [141] Wang X L, Zhou J C, Qiu J S, et al. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan province, South China: Implications for the evolution of the western Jiangnan orogen[J]. Precambrian Research, 2004, 135(1/2): 79-103.
    [142] Liu Y, Yang K G, Polat A, et al. Ca.780 Ma OIB-like mafic dykes in the western Jiangnan orogenic belt, South China: Evidence for large-scale upwelling of asthenosphere beneath a post-orogenic setting[J]. International Geology Review, 2020, 62(18): 2280-2299.
    [143] Du Q D, Wang Z J, Wang J, et al. Geochronology and paleoenvironment of the Pre-Sturtian glacial strata: Evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze Block, South China[J]. Precambrian Research, 2013, 233: 118-131.
    [144] Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China[J]. Precambrian Research, 2008, 163(3/4): 351-383.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(1)

Article Metrics

Article views(294) PDF downloads(76) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-09-27
  • Revised:  2024-03-04
  • Accepted:  2024-04-09
  • Published:  2024-12-10

Neoproterozoic Tectonic Evolution in the Middle Segment of the Jiangnan Orogenic Belt: Implications from detrital zircon U-Pb and Lu-Hf isotopes

doi: 10.14027/j.issn.1000-0550.2024.036
Funds:

National Natural Science Foundation of China 42272228

National Natural Science Foundation of China 41972242

Fok Ying-Tong Education Foundation, China 171013

Abstract: Objective Determining the depositional age, sedimentary sources and tectonic background of Neoproterozoic sedimentary strata in Hunan province is one of the keys to understanding tectonic evolution in the middle segment of the Jiangnan orogenic belt. Methods Six clastic rock samples were collected from the Lengjiaxi Group and Banxi Group in the middle segment of the Jiangnan orogenic belt. Provenance and tectonic setting of the sedimentary basins were determined by studying the morphology, trace elements, and U-Pb/Lu-Hf isotopic composition of detrital zircons, and collating published data for detrital zircons and zircons from source areas. Results The results indicated that the Lengjiaxi Group was formed at about 852⁃825 Ma, and the Banxi Group was formed at about 820⁃720 Ma. The most important detrital zircon age peaks in the Lengjiaxi Group and Banxi Group occur at 920⁃790 Ma; age peaks also appear at 1 750⁃1 620 Ma and 2 500⁃2 450 Ma in the Lengjiaxi Group, and at 1 950⁃1 790 Ma and 2 420⁃2 330 Ma in the Banxi Group. The Hf isotopic characteristics show that the Lengjiaxi Group mainly received sediments from the Yangtze Block, and the Banxi Group received detritus from both the Yangtze and Cathaysia Blocks. Conclusions The U-Pb and Lu-Hf isotopic compositions of detrital zircons indicate that deposition in the Lengjiaxi Group and Banxi Group occurred before and after the amalgamation of the Yangtze and Cathaysia Blocks, respectively. The Lengjiaxi Group was deposited in the back-arc basin of a trench-arc-basin system which was closed by 825 Ma accompanied by strong folding in the sedimentary strata and a large number of S-type granite intrusions. The Banxi Group was deposited in an intraplate rift setting related to post-collision extension. Rifting-related magma erupted around 780⁃760 Ma, and gradually weakened along the sedimentation of the Banxi Group.

