Advanced Search
Volume 43 Issue 4
Aug.  2025
Turn off MathJax
Article Contents

ZHENG YuChao, LIN XiaoBing, LIU LiPing, WANG GuiHua, LIU YuanSong, WANG ZhuangSheng. Discussion of the Characteristics and Causes of Different Types of Quartz Grain Boundary Dissolution[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1322-1335. doi: 10.14027/j.issn.1000-0550.2023.103
Citation: ZHENG YuChao, LIN XiaoBing, LIU LiPing, WANG GuiHua, LIU YuanSong, WANG ZhuangSheng. Discussion of the Characteristics and Causes of Different Types of Quartz Grain Boundary Dissolution[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1322-1335. doi: 10.14027/j.issn.1000-0550.2023.103

Discussion of the Characteristics and Causes of Different Types of Quartz Grain Boundary Dissolution

doi: 10.14027/j.issn.1000-0550.2023.103
  • Received Date: 2023-07-12
  • Accepted Date: 2023-10-23
  • Rev Recd Date: 2023-09-30
  • Available Online: 2023-10-23
  • Publish Date: 2025-08-10
  • Objective There is a clear correlation between the boundary condition of quartz particles and their dissolution. This relationship is systematically summarized here to determine the types and characteristics of quartz dissolution. Methods Thin section identification, cathodoluminescence and scanning electron microscopy were used in combination with detailed observation and statistical analysis to determine the quartz boundary dissolution characteristics in rock from the second member of the Xujiahe Formation, western Sichuan. The processes of different types of quartz boundary dissolution were determined and the mechanisms were analyzed. The study provides new ideas and references for dissolution analysis in sandstone skeleton particles, and the genesis of pores in tight sandstone. Results Two types of boundary dissolution in quartz particles were revealed: (1) smooth boundary-dissolved pore-increasing, in which the boundary of the quartz particles is seen to be smooth and clear, and pores are formed after dissolution; and (2) fuzzy metasomatic boundary dissolution seen as indistinct and rough quartz particle boundaries caused by the presence of dissolved and metasomatized carbonates or clay minerals producing either fuzzy boundary-dissolution carbonates or fuzzy boundary-dissolution clay minerals. Type 1 is the result of organic acid dissolution in acidic conditions. Type 2 metasomatism between carbonate ions and quartz particles is due to differences in ion concentration in alkaline conditions. Clay mineral metasomatism occurs when alkaline metal ions are released to produce a ‘salt effect’, accelerating the dissolution rate of quartz particles. Metasomatized quartz particles are covered with a clay film. The dissolution boundaries of the quartz particles tend to change from type 1 to type 2; the alteration favors the formation of a hydrocarbon reservoir. Quartz particles in the second member of the Xujiahe Formation in the study area had a surface area corrosion loss of 4.33%-8.67% (average 6.37%). Up to 72% of all quartz particles showed dissolved surfaces, averaging 63.02%. The quartz content in thin sections was about 45%-96% (average 75.3%). A statistical analysis of the results showed quartz dissolution surface porosity between 2.05% and 4.09% (average 3.19%; R2 =0.792 6). Conclusions The proportion of partially dissolved quartz particles effectively alters the pore structure of tight sandstone, thus favoring reservoir development by providing a reasonable amount of secondary pores and increasing reservoir space for oil and gas.
  • [1] 朱如凯,赵霞,刘柳红,等. 四川盆地须家河组沉积体系与有利储集层分布[J]. 石油勘探与开发,2009,36(1):46-55.

    Zhu Rukai, Zhao Xia, Liu Liuhong, et al. Depositional system and favorable reservoir distribution of Xujiahe Formation in Sichuan Basin[J]. Petroleum Exploration and Development, 2009, 36(1): 46-55.
    [2] 雷涛,王桥,任广磊,等. 鄂尔多斯盆地山西组致密砂岩成分特征及其对储层的制约:以大牛地气田A区为例[J]. 天然气地球科学,2023,34(3):418-430.

