Advanced Search
Volume 434 Issue 4
Aug.  2025
Turn off MathJax
Article Contents

YUAN LongMiao, WANG ZhiYu, SHAO YuanYuan, CHEN JianZhen, WU YingQin. Degradation Characteristics of n-Hexadecane by Petroleum Hydrocarbon-Degrading Bacteria Acinetobacter sp. 5-5[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1386-1397. doi: 10.14027/j.issn.1000-0550.2023.109
Citation: YUAN LongMiao, WANG ZhiYu, SHAO YuanYuan, CHEN JianZhen, WU YingQin. Degradation Characteristics of n-Hexadecane by Petroleum Hydrocarbon-Degrading Bacteria Acinetobacter sp. 5-5[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1386-1397. doi: 10.14027/j.issn.1000-0550.2023.109

Degradation Characteristics of n-Hexadecane by Petroleum Hydrocarbon-Degrading Bacteria Acinetobacter sp. 5-5

doi: 10.14027/j.issn.1000-0550.2023.109
  • Received Date: 2023-09-15
  • Accepted Date: 2023-12-12
  • Rev Recd Date: 2023-10-05
  • Available Online: 2023-12-12
  • Publish Date: 2025-08-10
  • Objective Microbial remediation of oil pollution has gained significant attention owing to its environmentally friendly nature and the absence of secondary pollution. To enhance the biological remediation technology for oil pollution, this study screened efficient petroleum hydrocarbon-degrading bacteria to understand and assess their degradation mechanisms. Using soils from the oil-polluted site in the Changqing Oilfield as the microbial source, strains with efficient degradation capabilities towards n-hexadecane were identified. Methods Through morphological characteristics, Gram staining, biochemical and physicochemical tests, 16s rDNA sequence analysis, and resistance experiments, strain Acinetobacter sp. 5-5 and its optimal degradation conditions for n-hexadecane were investigated. Based on zero-order, quasi-first-order, and quasi-second-order kinetic models, the degradation process of n-hexadecane was studied. Additionally, the acidity-alkalinity of the culture medium and the degradation product spectrum were analyzed to identify the degradation pathway of n-hexadecane. Results The results indicated that the strain belonged to Acinetobacter sp., and at 0.5% (V/V) initial concentration, 0.5% salinity, and pH 7.0, the total degradation rate of n-hexadecane by the petroleum hydrocarbon-degrading bacteria reached 99.24%, with a rapid degradation rate of 82.13% within two days. The kinetics of the degradation process revealed that the quasi-first-order model had the best fitting effect for the substrate degradation of n-hexadecane. The preliminary analysis suggested that the degradation pathway of n-hexadecane in this system involved chain breaking and acid production processes. Conclusions This research demonstrated that petroleum hydrocarbon degrading bacterium Acinetobacter sp. 5-5 had a strong degradation effect on n-hexadecane when the salinity was as high as 0.5%, and the degradation rate reached more than 99%, indicating that this strain had a high potential for alkane degradation and good salinity tolerance and was expected to be widely used in the remediation of petroleum-contaminated salinized soils.
  • [1] 朱立强. 石油化工对环境的污染及应对措施[J]. 化工管理,2020(10):44-45.

    Zhu Liqiang. Environmental pollution of petrochemical industry and its countermeasures[J]. Chemical Enterprise Management, 2020(10): 44-45.
    [2] 许华夏,张春桂. 微生物降解石油污染的土壤[J]. 辽宁城乡环境科技,1998,18(6):22-24.

    Xu Huaxia, Zhang Chungui. Microbial degradation of crude oil contaminated soil[J]. Liaoning Urban and Rural Environmental Science & Technology, 1998, 18(6): 22-24.
    [3] Mohseni-Bandpei A, Majlesi M, Rafiee M, et al. Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste[J]. Chemosphere, 2019, 227: 277-288.
    [4] 李宝明,阮志勇,姜瑞波. 石油降解菌的筛选、鉴定及菌群构建[J]. 中国土壤与肥料,2007(3):68-72.

    Li Baoming, Ruan Zhiyong, Jiang Ruibo. Screen and identification of oil degrading bacteria and community construction[J]. Soils and Fertilizers Sciences in China, 2007(3): 68-72.
    [5] Abbasian F, Lockington R, Mallavarapu M, et al. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria[J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 670-699.
    [6] Farag S, Soliman N A, Abdel-Fattah Y R. Statistical optimization of crude oil bio-degradation by a local marine bacterium isolate Pseudomonas sp. sp48[J]. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 409-420.
    [7] Wang Z D, Fingas M. Developments in the analysis of petroleum hydrocarbons in oils, petroleum products and oil-spill-related environmental samples by gas chromatography[J]. Journal of Chromatography A, 1997, 774(1/2): 51-78.
    [8] 康跃惠,盛国英,傅家谟,等. 珠江澳门河口沉积物柱样品正构烷烃研究[J]. 地球化学,2000,29(3):302-310.