CAI XinYu, WANG Wei, TIAN Yang. Neoproterozoic Tectonic Evolution in the Middle Segment of the Jiangnan Orogenic Belt: Implications from detrital zircon U-Pb and Lu-Hf isotopes[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1986-2005. doi: 10.14027/j.issn.1000-0550.2024.036
Citation: CAI XinYu, WANG Wei, TIAN Yang. Neoproterozoic Tectonic Evolution in the Middle Segment of the Jiangnan Orogenic Belt: Implications from detrital zircon U-Pb and Lu-Hf isotopes[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1986-2005. doi: 10.14027/j.issn.1000-0550.2024.036
  • 新元古代是地球历史演化的重要时期,这一时期最重要的地质过程是Rodinia超大陆的聚合和裂解及伴随的诸多全球性关键地质事件[1]。作为Rodinia超大陆重建重要组成之一的华南板块,记录了新元古代的岩浆—构造—沉积—成矿事件、古气候变化、埃迪卡拉纪多细胞生命演化等,同样也引起广泛的关注[25]。江南造山带是连接扬子地块和华夏地块的缝合带,记录了华南板块的形成过程,对于理解华南在该时期的地质过程,以及随后的古气候、古环境、生命演化等都非常重要。前人针对与江南造山带形成相关的岩浆时间进行了大量的研究,取得了诸多成果,主要是关于扬子地块和华夏地块拼合的界限、时间以及动力学机制等问题[1,515]。其中核心争论是扬子地块和华夏地块沿江南造山带(又称四堡或晋宁造山带)在何时拼合[16],华南板块在新元古代时期的构造属性如何。一些研究认为,扬子地块和华夏地块之间的碰撞发生在约1 000~880 Ma[1,1721];另外一些研究则发现该拼合发生在约860~800 Ma[4,2228]。关于两板块的拼合方式包括向南俯冲[29]、向北俯冲[3033]、发散式双重俯冲[11,26,34]和剪切闭合[32,35]等。相应地,主要有地幔柱假说(plume-rift)、板片—岛弧模型(slab-arc model)和板片—裂谷模型(platerift model)三种不同的构造演化模型[17,22,30,36]

    前人对于华南板块新元古代这一时期的研究多依托于岩浆事件的信息,沉积岩方面的研究则相对匮乏[3739]。当原生的岩浆—变质—构造事件受到后期改造很难完整保留下来时,沉积盆地的物源和构造背景分析则可以为盆—山过程提供关键的信息,尤其是对于前寒武纪的造山事件。江南造山带中段湖南地区发育完整的新元古代地层,主要包括下伏的冷家溪群和上覆的板溪群,二者被与造山事件相关的角度不整合所分割。因此,探究它们的沉积时代、物源和构造背景,对于理解江南造山带中部地壳的新元古代构造演化过程具有重要意义。

  • 江南造山带为NEE走向且呈NW向弧形拱出的地质构造单元,东西向长约1 500 km,其位于华南板块中部靠东的位置[4042]图1)。造山带西南起桂北地体往南,东北至怀玉地体,整个造山带跨越了浙江、安徽、江西、湖南、贵州、广西等区域[4346],是一套由弱变质、强变形的巨厚火山—沉积建造及同时期的侵入岩体所组成的地质单元。

    Figure 1.  Geological sketch of the Precambrian in the northern Hunan area of Jiangnan orogenic belt of the South China Block (basemap from references [40⁃42])

    江南造山带中段湘中—湘东(北)地区的新元古代沉积地层自下而上(从老到新)依次可以分为冷家溪群、板溪群、南华系/成冰系和震旦/埃迪卡拉系[6,47]表1)。其中扬子地块南部的新元古代沉积基底中包含两套低级变质的地层,并被区域的角度不整合所隔开,其中不整合面之下为冷家溪群,与之相当的同时期地层单元主要包括广西的四堡群、贵州的梵净山群和江西的双桥山群等。冷家溪群作为组成江南造山带的褶皱基底之一,早期学者通过研究其地层中的侵入岩而限定其为中元古代地层[4850]。随着地质定年精度的大幅提高,研究得到基底内侵入岩的年龄主要为840~790 Ma[5154]。此外,碎屑锆石和火山凝灰岩锆石U-Pb年龄对基底地层的时代进一步限制在860~820 Ma[7,5559]。新的年龄数据基本可以确定江南造山带褶皱基底形成于新元古代而非中元古代。冷家溪群具有低级变质(绿片岩相)、强变形的特征,主要为深绿色低级变质的砂岩、粉砂岩、泥岩组成的类复理石沉积,局部夹基性—酸性火山岩(如具有柱状节理或枕状构造的熔岩和火山碎屑岩),地层显示高角度紧闭褶皱及等斜褶皱[19,43,60]。孙海清等[61]依据区域岩石组合特征指出冷家溪群下部为海相深水盆地沉积细碎屑岩系,上部为盆地斜坡相浊流(扇)沉积粗碎屑岩系。冷家溪群自下而上可以分为六个岩组,依次为易家桥组、潘家冲组、雷神庙组、黄浒洞组、小木坪组、大药姑组[62],研究区仅出露下部五个组。