    Lei Tao, Wang Qiao, Ren Guanglei, et al. Component characteristics of Shanxi Formation tight sandstone and their implications for the reservoirs in Ordos Basin: Taking the A block of Daniudi gas field as an example[J]. Natural Gas Geoscience, 2023, 34(3): 418-430.
    [3] Dove P M, Crerar D A. Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 955-969.
    [4] Gratz A J, Bird P. Quartz dissolution: Theory of rough and smooth surfaces[J]. Geochimica et Cosmochimica Acta, 1993, 57(5): 977-989.
    [5] Berger G, Cadore E, Schott J, et al. Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and 300 ℃: Effect of the nature of surface complexes and reaction affinity[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 521-551.
    [6] 张生,李统锦. 石英溶解动力学研究进展[J]. 世界地质,1996,15(4):8-13.

    Zhang Sheng, Li Tongjin. Research advance in dissolution kinetics of quartz[J]. World Geology, 1996, 15(4): 8-13.
    [7] 邱隆伟,姜在兴,操应长,等. 泌阳凹陷碱性成岩作用及其对储层的影响[J]. 中国科学:地球科学,2001,31(9):752-759.

    Qiu Longwei, Jiang Zaixing, Cao Yingchang, et al. Alkaline diagenesis and its influence on a reservoir in the Biyang Depression[J]. Science China Earth Sciences, 2001, 31(9): 752-759.
    [8] 钟大康,朱筱敏,周新源,等. 塔里木盆地中部泥盆系东河砂岩成岩作用与储集性能控制因素[J]. 古地理学报,2003,5(3):378-390.

    Zhong Dakang, Zhu Xiaomin, Zhou Xinyuan, et al. Diagenesis and controlling factors of reservoir quality of Devonian Donghe sandstones in central Tarim Basin[J]. Journal of Palaeogeography, 2003, 5(3): 378-390.
    [9] 钟大康,朱筱敏,周新源,等. 构造对砂岩孔隙演化的控制:以塔里木中部地区东河砂岩为例[J]. 地质科学,2004,39(2):214-222.

    Zhong Dakang, Zhu Xiaomin, Zhou Xinyuan, et al. Effect of structure on sandstone's porosity evolution: A case study from the Donghe sandstones in central Tarim[J]. Chinese Journal of Geology, 2004, 39(2): 214-222.
    [10] 韩登林,李忠,李维锋. 库车坳陷白垩系砂岩储层石英溶蚀非均质性特征及其主控因素[J]. 地质学报,2011,85(2):256-261.

    Han Denglin, Li Zhong, Li Weifeng. Heterogeneous features of quartz grain dissolution of Cretaceous sandstone reservoir in the Kuqa Depression and its major controlling factors[J]. Acta Geologica Sinica, 2011, 85(2): 256-261.
    [11] 万友利,丁晓琪,白晓亮,等. 塔中地区志留系海相碎屑岩储层石英溶蚀成因及影响因素分析[J]. 沉积学报,2014,32(1):138-147.

    Wan Youli, Ding Xiaoqi, Bai Xiaoliang, et al. Quartz dissolution causes and influencing factors in the Silurian marine clastic reservoir rocks in central Tarim Basin[J]. Acta Sedimentologica Sinica, 2014, 32(1): 138-147.
    [12] 田夏荷,屈红军,刘新社,等. 鄂尔多斯盆地东部上古生界致密气储层石英溶蚀及其机理探讨[J]. 天然气地球科学,2016,27(11):2005-2012,2069.

    Tian Xiahe, Qu Hongjun, Liu Xinshe, et al. Discussion on quartz dissolution and its mechanisms of the Upper Paleozoic tight gas reservoirs in the eastern Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(11): 2005-2012, 2069.
    [13] Bennett P C, Melcer M E, Siegel D I, et al. The dissolution of quartz in dilute aqueous solutions of organic acids at 25℃[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1521-1530.
    [14] Blake R E, Walter L M. Kinetics of feldspar and quartz dissolution at 70-80℃ and near-neutral pH: Effects of organic acids and NaCl[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2043-2059.
    [15] 于雯泉,陈勇,杨立干,等. 酸性环境致密砂岩储层石英的溶蚀作用[J]. 石油学报,2014,35(2):286-293.

    Yu Wenquan, Chen Yong, Yang Ligan, et al. Dissolution of quartz in tight sandstone reservoirs in an acidic environment[J]. Acta Petrolei Sinica, 2014, 35(2): 286-293.
    [16] 曲希玉,陈修,邱隆伟,等. 石英溶解型次生孔隙的成因及其对储层的影响:以大牛地气田上古生界致密砂岩储层为例[J]. 石油与天然气地质,2015,36(5):804-813.