    Kang Yuehui, Sheng Guoying, Fu Jiamo, et al. The study of n-alkanes in a sedimentary core from Macao Estuary, Pearl River[J]. Geochimica, 2000, 29(3): 302-310.
    [9] 郭娜,李志敏,叶勤. 烷烃降解菌的筛选、鉴定及优势菌株的降解特性[J]. 应用与环境生物学报,2011,17(4):572-576.

    Guo Na, Li Zhimin, Ye Qin. Screen and identification of alkane degrading bacteria and characteristics of a predominant strain[J]. Chinese Journal of Applied & Environmental Biology, 2011, 17(4): 572-576.
    [10] Sorkhoh N A, Ghannoum M A, Ibrahim A S, et al. Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait[J]. Environmental Pollution, 1990, 65(1): 1-17.
    [11] M'rassi A G, Bensalah F, Gury J, et al. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons[J]. Environmental Science and Pollution Research International, 2015, 22(20): 15332-15346.
    [12] Bovio E, Gnavi G, Prigione V, et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation[J]. Science of the Total Environment, 2017, 576: 310-318.
    [13] 冒学宇,李勇,吴丛杨慧,等. 石油烃降解菌的筛选及其降解特性研究[J]. 环境工程技术学报,2022,12(3):886-892.

    Mao Xueyu, Li Yong, Wu Congyanghui, et al. Research on the screening of petroleum hydrocarbon degrading bacteria and their degradation characteristics[J]. Journal of Environmental Engineering Technology, 2022, 12(3): 886-892.
    [14] 安玉姿. 土壤石油污染的危害与修复[J]. 中国资源综合利用,2017,35(5):72-73.

    An Yuzi. Harm and remediation of soil oil pollution[J]. China Resources Comprehensive Utilization, 2017, 35(5): 72-73.
    [15] 周德庆,徐德强. 微生物学实验教程[M]. 3版. 北京:高等教育出版社,2013:33-35.

    Zhou Deqin, Xu Deqiang. Microbiology lab course[M]. 3rd ed. Beijing: Higher Education Press, 2013: 33-35.
    [16] 陈小蓉,阮志勇,王彦伟,等. Gordonia sp. LAM0048的分离鉴定及其降解正十六烷的研究[J]. 生物技术进展,2015,5(2):137-141.

    Chen Xiaorong, Ruan Zhiyong, Wang Yanwei, et al. Research on the isolation, identification and n-hexadecane biodegrading characteristics of Gordonia sp. LAM0048[J]. Current Biotechnology, 2015, 5(2): 137-141.
    [17] Ibrahim H M M. Biodegradation of used engine oil by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 isolated from oil-contaminated soil[J]. 3 Biotech, 2016, 6(2): 226.
    [18] Kumar B L, Gopal D V R S. Effective role of indigenous microorganisms for sustainable environment[J]. 3 Biotech, 2015, 5(6): 867-876.
    [19] 赵凤兰,岳湘安,侯吉瑞,等. 碱对复合驱油体系与原油乳化作用的影响[J]. 石油钻探技术,2010,38(2):62-66.

    Zhao Fenglan, Yue Xiang’an, Hou Jirui, et al. Impact of alkali on emulsification of compound flooding system and crude oil[J]. Petroleum Drilling Techniques, 2010, 38(2): 62-66.
    [20] Obuekwe C O, Badrudeen A M, Al-Saleh E, et al. Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress[J]. International Biodeterioration & Biodegradation, 2005, 56(4): 197-205.
    [21] Riis V, Kleinsteuber S, Babel W. Influence of high salinities on the degradation of diesel fuel by bacterial consortia[J]. Canadian Journal of Microbiology, 2003, 49(11): 713-721.
    [22] 刘虹,张朋朋,刘娜,等. 三种细菌降解直链烷烃的效果及降解动力学研究[J]. 安全与环境工程,2017,24(3):66-70.

    Liu Hong, Zhang Pengpeng, Liu Na, et al. Degradation efficiency and dynamics of straight-chain alkane degraded by three kinds of bacteria[J]. Safety and Environmental Engineering, 2017, 24(3): 66-70.
    [23] 李迎鹤,刘东,于杰,等. 正十六烷降解菌的分离、鉴定及降解特性研究[J]. 哈尔滨商业大学学报(自然科学版),2022,38(2):131-136.