    Table 1.  Comparison of the comprehensive division of stratigraphy in the study area (modified from references [6,47])

    上覆于角度不整合的为板溪群,与之相当的同时期地层以丹州群、高涧群等为代表(表1)。现有的地质年代学研究表明,板溪群形成于815~715 Ma[5,33,6367]。板溪群整体变形变质较弱,仅在局部发育较为宽缓的褶皱构造,主要由砂岩、板岩、砾岩、泥灰岩、碳酸盐岩、页岩和火山碎屑岩组成,并被新元古代基性、超基性岩石所侵入[16,60,68]。研究区板溪群自下而上分为宝林冲组、横路冲组、马底驿组、通塔湾组、五强溪组、多益塘组、百合垅组、牛牯坪组[62]

  • 研究区位于扬子地块东南部江南造山带中段湘中—湘东北地区(图2a沧水铺地区、图2b板溪村地区、图2c长沙地区、图2d衡阳地区)。区内最老地层为新元古代冷家溪群,向上为板溪群、南华—震旦纪、显生宙地层,且有第四系覆盖物堆积。研究区内发生多期次岩浆、构造活动,以燕山期、喜马拉雅期次为主,发育多组断层裂隙[43],沿NNW、NNE展布居多。

    Figure 2.  Geological map of the study area and sampling point (based on 1∶200 000 geological map width, namely Anhua amplitude, Changsha amplitude, Liuyang amplitude and Hengyang amplitude, stratigraphic histogram modified from references [41,62,67])

    研究区出露冷家溪群变砂岩、板岩,层内广泛发育紧闭褶皱,局部可见槽模构造、水平层理等现象,整体指示了较强的变形作用,局部地层发生倒转(图3)。野外出露板溪群砾岩、砂岩、板岩,层内变质变形较弱,发育多种层理构造,冲洗交错层理、槽状交错层理、透镜状层理等,指示其沉积于水动力较强,水流方向不断变化的环境之下(图3)。对野外露头实地考察并采集代表性岩石样品共六件,根据所属地层从老到新样品号依次为ww259、ww253、ww295、ww380、ww375、ww343,包括来自冷家溪群雷神庙组的长石砂岩、黄浒洞组的砂质板岩以及小木坪组的黄绿色泥质粉砂岩共三件样品,以及来自板溪群底部的紫红色砂质砾岩、紫红色砂岩以及板溪群上部五强溪组上段的长石砂岩共三件样品(图3)。样品的获取和制备过程中尽量避免了脉体、蚀变和风化产物等的干扰。

    Figure 3.  Typical outcrops in the sedimentary⁃tectonic field of the Lengjiaxi Group and Banxi Group in the study area

  • 将3~5 kg的岩石样品粉碎至60~100目,之后进行重力淘洗并使用电磁分选以分离锆石重矿物。得到的锆石颗粒在双目显微镜下进行手工挑选,嵌入环氧树脂中,然后抛光至大概2/3,并进行透、反射光和阴极发光照片的拍摄。

  • 锆石的U-Pb同位素的分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。将型号为GeoLas Pro型193nm ArF准分子激光剥蚀系统和Agilent 7700x型四极杆电感耦合等离子质谱仪(ICP-MS)联合进行实验测试。193nm ArF准分子激光,激光能量密度为10 J/cm2,剥蚀束斑直径为32 μm,频率为5 Hz,持续时间为45 s(相当于225个脉冲)。使用氦气作为载气,将剥蚀的气溶胶有效地输送到ICP-MS。测试之前在样品表面进行5~10 s预剥蚀处理,排除或减少普通铅的污染。锆石91500被用作校正元素分馏的主要标样,同时将锆石GJ-1和Plešovice[69]作为未知样品进行了质量控制分析。锆石的微量元素组成以NIST SRM 610作为外标,91Zr作为二级标准。使用软件ICPMSDataCal进行了背景和锆石信号的离线选择和整合,以及微量元素分析和U-Pb测年的时间漂移校正和定量校准[70]。普通铅的校正采用MS Excel程序ComPbCorr#3.17进行校正[71],数据使用Isoplot程序进行处理[72]。测试结果显示检测标样GJ-1(601±17 Ma,2σ,MSWD=1.3)和PL(334.2±7.5 Ma,2σ,MSWD = 2.9)的一致年龄与推荐值(GJ-1:599.8±1.7 Ma,2σ;PL:337.13±0.37 Ma,2σ)一致[69,73]