    Qu Xiyu, Chen Xiu, Qiu Longwei, et al. Genesis of secondary pore of quartz dissolution type and its influences on reservoir: Taking the tight sandstone reservoir in the Upper Paleozoic of Daniudi gas field as an example[J]. Oil & Gas Geology, 2015, 36(5): 804-813.
    [17] 陈修. 大牛地气田上古生界致密砂岩储层石英溶解作用及对储层质量的影响[D]. 青岛:中国石油大学(华东),2016.

    Chen Xiu. Quartz dissolution and its influence on reservoir quality in the Upper Paleozoic tight sandstone reservoir of Daniudi gas field[D]. Qingdao: China University of Petroleum (East China), 2016.
    [18] 邱隆伟,姜在兴,陈文学,等. 一种新的储层孔隙成因类型:石英溶解型次生孔隙[J]. 沉积学报,2002,20(4):621-627.

    Qiu Longwei, Jiang Zaixing, Chen Wenxue, et al. A new type of secondary porosity: Quartz dissolution porosity[J]. Acta Sedimentologica Sinica, 2002, 20(4): 621-627.
    [19] 钟大康,朱筱敏,周新源,等. 初论塔里木盆地砂岩储层中SiO2的溶蚀类型及其机理[J]. 地质科学,2007,42(2):403-414.

    Zhong Dakang, Zhu Xiaomin, Zhou Xinyuan, et al. An approach to categories and mechanisms of SiO2 dissolution in sandstone reservoirs in the Tarim Basin[J]. Chinese Journal of Geology, 2007, 42(2): 403-414.
    [20] 刘金库,彭军,石岩,等. 致密砂岩储层石英溶蚀成因及对孔隙发育的影响:以川中—川南过渡带须家河组为例[J]. 石油学报,2015,36(9):1090-1097.

    Liu Jinku, Peng Jun, Shi Yan, et al. The genesis of quartz dissolution in tight sand reservoirs and its impact on pore development: A case study of Xujiahe Formation in the transitional zone of central-southern Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(9): 1090-1097.
    [21] 吕正祥,刘四兵. 川西须家河组超致密砂岩成岩作用与相对优质储层形成机制[J]. 岩石学报,2009,25(10):2373-2383.

    Zhengxiang Lü, Liu Sibing. Ultra-tight sandstone diagenesis and mechanism for the formation of relatively high-quality reservoir of Xujiahe Group in western Sichuan[J]. Acta Petrologica Sinica, 2009, 25(10): 2373-2383.
    [22] 段新国,宋荣彩,李国辉,等. 四川盆地须二段综合成岩相特征研究[J]. 西南石油大学学报(自然科学版),2011,33(1):7-14.

    Duan Xinguo, Song Rongcai, Li Guohui, et al. Research of integrated diagenetic facies characteristics of T3 x2 reservoir in Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(1): 7-14.
    [23] 刘四兵,沈忠民,刘昊年,等. 川西坳陷中段上三叠统须家河组水岩相互作用机制[J]. 石油学报,2013,34(1):47-58.

    Liu Sibing, Shen Zhongmin, Liu Haonian, et al. Mechanism of water-rock interaction of the Upper Triassic Xujiahe Formation in the middle part of western Sichuan Depression[J]. Acta Petrolei Sinica, 2013, 34(1): 47-58.
    [24] 于兴河,李顺利,杨志浩. 致密砂岩气储层的沉积—成岩成因机理探讨与热点问题[J]. 岩性油气藏,2015,27(1):1-13.

    Yu Xinghe, Li Shunli, Yang Zhihao. Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir[J]. Lithologic Reservoirs, 2015, 27(1): 1-13.
    [25] 徐康,刘光祥,胡文瑄,等. 川西地区须四段砂岩储层特征及主控因素分析[J]. 油气地质与采收率,2018,25(2):42-49.

    Xu Kang, Liu Guangxiang, Hu Wenxuan, et al. Reservoir characteristics and main controlling factors of the 4th member of the Xujiahe Formation in the western Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 42-49.
    [26] 邓涛,李勇,王伟明,等. 龙门山中段上三叠统须家河组三、四段砂体研究[J]. 断块油气田,2018,25(3):305-309.