    Li Yinghe, Liu Dong, Yu Jie, et al. Isolation, identification and degradation characteristics of n-hexadecane degrading bacteria[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2022, 38(2): 131-136.
    [24] Heringa J W, Huybregtse R, van der Linden A C. n-alkane oxidation by apseudomonas formation and β-oxidation of intermediate fatty acids[J]. Antonie van Leeuwenhoek, 1961, 27(1): 51-58.
    [25] Thijsse G J E, van der Linden A C. Pathways of hydrocarbon dissimilation by a Pseudomonas as revealed by chloramphenicol[J]. Antonie van Leeuwenhoek, 1963, 29(1): 89-100.
    [26] Singh B, Bhattacharya A, Channashettar V A, et al. Biodegradation of oil spill by petroleum refineries using consortia of novel bacterial strains[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(2): 257-262.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(1)

Article Metrics

Article views(520) PDF downloads(15) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-09-15
  • Revised:  2023-10-05
  • Accepted:  2023-12-12
  • Published:  2025-08-10

Degradation Characteristics of n-Hexadecane by Petroleum Hydrocarbon-Degrading Bacteria Acinetobacter sp. 5-5

doi: 10.14027/j.issn.1000-0550.2023.109

Abstract: Objective Microbial remediation of oil pollution has gained significant attention owing to its environmentally friendly nature and the absence of secondary pollution. To enhance the biological remediation technology for oil pollution, this study screened efficient petroleum hydrocarbon-degrading bacteria to understand and assess their degradation mechanisms. Using soils from the oil-polluted site in the Changqing Oilfield as the microbial source, strains with efficient degradation capabilities towards n-hexadecane were identified. Methods Through morphological characteristics, Gram staining, biochemical and physicochemical tests, 16s rDNA sequence analysis, and resistance experiments, strain Acinetobacter sp. 5-5 and its optimal degradation conditions for n-hexadecane were investigated. Based on zero-order, quasi-first-order, and quasi-second-order kinetic models, the degradation process of n-hexadecane was studied. Additionally, the acidity-alkalinity of the culture medium and the degradation product spectrum were analyzed to identify the degradation pathway of n-hexadecane. Results The results indicated that the strain belonged to Acinetobacter sp., and at 0.5% (V/V) initial concentration, 0.5% salinity, and pH 7.0, the total degradation rate of n-hexadecane by the petroleum hydrocarbon-degrading bacteria reached 99.24%, with a rapid degradation rate of 82.13% within two days. The kinetics of the degradation process revealed that the quasi-first-order model had the best fitting effect for the substrate degradation of n-hexadecane. The preliminary analysis suggested that the degradation pathway of n-hexadecane in this system involved chain breaking and acid production processes. Conclusions This research demonstrated that petroleum hydrocarbon degrading bacterium Acinetobacter sp. 5-5 had a strong degradation effect on n-hexadecane when the salinity was as high as 0.5%, and the degradation rate reached more than 99%, indicating that this strain had a high potential for alkane degradation and good salinity tolerance and was expected to be widely used in the remediation of petroleum-contaminated salinized soils.

YUAN LongMiao, WANG ZhiYu, SHAO YuanYuan, CHEN JianZhen, WU YingQin. Degradation Characteristics of n-Hexadecane by Petroleum Hydrocarbon-Degrading Bacteria Acinetobacter sp. 5-5[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1386-1397. doi: 10.14027/j.issn.1000-0550.2023.109
Citation: YUAN LongMiao, WANG ZhiYu, SHAO YuanYuan, CHEN JianZhen, WU YingQin. Degradation Characteristics of n-Hexadecane by Petroleum Hydrocarbon-Degrading Bacteria Acinetobacter sp. 5-5[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1386-1397. doi: 10.14027/j.issn.1000-0550.2023.109
  • 土壤石油污染是一个世界各国普遍关注的环境问题。随着石油工业的迅猛发展,石油泄漏问题已成为21世纪重要的环境污染挑战[12]。石油烃包括烷烃和芳烃组分等,进入土壤不仅改变土壤环境、影响作物生长,并通过食物链威胁人类健康。同时,长庆油田石油污染土壤呈现盐碱化和板结化特征,导致污染物去除难度增大[34]。针对长庆油田土壤同时存在的两类问题,如何在尽快消除石油污染物的同时,改良和修复土壤的盐碱环境,实现石油污染盐碱土壤环境质量的明显改善,已成为普遍关注的问题。

    微生物降解被认为是一种既环保又经济有效的去除土壤石油污染物手段。国内外对于微生物修复石油污染土壤的成功案例已有报道,研究发现自然界中存在100余属、200多种具备烷烃降解能力的微生物[56]。然而,石油污染土壤通常伴随着盐碱问题,这会抑制传统非耐盐碱微生物的生长和代谢,从而降低微生物降解效果[78]。因此,筛选高效耐盐碱石油烃降解菌成为修复石油污染盐碱化土壤的首要前提[910]。石油的主要成分是水溶性较低的烷烃类物质,这些物质不易被微生物利用[1112]。然而,微生物在石油污染土壤中通过选择性富集和遗传变异来适应环境,因此筛选和分离具有烷烃降解能力的菌株对于微生物降解石油污染物至关重要[1314]