  • 锆石Lu-Hf同位素分析与U-Pb同位素定年在同一颗粒相同位置上进行。使用香港大学Nu Plasma等离子HR多接收器电感耦合等离子体质谱仪(MC-ICPMS)和M-50 193nm准分子激光烧蚀系统对锆石进行Hf同位素分析。实验采用的测试束斑直径为55±2 μm,频率为10 Hz,能量密度为15 J/cm2,在静态收集模式下同时测量原子质量为172~179的同位素。176Yb与176Hf的同量异位干扰已针对176Yb/172Yb比值矫正为0.588 6[74]。Yb同位素比值的仪器质量偏差校正使用指数定律归一化为1.352 74的172Yb/173Yb[74],使用指数定律,Hf同位素比率归一化为0.732 5的179Hf/177Hf[75]。获得Yb和Hf之间的关系βYb=0.872βHf,并将其用于质量偏置偏移[76]。通过测量无干扰的175Lu同位素的强度并使用推荐的176Lu/175Lu比值0.026 55来校正176Lu与176Hf的干扰[77]。由于176Lu的信号强度对176Hf的贡献不大(通常<1%),可以假设Lu同位素的质量偏差(βLu)与βHf相同[78]。在分析过程中,通过测量未知样品的锆石标准91500和GJ-1进行质量控制,以评估分析数据的可靠性。

  • 冷家溪群和板溪群沉积岩样品中的锆石颗粒大多数为浅黄色至无色,透明至半透明,锆石颗粒大小集中在90~200 μm。阴极发光图像显示,几乎所有的新元古代以来的晶粒保留了较好的自形—半自形棱柱状,呈现振荡环带,指示其为岩浆成因。古元古代晚期—中元古代的锆石多不规则,但仍保留较为明显的振荡环带,部分锆石存在较薄的亮边。较为古老的古元古代早期的碎屑锆石多浑圆状,存在核—边、核—幔—边结构,核部显示继承锆石的特征(图4)。

    Figure 4.  Typical detrital zircon cathodoluminescence images of Lengjiaxi Group and Banxi Group

    超过98%的碎屑锆石Th/U值均大于0.1(图5),结合碎屑锆石的阴极发光图像,认为所测试的锆石点位均为岩浆成因。

    Figure 5.  Th/U ratio vs. U⁃Pb age binary plot for detrital zircons

  • 总计对六件样品中428颗碎屑锆石进行了U-Pb地质年代学分析,部分分析结果展示在图6中。其中206Pb/238U年龄数据用于小于1 000 Ma的颗粒、207Pb/206Pb年龄数据用于大于1 000 Ma的颗粒,此外共收集冷家溪群、板溪群碎屑锆石U-Pb年龄1 576个数据点[16,30,35,40,56,61,66,7981]图7)。