    Deng Tao, Li Yong, Wang Weiming, et al. Study of third and fourth sandstones of Upper Triassic Xujiahe Formation in middle segment of Longmen Mountain area[J]. Fault-Block Oil and Gas Field, 2018, 25(3): 305-309.
    [27] 许晗,刘明洁,张庄,等. 四川盆地川西坳陷须家河组三段致密砂岩储层成岩作用及孔隙演化[J]. 天然气地球科学,2022,33(3):344-357.

    Xu Han, Liu Mingjie, Zhang Zhuang, et al. Diagenesis and porosity evolution of the 3rd member of Xujiahe Formation tight sandstone reservoir in the western Sichuan Depression, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(3): 344-357.
    [28] 朱如凯,邹才能,张鼐,等. 致密砂岩气藏储层成岩流体演化与致密成因机理:以四川盆地上三叠统须家河组为例[J]. 中国科学:地球科学,2009,39(3):327-339.

    Zhu Rukai, Caineng Zou-, Zhang Nai, et al. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science China Earth Sciences, 2009, 39(3): 327-339.
    [29] 刘建华,朱西养,王四利,等. 四川盆地地质构造演化特征与可地浸砂岩型铀矿找矿前景[J]. 铀矿地质,2005,21(6):321-330.

    Liu Jianhua, Zhu Xiyang, Wang Sili, et al. Geologic-tectonic evolutional characteristics and prospecting potential for ISL-amenable sandstone-type uranium deposits in Sichuan Basin[J]. Uranium Geology, 2005, 21(6): 321-330.
    [30] 刘树根,邓宾,李智武,等. 盆山结构与油气分布:以四川盆地为例[J]. 岩石学报,2011,27(3):621-635.

    Liu Shugen, Deng Bin, Li Zhiwu, et al. The texture of sedimentary basin-orogenic belt system and its influence on oil/gas distribution: A case study from Sichuan Basin[J]. Acta Petrologica Sinica, 2011, 27(3): 621-635.
    [31] 蔡娉婷. 四川盆地川中须家河组砂岩成岩作用及成岩流体研究[D]. 南昌:东华理工大学,2019.

    Cai Pingting. The research of sandstone diagenesis and diagenetic fluid of the Xujiahe Formation in the central of Sichuan Basin[D]. Nanchang: East China University of Technology, 2019.
    [32] 张梦琳,李郭琴,何嘉,等. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏,2022,34(2):141-151.

    Zhang Menglin, Li Guoqin, He Jia, et al. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
    [33] 高红灿. 四川盆地上三叠统须家河组层序—岩相古地理及砂体分布研究[D]. 成都:成都理工大学,2007.

    Gao Hongcan. Study on sequence-paleogeography and sand body distribution of the Xujiahe Formation of Upper Triassic in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2007.
    [34] 陈洪德,刘磊,林良彪,等. 川西坳陷西部龙门山隆升时期上三叠统须家河组沉积响应[J]. 石油与天然气地质,2021,42(4):801-815.

    Chen Hongde, Liu Lei, Lin Liangbiao, et al. Depositional responses of Xujiahe Formation to the uplifting of Longmenshan during the Late Triassic, western Sichuan Depression[J]. Oil & Gas Geology, 2021, 42(4): 801-815.
    [35] 林良彪,陈洪德,翟常博,等. 四川盆地西部须家河组砂岩组分及其古地理探讨[J]. 石油实验地质,2006,28(6):511-517.

    Lin Liangbiao, Chen Hongde, Zhai Changbo, et al. Sandstone compositions and paleogeographic evolution of the Upper Triassic Xujiahe Formation in the western Sichuan Basin, China[J]. Petroleum Geology and Experiment, 2006, 28(6): 511-517.
    [36] 戴朝成,郑荣才,朱如凯,等. 四川前陆盆地中西部须家河组成岩作用与成岩相[J]. 成都理工大学学报(自然科学版),2011,38(2):211-219.

    Dai Chaocheng, Zheng Rongcai, Zhu Rukai, et al. Diagenesis and diagenetic facies of Xujiahe Formation in the central west of Sichuan foreland basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2011, 38(2): 211-219.
    [37] 林小兵,田景春,刘莉萍,等. 四川盆地川西坳陷须家河组硅质碎屑颗粒溶蚀作用及机理[J]. 石油实验地质,2019,41(3):404-410,419.