    本研究以长庆原油为碳源,通过富集、分离、筛选及驯化等程序,筛选出具有高效石油烃降解能力的菌株。对所得菌株进行形态学观察、生理生化鉴定以及16S rDNA基因测序,明确其种属,并详细观察该菌株的生长趋势。随后,选用长链烷烃—正十六烷作为石油污染物代表性物质,进行降解实验并构建最优条件参数试验。通过GC-MS分析结果,深入研究菌株对正十六烷的降解动力学过程,揭示其降解途径,为长庆油田石油污染土壤的微生物修复提供重要参考依据。

  • 土壤样品取自长庆油田受石油污染较严重的油井周围,深度约为15 cm,被收集并密封于无菌袋中,存放在4 ℃低温条件下。随后,将样品带回实验室,进行石油烃降解菌的分离纯化。土壤样品总有机碳(TOC)含量为3.12~4.12 g/kg,铵态氮含量为36.30~48.02 g/kg,有效磷含量为3.32~13.08 g/kg,速效钾含量为125.60~232.90 g/kg,盐度为1.43%~2.03%,pH为7.1~8.6,呈中性或弱碱性。土壤理化性质测定:土壤pH和盐度(水土比为1∶2.5)由电极仪测定,具体步骤为:称取10.00 g土样加入25 mL纯水于50 mL离心管中,震荡5 min,静置1.0 h后测定。土壤有机质(SOM)用重铬酸钾氧化法测定(HJ615—2011):称取5.00 g土壤样品,加入0.10 g硫酸汞和5.00 mL重铬酸钾溶液,摇匀。再缓慢加入7.50 mL硫酸,轻轻摇匀,在135 ℃下加热30 min,定容,在波长585 nm处测定吸光度。SOM与TOC的换算公式为:SOM=1.724×TOC。土壤肥力指标均用土壤养分检测仪测定:铵态氮(AN)为纳氏试剂比色法;硝态氮(XN)为硝酸试粉法;有效磷(AP)为钼蓝比色法测定;有效钾(AK)为四苯硼钠比浊法。

  • 取5.0 g污染土样(采自长庆油田),无菌操作将其接种于盛有200 mL无菌水的锥形瓶中,30 ℃,130 r/min条件下恒温震荡培养24 h,静置1 h后,取上清液5 mL接种于100 mL无机盐培养基中,加入1.0%的原油作为碳源,30 ℃,180 r/min条件下(促进微生物生长和分散)培养7 d。待培养结束后,取富集液5 mL接种于原油无机盐培养基中,相同条件下连续培养5个周期。采用平板划线法进行分离,取培养液原液均匀涂布于固体富集培养平板中,30 ℃倒置培养48 h,根据菌落出现的时间、形态、大小和颜色等挑选不同菌株。取分离后的单一菌落,平板划线培养三个周期,直至得到纯化菌落,将其接种于牛肉膏蛋白胨斜面上培养48 h后,保存在4 ℃冰箱备用。并将纯化后菌液与甘油1∶1混合后冻存于-80 ℃冰箱。图1为本研究中优势菌株的筛选、富集和纯化流程图。

    Figure 1.  Screening, enrichment, and purification of petroleum degrading bacteria

    以5.0% (V/V)的接种率将纯化后的菌株接种到无机盐培养基中进行降解实验(此培养基以1.0% (V/V)原油为唯一碳源),以未接种石油烃降解菌的空白培养基作为对照组,每组设置3个平行样,在30 ℃、180 r/min的条件下培养14 d后,取20 mL石油醚与样品混合,经摇床震荡10 min、180 W超声提取10 min后,用分液漏斗进行萃取。将萃取过程重复三次,合并萃取液,离心,用Na2SO4去除水分转移至容量瓶定容待用。利用GC-MS测定降解后石油烃含量以筛选出高效石油烃降解菌。

  • 对筛选出的菌株进行显微影像形态学观察及革兰氏染色进行初步鉴定。根据已有方法对分离后的菌株进行接触酶、吲哚、淀粉水解、甲基红和硝酸盐还原等生化理化检验[15]

    菌株在LB液体培养基中30 ℃振荡培养至对数生长期,以菌液为DNA模板,使用通用引物模板27F与1492R对16S rDNA进行聚合酶链式反应(PCR)扩增。通用引物模板为:27F(5'-AGAGTTTGATCCTGG CTCAG-3')和1492R(5'-TACCTTGTTAC GACTT-3')。PCR反应体系为:灭菌蒸馏水22 μL,10×Buffer 2 μL,dNTP 1 μL,27F和1492R引物各1 μL,DNA模板1 μL(30~100 ng),Taq酶25 μL。PCR升温程序设定为:94 ℃预变性5 min,94 ℃变性30 s,53 ℃退火30 s,72 ℃延伸30 s,循环30次,72 ℃延伸8 s。扩增产物由广东美格基因科技有限公司使用ABI3730测序平台进行测序。将测序结果在NCBI上进行对比,根据BLAST结果用邻接法构建系统发育树。