    Figure 6.  U⁃Pb age concordance diagrams for detrital zircons

    Figure 7.  U⁃Pb age KDE atlas of detrital zircons

  • 样品ww259是从冷家溪群下部雷神庙组采集的长石砂岩。对所含的62颗锆石进行分析,其中55个分析点的U-Pb年龄具有较高的协和度(91%~110%),年龄介于2 586~848 Ma,并给出了三个年龄峰,分别在2 406 Ma、1 740 Ma和918 Ma左右(图7f)。ww259样品最年轻的两个锆石206Pb/238U年龄显示852.3±4.23 Ma的加权平均年龄,限定衡阳地区的冷家溪群下部雷神庙组开始沉积于852 Ma或之后。样品ww253是从冷家溪群中部黄浒洞组采集的砂质板岩。对所含的77颗锆石进行分析,除2个点外其余数据显示较高的协和度(92%~99%)。75颗高协和度锆石的U-Pb年龄在2 985~822 Ma,并显示三个年龄峰值,分别约为2 335 Ma、1 750 Ma和872 Ma(图7d)。该样品最年轻的两个锆石206Pb/238U年龄显示821±3.19 Ma的加权平均年龄,指示衡阳地区的冷家溪群黄浒洞组开始沉积晚于821 Ma。样品ww295是从冷家溪群上部小木坪组采集的黄绿色泥质粉砂岩。对所含的47颗锆石进行了分析,除7个点外其余数据显示较高的协和度(90%~99%),其余40颗协和的锆石给出2 444~835 Ma的年龄范围,并具有三个年龄峰值,分别为2 422 Ma、1 620 Ma和857 Ma(图7b)。该样品最年轻的8个锆石206Pb/238U年龄显示840±3.54 Ma的加权平均年龄,且在最年轻的锆石835±5 Ma在误差范围之内,表明长沙地区冷家溪群小木坪组最大沉积年龄晚于835 Ma。

  • 样品ww380是从板溪群宝林冲组所采集的一块紫红色砂质砾岩,位于不整合面之上约10 m。该样品共分析了80颗碎屑锆石,其中77个分析点的U-Pb年龄具有较高的协和度(97%~104%),年龄范围在2 606~806 Ma,并给出了2 479 Ma、1 790 Ma和851 Ma处的三个主要年龄峰值(图7e),其中较年轻的一组锆石的加权平均年龄815.6±3.6 Ma,解释为沧水铺地区板溪群的底界年龄。样品ww375是在样品ww380附近所采集的一块紫红色砂岩,前者层位较后者稍微向上20 m,层位为板溪群横路冲组。共从该样品中分析了80颗碎屑锆石,其中77颗协和的锆石(91%~106%)定义了2 656~769 Ma的年龄范围,并给出了三个年龄峰,分别为2 480 Ma、1 880 Ma和850 Ma左右(图7c)。样品最年轻的3颗锆石206Pb/238U年龄显示773±2.68 Ma的加权平均年龄,说明沧水铺地区板溪群下部的横路冲组的最大沉积年龄在773 Ma之后。样品ww343为采集于板溪群上部百合垅组上部的一块长石砂岩。共从该样品中分析了80颗碎屑锆石,除14个点外其余数据显示较高的协和度(90%~104%),66个协和的年龄数据显示介于2 495~746 Ma,且在2 455 Ma、1 950 Ma和794 Ma处显示出三个主要年龄峰值(图7a)。样品最年轻的2个锆石206Pb/238U年龄显示747±4.18 Ma的加权平均年龄,指示在板溪村地区板溪群上部的百合垅组的最大沉积年龄在747 Ma之后。

  • 选择冷家溪群上部小木坪组和板溪群下部宝林冲组、横路冲组的三个样品ww295、ww380以及ww375,对来自其中显示出协和U-Pb年龄的碎屑锆石共64颗进行原位Hf同位素分析,结果显示不整合面上下地层样品的锆石εHf(t)与U-Pb年龄分布图如图8a所示。整体上,大部分锆石具有低于球粒陨石均一库的εHf(t)值(-0.7~-37.7),说明这些锆石的母岩浆以古老大陆地壳重熔为主。在中、新元古代时期,少量锆石的εHf(t)值大于0,尤其是新元古代锆石的εHf(t)值接近亏损地幔值(+10.5),表明有幔源物质的贡献。冷家溪群和板溪群样品中锆石的Hf同位素显示不同的模式年龄分布。冷家溪群上部岩石中锆石的二阶段Hf模式年龄基本介于3.5~1.9 Ga,在3.1~2.7 Ga有一年龄峰值(图8b)。对于板溪群样品,其锆石二阶段Hf模式年龄介于3.6~1.0 Ga,在3.3~3.0 Ga、2.7~2.2 Ga和1.8~1.5 Ga处有三个年龄峰值(图8c,d)。

    Figure 8.  (a) Zircon εHf(t) vs. U⁃Pb age binary plot; (b⁃d) histograms of Hf isotope two⁃stage mode age statistics of the sample