    Lin Xiaobing, Tian Jingchun, Liu Liping, et al. Dissolution mechanism of siliciclastic particles in Xujiahe Formation, west Sichuan Depression, Sichuan Basin[J]. Petroleum Geology and Experiment, 2019, 41(3): 404-410, 419.
    [38] 余瑜,林良彪,翟常博,等. 川南上三叠统须家河组层序格架内成岩矿物发育特征及成岩演化规律[J]. 科学技术与工程,2018,18(26):6-16.

    Yu Yu, Lin Liangbiao, Zhai Changbo, et al. Distribution characteristics of diagenetic minerals and diagenetic evolution of the Xujiahe Formation of the Upper Triassic in the southern of Sichuan Bain, China[J]. Science Technology and Engineering, 2018, 18(26): 6-16.
    [39] 张峰. 川东北地区上三叠统须家河组层序岩相古地理研究[D]. 成都:成都理工大学,2011.

    Zhang Feng. Study on sequence-lithofacies paleogeography of the Xujiahe Formation of Upper Triassic in northeast of Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2011.
    [40] 郭春清,沈忠民,张林晔,等. 砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J]. 地质地球化学,2003,31(3):53-57.

    Guo Chunqing, Shen Zhongmin, Zhang Linye, et al. The corrosion and its mechanism of organic acids on main minerals in oil-gas reservoir sand rocks[J]. Earth and Environment, 2003, 31(3): 53-57.
    [41] 张思亭,刘耘. 石英溶解机理的研究进展[J]. 矿物岩石地球化学通报,2009,28(3):294-300.

    Zhang Siting, Liu Yun. Progress review of quartz dissolution models[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(3): 294-300.
    [42] 包书景,何生. 泌阳凹陷地质流体对砂岩储集层中黏土矿物形成和分布的控制作用[J]. 地质科技情报,2005,24(2):51-56.

    Bao Shujing, He Sheng. Control of geological fluids on the formation and distribution of clay minerals in sandstone reservoirs in Biyang Sag[J]. Geological Science and Technology Information, 2005, 24(2): 51-56.
    [43] 刘金库,彭军,刘建军,等. 绿泥石环边胶结物对致密砂岩孔隙的保存机制:以川中—川南过渡带包界地区须家河组储层为例[J]. 石油与天然气地质,2009,30(1):53-58.

    Liu Jinku, Peng Jun, Liu Jianjun, et al. Pore-preserving mechanism of chlorite rims in tight sandstone-an example from the T3 x Formation of Baojie area in the transitional zone from the central to southern Sichuan Basin[J]. Oil & Gas Geology, 2009, 30(1): 53-58.
    [44] 孟万斌,吕正祥,冯明石,等. 致密砂岩自生伊利石的成因及其对相对优质储层发育的影响:以川西地区须四段储层为例[J]. 石油学报,2011,32(5):783-790.

    Meng Wanbin, Zhengxiang Lü, Feng Mingshi, et al. The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs: A case study on sandstones in the 4th member of Xujiahe Formation, western Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(5): 783-790.
    [45] 郑浚茂,庞明. 碎屑储集岩的成岩作用研究[M]. 武汉:中国地质大学出版社,1989:81-82.

    Zheng Junmao, Pang Ming. The diagenesis of clastic reservoir rock[M]. Wuhan: China University of Geosciences Press, 1989: 81-82.
    [46] 肖艳,彭军,张纪智,等. 川西前陆盆地中段须家河组二段储层储集空间特征及演化[J]. 天然气地球科学,2012,23(3):501-507.

    Xiao Yan, Peng Jun, Zhang Jizhi, et al. Reservoir spaces of the Second section of Xujiahe Formation and evolution in middle part of west Sichuan foreland basin[J]. Natural Gas Geoscience, 2012, 23(3): 501-507.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(2)

Article Metrics

Article views(553) PDF downloads(71) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-07-12
  • Revised:  2023-09-30
  • Accepted:  2023-10-23
  • Published:  2025-08-10