  • 正十六烷浓度:将菌株接种于100 mL富集培养基中于30 ℃、150 r/min培养24 h进行活化,以无机盐培养基为基础,将正十六烷浓度分别设置为0.2%、0.5%和1.0% (V/V),接种量为5%,每个梯度设置三个平行组。为了验证降解菌对正十六烷降解的影响,实验设置对照组,即在相同条件下,未添加降解菌的实验组。在30 ℃,180 r/min条件下恒温震荡培养48 h,利用液—液萃取法从培养液中分离出残余的正十六烷,进行GC-MS测定,并计算降解率。

    盐度、pH:以无机盐培养基为基础,用NaOH和盐酸将pH值分别设置为3.0,4.0,5.0,6.0,7.0,8.0,9.0和10.0,NaCl浓度分别设置为0.5%、1.0%、2.0%、3.0%、4.0%、5.0%和6.0%,正十六烷浓度为0.5%,接种量为5%,每个梯度设置三个平行组,30 ℃,180 r/min条件下恒温震荡培养48 h,每6 h取样,于600 nm波长处测定吸光度OD600值,绘制菌株生长曲线图,并对检测培养液中正十六烷的浓度,计算降解率。

  • 将菌株接种于无菌无机盐培养基中,调节培养液OD600至0.5左右,制成菌悬液备用,加入0.5%正十六烷,pH为7.0,盐度为0.5%,以5.0%的接种量将菌株接种于无机盐培养基中进行14 d降解实验,设置3组平行实验。为了验证降解菌对正十六烷降解的影响,实验设置了对照组,即在相同条件下,未添加降解菌的实验组。在30 ℃、180 r/min条件下恒温震荡培养,前2 d每6 h取样一次,后12 d每2 d取样一次,采用紫外分光光度计测定培养基的OD600和pH计测定培养基的pH,绘制菌株的生长曲线和pH变化趋势。

    将培养后的无机盐培养基与20 mL正己烷混合,震荡10 min、180 W超声提取10 min后,用分液漏斗进行液液萃取。将萃取过程重复三次,合并萃取液。接着将萃取液于4 000 r/min转速下离心10 min,取上清液。底层沉淀加入20 mL正己烷震荡后继续离心,重复两次,合并离心后的上清液,加入Na2SO4,过夜干燥,移至容量瓶定容至30 mL,采用GC-MS对降解后的残余正十六烷和其降解产物进行测定。

    安捷伦6890/5973气相色谱质谱联用仪检测条件为:KD-5MS柱(30 m×0.32 mm×0.25 μm),载气为氦气,进样口温度280 ℃,色谱柱程序升温条件:80 ℃(恒温1 min),以12 ℃/min升至140 ℃,再以4 ℃/min升至160 ℃,恒温1 min,再以14 ℃/min升至280 ℃,恒温5 min。进样量1.0 μL,无分流。质谱增强型EI源,电离能量70 eV,四极杆温度:150 ℃;离子源温度:230 ℃;扫描方式:全扫描;质量范围:50~550 amu;谱库:NIST12。

  • 菌株对正十六烷的降解率(η)计算公式如下:

    η=Cd-CcCd (1)

    式中:Cd为对照组正十六烷浓度;Cc为残余正十六烷浓度。

    为进一步了解降解效果,采用动力学方程对降解过程进行模拟。选择以下三种动力学模型对菌株降解正十六烷的过程进行模拟,计算通式如下:

    零级动力学方程:C0-C=Kdt (2)
    一级动力学方程:ln C0C=Kdt (3)
    二级动力学方程:C(C0-C)C0=Kdt (4)

    式中:Ct时刻污染物的浓度,mg/g;C0为初始浓度,mg/g;Kd为一级反应速率常数;t为时间,h。

  • 由于受石油污染的地区存在大量的石油烃降解菌,而且受石油污染的地区石油烃降解菌数量往往比未受污染的地区高1~2个数量级[16]。因此,选择长期受石油污染的长庆油田油井周边土壤进行石油烃降解菌的筛选。首先对菌株进行分离纯化,并利用石油烃为唯一碳源进行了高效降解菌株的初筛和复筛。研究发现,菌株5-5能够以石油烃为唯一碳源并对正十六烷有较好降解效果。以原油为碳源的富集培养体系中起初原油全漂浮在水面上,水相澄清,原油和水完全分离。培养一段时间后,原油逐渐被乳化,呈液滴的形式分散在富集培养基中,培养液逐渐变浑浊。最后原油液滴变小,均匀分散在液体培养基中,出现絮状沉淀,这表明体系中的原油被石油烃降解菌5-5降解。对培养基中的原油进行提取和测定分析(图2),发现菌株5-5对石油烃及石油烃中的代表性物质正十六烷均有较好的降解效果。因此,基于正十六烷的代表性、简化模型及可控性,选择石油烃代表性物质正十六烷进行后续的最优条件构建及降解实验。