  • 根据获得的测年结果,来自冷家溪群雷神庙组、黄浒洞组、小木坪组的三个样品显示冷家溪群的底界年龄小于852 Ma,上部小木坪组沉积上限年龄应在835 Ma之后,这与从其他区域冷家溪群中的碎屑锆石测试结果具有一致性[30,3941,61,66,8188],并且也与冷家溪群相当的其他新元古代沉积地层序列得到的锆石U-Pb测年结果基本相近,包括溪口群、梵净山群、四堡群等[38,8081,85,8894]。此外,在冷家溪群以及同时代地层中报道了825~790 Ma的侵入岩年龄[31,54,84,9597]。结合前人得到的数据,冷家溪群的年龄上限(最大沉积年龄)理论上须小于从碎屑锆石中获得的最年轻锆石约825 Ma[33,61,66,82,87,98],同时应该比所报道的侵入岩更老,因此认为江南造山带中部的冷家溪群的沉积年龄上限约为825 Ma。

    关于不整合面之上板溪群的沉积年龄,本研究中底砾岩样品ww380中最年轻的一组锆石U-Pb加权年龄为815.6±3.6 Ma,同样在湖南长沙望城区剖面、湘北石门县剖面以及湘东北剖面均获得基本一致的锆石U-Pb年龄[66,81,8586]。此外,有研究指出板溪群底部的沧水铺组中的火山岩、火山集块岩年龄为814±12 Ma、821±13 Ma[99100],且马底驿组中凝灰岩年龄为820±3 Ma[82],综上数据认为板溪群沉积始于约820 Ma。本文所采集板溪群上部样品ww343中最年轻锆石约746 Ma,前人报道了板溪群顶部最年轻的锆石年龄约725 Ma[8990,101102],结合上覆南华纪地层底界的沉积年龄小于720 Ma[66,103],以及全球性冰川事件的限制[38,88,91,104106],认为板溪群沉积始于约820 Ma,约725 Ma沉积终止。

    早在20世纪50年代,湖南省地质局研究人员就桃源县茶庵铺剖面发现了夹在冷家溪群和板溪群之间的新元古代角度不整合面,并取名为“武陵运动”的产物,大致与广义的晋宁运动相当。贵州、湖南地区以角度不整合为主,桂北地区丹州群与下部四堡群从角度不整合过渡到平行不整合(表1)。研究通过上下地层的沉积界限来限制该不整合形成的大致时代。桂北地区武陵不整合的时间限制为835~795 Ma[107]或832~803 Ma[108]。贵州梵净山地区结合梵净山群的沉积上限以及不整合上方地层底部的凝灰岩,将武陵不整合的时间限制在816~814 Ma[56,109]。湘西北、湘东北、湘北地区的研究指出武陵不整合时间为830~809 Ma[81]、822~802 Ma[98]、827~798 Ma[66,110]。结合冷家溪群、板溪群的沉积时代,认为该角度不整合形成于825~820 Ma,与前人的报道年龄范围一致。

  • 碎屑锆石的年龄图谱统计与源区对比已被广泛运用于示踪沉积物源。根据所采集的六件样品(绿色直方图),以及收集前人研究中的1 576颗碎屑锆石年龄(黄色背景)得到的KDE图谱(图7)。由KDE年龄图谱显示上下地层最为显著的峰值均分布于新元古代920~790 Ma内(图7)。之前的研究报道了江南造山带地区存在大量的新元古代岩浆岩,譬如年龄在800~760 Ma伸展相关的火山岩[80,8990,111],830~800 Ma同碰撞或碰撞后花岗岩[24,31],以及990~840 Ma在江南造山带地区及华夏地块发现的蛇绿混杂岩以及弧相关岩浆岩[24,34,38,88,91,112113]。因此,广泛分布于江南造山带的新元古代岩浆岩可能是该地区冷家溪群至板溪群沉积终止过程中的重要物源之一。之前的研究根据锆石晶型认为冷家溪群、板溪群的物源较近[66],并且本研究中锆石的Th/U比值(图5)以及锆石的Hf同位素与江南造山带新元古代岩浆岩对比结果(图9)也支持这一观点。

    Figure 9.  Binary statistical chart of detrital zircons εHf(t) vs. U⁃Pb age in the Lengjiaxi Group and Banxi Group

    下伏冷家溪群中元古代峰值介于1 750~1 620 Ma,而上覆板溪群年龄峰值介于1 950~1 790 Ma,尤其是冷家溪群上部1 620 Ma与板溪群下部1 790 Ma峰值的明显差异(图7),且绝大多数冷家溪群碎屑锆石负的锆石εHf(t)也表明其物源以古老大陆地壳物质的重熔为主,而板溪群存在一定比例的正εHf(t)值的锆石(图9),说明沉积物的源岩具有幔源物质的贡献,上下两套地层古—中元古代的沉积物来源有所差异。江南造山带地区虽然存在这一时期的成岩,但其对两套地层尤其是冷家溪群贡献较小。依据上文所述,两套地层物源来源较近,因此其最可能的源区位于华夏地块或者扬子地块内部,通过对比碎屑锆石及扬子地块和华夏地块岩浆岩的Hf同位素特征发现(图10),冷家溪群自下而上古元古代晚期1 750~1 620 Ma的峰值与扬子地块西南缘如鱼洞子、后河杂岩的Hf同位素特征接近,而华夏地块这一时期的岩浆事件报道较少或者尚未发现,或者尚未剥露沉积于冷家溪群之中。而在扬子地块和华夏地块均报道了1 950~1 750 Ma的岩浆事件,但与碎屑锆石对比发现,冷家溪群、板溪群锆石的Hf同位素特征与扬子地块内部崆岭杂岩、董岭杂岩以及越南北部的片麻岩更为相似,其中冷家溪群与华夏地块岩浆岩Hf同位素特征范围基本无交集,而板溪群部分锆石点与华夏地块的岩浆岩Hf同位素特征范围有所重叠(图10)。

    Figure 10.  Comparison of Hf isotopic characteristics of detrital zircons in Lengjiaxi Group, Banxi Group and potential magmatic source area

    同样,KDE年龄图谱也显示冷家溪群最古老的锆石年龄峰值介于2 500~2 450 Ma,上覆板溪群则相对年龄介于2 420~2 330 Ma,同样支持两套地层物源有所差异。而新太古代晚期至古元古代早期的碎屑锆石显示2 650~2 450 Ma的沉积物来源主要是扬子地块中的崆岭杂岩、钟祥杂岩,以及扬子地块西缘—西南缘的岩浆岩,并且冷家溪群碎屑锆石Hf同位素特征与扬子地块这些源区更为接近(图10)。2 450~2 300 Ma的物源除了扬子地块西南缘的鱼洞子、后河以及越南北部的来源外,华夏地块也显示其内部存在这一时期的岩石基底,并且板溪群碎屑锆石Hf同位素特征除了能和扬子地块进行对比外,与华夏地块这一时期岩浆岩的锆石也显示出相似性。所收集的岩浆岩也表明扬子地块和华夏地块可能存在广泛的太古宙基底[34,113,120124]

    综合碎屑锆石年龄KDE图谱以及与潜在源区Hf同位素特征对比,本文认为冷家溪群和板溪群物源有所不同,冷家溪群物源主要来自扬子地块内部,而板溪群物源除了扬子地块来源外,可能还存在华夏地块的物质供给。造成这一结果的主要原因可能是冷家溪群沉积终止之前,扬子地块和华夏地块尚未拼合,而在拼合之后开始沉积板溪群。