    Figure 2.  Gas chromatography comparison before and after the strain degrades crude oil

    对5-5降解菌进行了生化理化测试,利用该结果对菌株5-5的菌种特性进行初步判定。菌株5-5在LB-琼脂平板上的菌落形态如图3a所示,由革兰氏染色结果可知降解菌为革兰氏阴性菌,菌落呈乳白色,镜下菌落边缘整齐,菌落形状呈短杆状(图3b);吲哚试验、淀粉水解试验、M.R及V.P试验均为阴性,接触酶试验均为阳性,即菌株为需氧菌或兼性厌氧菌,不能分解色氨酸产生吲哚,代谢葡萄糖过程中不产酸,且不能直接利用淀粉[15]

    Figure 3.  Colony morphology and microscopic observation after Gram staining of the strain

    结合生化理化鉴定结果,初步判断菌株5-5为不动杆菌属,为了对石油烃降解菌的种属进行进一步鉴定,提取DNA,PCR扩增和测序,并与NCBI数据库进行了BLAST比对。根据测序结果,用MEGA软件对降解菌用邻接法构建系统发育树(图4)显示,菌株5-5为醋酸钙不动杆菌Acinetobactercalcoaceticus,与已发表菌株(MN250321.1)相似度为100%。

    Figure 4.  Phylogenetic tree of petroleum hydrocarbon degrading bacteria 5⁃5

  • 接种0.5%的菌悬液至无机盐培养基中,正十六烷浓度分别为0.2% (V/V)、0.5% (V/V)和1.0% (V/V),降解48 h后不同正十六烷初始浓度对降解率的影响结果如图5所示。由图所知,当正十六烷浓度为0.2% (V/V)和0.5% (V/V)时,菌株Acinetobacter sp. 5-5在48 h内几乎降解全部的正十六烷(降解率为100%和99.24%);随着正十六烷浓度升高为1.0% (V/V)时,降解率达到88.20%,说明正十六烷作为唯一碳源,在适宜浓度范围内能够促进菌株Acinetobacter sp. 5-5的生长,并有较高的降解率,随着底物浓度的逐渐增加,菌株对正十六烷的降解率不断降低(图5)。陈小蓉等[16]也发现了相似的规律,经富集筛选后的菌株Gordonia sp.LAM 0048在36 h内能使0.05% (V/V)和1.0% (V/V)正十六烷降解率分别达到了100%和46.6%。初始浓度对菌株Acinetobacter sp. 5-5降解正十六烷的影响原因如下:首先正十六烷作为唯一的碳源为菌株新陈代谢、生长繁殖提供营养物质,适量浓度的正十六烷有助于增强菌株酶活性,促进降解;其次正十六烷作为疏水性底物,会形成一层油膜覆盖在液体培养基的表面,当正十六烷浓度过高,油膜过厚,会影响好氧细菌对氧气的利用;最后高浓度的正十六烷具有生物毒性,影响菌株利用氧气和无机盐,当浓度达到1.0% (V/V)时,降解率仍能达到88.20%。说明该菌株在较高浓度污染物的环境下仍有较高的降解效率。总体而言,菌株Acinetobacter sp. 5-5在正十六烷浓度(0.5%)相对较高的情况下,降解率仍然接近100%。因此,在后续试验中,选择正十六烷初始浓度为0.5%作为底物浓度。

    Figure 5.  Degradation rate of n⁃hexadecane by strain Acinetobacter sp. 5⁃5 under different substrate concentrations

  • 酸碱度是影响菌株生长的关键因素。pH值可以通过影响微生物酶的反应以及对营养物质的吸收来调节微生物的代谢活性[17]。此外,不同pH条件下营养物质和无机盐的电离反应也会干扰微生物的新陈代谢,从而影响其对正十六烷的降解效率[18]。在48 h的降解试验中,菌株Acinetobacter sp. 5-5在pH为6.0~8.0时,降解率为95.73%~80.07%(图6a)。由菌株Acinetobacter sp. 5-5的生长曲线可知(图6b),当pH为6.0~9.0时,菌株前6 h进入对数生长期,之后30 h稳定生长且36 h光密度达到最大值;当pH为5.0和10.0时,菌株存在6 h左右的生长延滞期,随后进入对数生长期,48 h时达到最大菌浓度。与适中的pH范围相比,在过酸或过碱的环境下,菌株需更长的时间适应生长,且不利于菌株的生长和代谢。从生长曲线的观察结果可以看出,菌株Acinetobacter sp. 5-5更适应pH介于6.0~8.0的弱碱性环境。然而,值得注意的是,在pH为9.0的高碱性环境下,该菌株对正十六烷的降解率却比在pH=5.0的酸性环境下更高。可能是在碱性环境下,水相培养基与疏水性的正十六烷更容易形成水包油乳液,这促进了菌株对碳源的利用,从而提高了正十六烷的降解效率。此外,已有研究报道表明,O/W(水包油)体系的乳化程度会随着碱性的增强而增强[19]。根据上述结果,可以得出结论,菌株Acinetobacter sp. 5-5在弱碱性条件下降解效果较好。长庆油田土壤的pH介于7.1~8.6,菌株Acinetobacter sp. 5-5在弱碱性环境下(pH=9.0)对正十六烷的降解仍然可达67%(图6)。这说明在弱碱性土壤条件下,Acinetobacter sp. 5-5降解菌能够有效适应,并发挥降解作用。

    Figure 6.  Degradation rate of n⁃hexadecane and growth curve variations of strain Acinetobacter sp. 5⁃5 under different pH conditions

  • 不同NaCl质量浓度对正十六烷降解率的影响如图7所示。菌株Acinetobacter sp. 5-5在NaCl浓度介于0.5%~6.0%时,降解率与盐度呈现负相关关系(图7a)。这说明当培养基体系盐度过高时,介质中的盐浓度升高,导致细胞处于低渗状态,引发细胞膨胀,从而抑制微生物大分子的合成,进而影响菌株降解酶的活性[2021]。然而,当盐浓度达到6.0%时,降解率仍然能够保持在3.97%,表明微生物可以通过调节自身新陈代谢来平衡细胞内外的压力,以适应不同盐度环境。通过观察生长曲线,发现盐度与菌株的生长速率也呈负相关关系(图5b),而且当NaCl浓度为0.5%时在36 h出现了拐点,说明在最优盐度条件下,Acinetobacter sp. 5-5通常在36 h左右达到最大菌落浓度,并随后进入稳定期和衰亡期。通过观察降解菌Acinetobacter sp. 5-5在不同盐度下的生长曲线和降解率,发现其在0.5%~2.0%盐度条件下生长最佳。值得注意的是,研究区土壤的盐度浓度介于1.43%~2.03%,而在这个范围内,菌株Acinetobacter sp. 5-5的降解率可以达到70%。这表明在高盐度土壤中,该菌株可作为高效降解菌以进行生物修复。

    Figure 7.  Degradation rate of n⁃hexadecane and growth curve variations of of strain Acinetobacter sp.5⁃5 under different salinities

  • 根据2.2中构建的最优条件以及长庆油田土壤状况选择盐度为0.5%,pH为7.0和正十六烷初始浓度为0.5% (V/V)的条件来探讨菌株Acinetobacter sp. 5-5的降解动力学过程。菌株Acinetobacter sp. 5-5在14 d内对正十六烷的降解率变化如图8所示。经过14 d的降解后,菌株Acinetobacter sp. 5-5成功降解了99.24%的正十六烷,值得注意的是,在前2 d内,降解率达到82.13%。这与已有研究结果一致,通常正十六烷降解菌在5~10 d内可达到最大的降解率。与之前的研究相比,刘虹等[22]筛选得到的克雷氏白菌Klebsiella sp. A5、假单胞菌Pseudomonas sp. A6以及无色杆菌Achromobacter sp. A10在第5 d时对正十六烷的降解率已达到80%以上。另外,李迎鹤等[23]从大庆油田土壤中分离出的溶血不动杆菌在10 d内对5% (V/V)的正十六烷降解率可达10%以上,而在12 d时降解率达到62.0%。相对而言,菌株Acinetobacter sp. 5-5对正十六烷底物适应较快,降解效率较高。

    Figure  8.  Degradation rate of n⁃hexadecane by strainAcinetobacter sp. 5⁃5

    以时间为横轴,C0-C、ln(C0/C)、C(C0-C)C0为纵轴作图,利用零级、准一级和准二级对Acinetobacter sp. 5-5降解正十六烷的动力学过程进行拟合,拟合结果如图9表1所示。零级、准一级和准二级的R2分别为0.605 2、0.927 6和0.676 6,说明利用准一级动力学方程能够很好地模拟Acinetobacter sp. 5-5在pH为7.0、盐度为0.5%、正十六烷浓度为0.5% (V/V)的条件下对正十六烷的降解过程。

    Figure 9.  Zero⁃order, pseudo⁃first⁃order, and pseudo⁃second⁃order kinetic fitting curves for the degradation of n⁃hexadecane by strain Acinetobacter sp. 5⁃5

    N级反应拟合方程反应常数/Kd/hR2动力学方程
    零级C0-C=8.934×10-4t+0.0168.934×10-40.605C=C0-8.934×10-4t-0.015
    准一级ln C0C=0.013 t+0.4620.0130.928C=C0e-0.013 t+0.462
    准二级C(C0-C)C0=6.630 t-245.0526.6300.677C=C02(6.630 t-245.052)+C0

    Table 1.  Kinetic fitting parameters of n⁃hexadecane degradation by strain Acinetobacter sp. 5⁃5