  • 冷家溪群上限大致在825 Ma左右,晚于全球性的格林威尔造山运动[125128]。基于冷家溪群中砂岩的地球化学特征,以在江南造山带多个地区报道的冷家溪群中所夹的大陆边缘岛弧环境下形成的拉斑玄武岩和钙碱性玄武岩系列岩石,一些研究者认为冷家溪群是基于沟—弧—盆体系下沉积在弧后盆地的产物[39,42,61,129133]。研究报道了与弧后盆地具有地球化学亲缘性如伏川蛇绿岩的锆石U-Pb年龄为824±3 Ma[134],以及在江南造山带中—西段地区的860~835 Ma的镁铁质岩石[135136],这些研究表明冷家溪群所在的弧后盆地闭合可能始于860 Ma,在825 Ma完全闭合[5,56]。此后,开启扬子地块和华夏地块的拼合。以冷家溪群和板溪群为界的高镁火山岩序列的地球化学特征和地质年代学数据认为扬子地块和华夏地块最终拼合于822~815 Ma[137],碎屑锆石U-Pb年也表明碰撞发生于825~815 Ma[11],根据825 Ma的过铝质花岗质岩浆作用以及805 Ma的双峰式岩浆作用,有学者提出碰撞发生于825~805 Ma,且在805 Ma之后变为板内机制[26,138]。而冷家溪群地层内发育大量的褶皱则可能由洋内弧与扬子地块的拼合作用有关,在碰撞的过程中,大量S型花岗岩侵入了扬子地块的褶皱沉积序列[26,54,139]。此外,对碎屑锆石进行CAD(年龄累积曲线)投图(图11),冷家溪群的沉积环境显示出汇聚盆地的特征,同样支持了弧后盆地这一观点。

    Figure 11.  CAD discriminant diagram of structural properties of sedimentary basins in Lengjiaxi Group and Banxi Group

    结合已有的岩石学证据以及本文沉积学方面的工作,认为江南造山带中段偏倾向于已提出的板片—裂谷模型。在805 Ma之后,进入碰撞后伸展作用并发育陆内裂谷。碎屑锆石的CAD图谱显示了板溪群沉积于伸展环境中的沉积盆地(图11)。扬子地块和华夏地块拼合后,进入造山后伸展期,地幔流上升,并引发陆内裂谷作用,沿前江南造山带形成南华盆地。有研究得到板溪群凝灰质岩石的年龄为770~766 Ma,微量元素表明其源于大陆地壳,并有后期造山流体的叠加,板溪群凝灰质岩石显示出火山弧的亲缘性,但其在与裂谷事件有关的伸展环境中积累,锆石Hf同位素数据表明新生(即新元古代)弧源物质和古元古代非均质地壳的混合物是这些岩石的岩浆源区物质[115]。此外,研究报道了年龄为780~750 Ma的一系列双峰式碱性岩石,被认为是造山后伸展的产物[16,139,141142],这些岩石同样是软流圈地幔大规模上升流和从造山到造山后构造环境转变的重要标志[142]。在此期间还形成了许多断层、非造山花岗岩侵入体和双峰火山岩[24,80,89,111],以及江南造山带东部约800~760 Ma裂谷相关火山岩的地质年代和地球化学特征,且造山带后伸展可能沿整个造山带具有跨时性[80,8990]。结合拼合后的华南板块的碰撞后伸展和裂谷作用的诸多证据,同裂谷岩浆作用集中发生于780~760 Ma[143144]。板溪群凝灰岩和侵入的S型花岗岩的主、微量元素特征揭示了俯冲作用的影响,地幔上涌引发的快速裂谷作用可能导致地幔和地壳之间的强烈相互作用,正如锆石中变化的Hf同位素所记录的[115],而裂谷作用一直持续到板溪群沉积上限720 Ma以后逐渐减缓。

  • (1) 冷家溪群沉积始于852 Ma之前,沉积上限在825 Ma左右;板溪群沉积下限在820 Ma左右,沉积上限应在720 Ma之后。

    (2) 碎屑锆石Th/U值指示冷家溪群、板溪群碎屑锆石为火成岩来源,江南造山带的新元古代岩浆岩可能是该地区新元古代沉积地体重要物源之一。冷家溪群物源来自扬子地块内部,在冷家溪群沉积终止前扬子地块和华夏地块尚未拼合,拼合之后开始沉积板溪群,板溪群沉积物或有华夏地块的物源贡献。

    (3) 冷家溪群于沟弧盆体系下沉积在弧后盆地,盆地闭合终于冷家溪群沉积上限约825 Ma,此时,沉积地层内发育大量的褶皱以及大量S型花岗岩侵入褶皱基底中。板溪群沉积于碰撞后伸展作用背景下陆内裂谷的盆地,同裂谷岩浆作用集中发生在780~760 Ma,裂谷作用于板溪群沉积结束逐渐减弱。

Reference (144)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return