    菌株对底物的降解动力学过程、反应级数以及底物浓度之间存在一定的相互关系。例如,刘虹等[22]研究发现正十六烷降解菌A6在初始浓度低于1 000 mg/L时,其动力学方程式呈现较好的一级反应拟合,反之则呈现零级反应特征。本研究如2.2.1中所述,Acinetobacter sp. 5-5在正十六烷浓度为0.2% (V/V)和0.5% (V/V)的条件下,能够降解几乎100%的底物,但在1.0% (V/V)浓度条件下,降解率下降至88.20%。通过该现象初步推测当降解体系中碳源(正十六烷)浓度达到一定临界值时,正十六烷降解的反应级数可能会发生变化。

    为了更进一步探讨菌株Acinetobacter sp. 5-5对正十六烷的降解特性,我们深入研究了其对正十六烷的降解机理。该降解过程的pH值、OD600和降解率变化如图10所示。正十六烷为唯一碳源的培养基中,Acinetobacter sp. 5-5菌株先经历18 h左右的生长延滞期,18 h后菌株进入对数生长期,36 h进入稳定期且在42 h重新快速生长。然而在牛肉膏培养基中,菌株在2 h内便进入了对数生长期,说明相对于富集培养基,菌株需要更多的时间来适应新的生长环境,包括调整新陈代谢、合成加氧酶、脱氢酶等烷烃降解酶,以及生成一些必要的中间产物。此外,菌株延滞期的长短通常受菌株遗传特性的影响,菌株在36 h进入稳定期主要是因为生成的有毒物质(如有机酸)致使菌株重新适应环境造成的生长延滞。

    Figure 10.  Growth curve and pH change of n⁃hexadecane degradation by strain Acinetobacter sp. 5⁃5

    生化理化试验表明菌株Acinetobacter sp. 5-5的甲基红结果为阴性,即菌株Acinetobacter sp. 5-5利用葡萄糖为碳源的降解过程中不产酸。但是在降解过程中培养基pH由7.0下降至6.0(图10),说明菌株Acinetobacter sp. 5-5降解正十六烷过程中产酸或者生成了酸性的中间产物。此外,不动杆菌Acinetobacter sp. 5-5为好氧细菌,加氧酶是长链烷烃好氧降解的重要部分,在有氧条件下,长链烷的微生物降解主要由单末端氧化、次末端氧化和双末端氧化三种方式进行[24]。Thijsee et al.[25]对烷烃氧化产物的色谱分析建立了好氧细菌利用烷烃作为唯一碳源的氧化反应途径:

    R-CH3 → R-CH2OH → R-CHO → R-COOH

    有文献报道,不动杆菌通过在正十六烷的10号碳位进行裂解,生成羟基酸。这个产酸过程包括以下步骤:首先,烷烃末端被氧化成醇,醇氧化形成相应的酮,酮氧化形成相应的脂,酯分解为伯醇和乙酸,醇继续氧化形成脂肪酸,然后进入三羧酸循环[26]

    R(CH2nCH3→R(CH2n-1CHOHCH3→R(CH2n-1COCH3→R(CH2n-1COOCH3→R(CH2n-1CH2OH+CH3COOH

    此外,对菌株Acinetobacter sp. 5-5在降解正十六烷过程中产生的降解产物进行色谱分析(图11),发现正十六烷发生了碳链缩短以及10号位碳链的裂解的现象。这一发现证实了此过程符合好氧细菌降解饱和烃的典型路径,即首先生成伯醇,然后伯醇被进一步转化为醛,最终在烷烃羟化酶的催化下转化为有机酸,这是一种典型的有氧降解途径。

    Figure 11.  Analysis of n⁃hexadecane degradation products by Acinetobacter sp. 5⁃5

  • (1) 以原油为碳源富集筛选到石油烃降解菌5-5,经过形态特征观察和16S rDNA序列比对,鉴定5-5菌株为醋酸钙不动杆菌(Acinetobacter calcoaceticus)。

    (2) Acinetobacter sp. 5-5菌株降解正十六烷的最适条件为初始浓度0.5%、pH=7.0,以及盐度0.5%。值得注意的是,当底物浓度升至1.0% (V/V)时,降解率仍能维持在88.20%。长庆油田土壤的pH介于7.1~8.6,盐度为1.43%~2.03%时,Acinetobacter sp. 5-5对正十六烷的降解率分别达67%和70%。表明Acinetobacter sp. 5-5降解菌株能够有效适应高盐碱性环境,并对石油烃代表性物质(正十六烷)具有较好的降解作用。

    (3) 在0.5% (V/V)正十六烷浓度、0.5%盐浓度和pH=7.0的条件下,Acinetobacter sp. 5-5可在14 d降解99.24%的正十六烷,其动力学过程符合准一级动力学方程。另外,降解试验中溶液pH下降及产物分析可初步推测菌株Acinetobacter sp. 5-5降解正十六烷的途径为断链、脱氢、产酸,最后进入三羧酸循环。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return