Discussion of the Characteristics and Causes of Different Types of Quartz Grain Boundary Dissolution

doi: 10.14027/j.issn.1000-0550.2023.103

Abstract: Objective There is a clear correlation between the boundary condition of quartz particles and their dissolution. This relationship is systematically summarized here to determine the types and characteristics of quartz dissolution. Methods Thin section identification, cathodoluminescence and scanning electron microscopy were used in combination with detailed observation and statistical analysis to determine the quartz boundary dissolution characteristics in rock from the second member of the Xujiahe Formation, western Sichuan. The processes of different types of quartz boundary dissolution were determined and the mechanisms were analyzed. The study provides new ideas and references for dissolution analysis in sandstone skeleton particles, and the genesis of pores in tight sandstone. Results Two types of boundary dissolution in quartz particles were revealed: (1) smooth boundary-dissolved pore-increasing, in which the boundary of the quartz particles is seen to be smooth and clear, and pores are formed after dissolution; and (2) fuzzy metasomatic boundary dissolution seen as indistinct and rough quartz particle boundaries caused by the presence of dissolved and metasomatized carbonates or clay minerals producing either fuzzy boundary-dissolution carbonates or fuzzy boundary-dissolution clay minerals. Type 1 is the result of organic acid dissolution in acidic conditions. Type 2 metasomatism between carbonate ions and quartz particles is due to differences in ion concentration in alkaline conditions. Clay mineral metasomatism occurs when alkaline metal ions are released to produce a ‘salt effect’, accelerating the dissolution rate of quartz particles. Metasomatized quartz particles are covered with a clay film. The dissolution boundaries of the quartz particles tend to change from type 1 to type 2; the alteration favors the formation of a hydrocarbon reservoir. Quartz particles in the second member of the Xujiahe Formation in the study area had a surface area corrosion loss of 4.33%-8.67% (average 6.37%). Up to 72% of all quartz particles showed dissolved surfaces, averaging 63.02%. The quartz content in thin sections was about 45%-96% (average 75.3%). A statistical analysis of the results showed quartz dissolution surface porosity between 2.05% and 4.09% (average 3.19%; R2 =0.792 6). Conclusions The proportion of partially dissolved quartz particles effectively alters the pore structure of tight sandstone, thus favoring reservoir development by providing a reasonable amount of secondary pores and increasing reservoir space for oil and gas.

ZHENG YuChao, LIN XiaoBing, LIU LiPing, WANG GuiHua, LIU YuanSong, WANG ZhuangSheng. Discussion of the Characteristics and Causes of Different Types of Quartz Grain Boundary Dissolution[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1322-1335. doi: 10.14027/j.issn.1000-0550.2023.103
Citation: ZHENG YuChao, LIN XiaoBing, LIU LiPing, WANG GuiHua, LIU YuanSong, WANG ZhuangSheng. Discussion of the Characteristics and Causes of Different Types of Quartz Grain Boundary Dissolution[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1322-1335. doi: 10.14027/j.issn.1000-0550.2023.103
  • 前人在致密砂岩储层及优质储层的研究中,主要聚焦在长石、岩屑等铝硅酸盐溶蚀及碳酸盐胶结物等成岩作用的研究[12],而石英作为稳定的矿物,普遍认为很难被溶蚀形成有效的孔隙。随着研究的不断深入,发现致密砂岩储层中不仅发育长石以及其他易溶矿物溶孔,还发育石英溶孔[35]。不同学者对石英的溶蚀现象也进行了一系列研究,并提出多种石英溶蚀机制及溶蚀边界形态。比如:在碱性环境下,石英颗粒的溶蚀速率增加,SiO2在OH-的影响下易发生溶蚀,形成港湾状边界特征等[612];在酸性条件下,有机酸能使SiO2形成络合物从而使得石英发生溶蚀,使石英形成凹凸边界特征[1317];以及在碱金属离子的影响下,能削弱SiO2的Si-O-Si键的强度从而溶蚀石英,形成港湾状和锯齿状边界特征等[1820]。可以看出,石英颗粒溶蚀边界特征与溶蚀机制之间具有明显的相关性,但其耦合关系尚未有系统性总结,导致难以判断石英溶蚀的类型及特征。因此,有必要开展石英颗粒溶蚀边界形态与溶蚀机制及对储层地质意义的研究。

    四川盆地上三叠统须家河组发育典型的致密砂岩储层,近年来众多学者对须家河组储层砂岩组构和成岩演化等方面开展了大量研究,认为主要储集空间类型为长石、岩屑等易溶组分溶蚀后所形成的孔隙[2127]。须家河组成岩流体演化过程中,酸碱度变化频繁[28]。同时,研究过程中发现川西地区须家河组二段(须二段)石英溶蚀现象普遍存在,且石英颗粒边界具有多种溶蚀形态。因此,开展须二段石英溶蚀的研究具有代表性意义。基于薄片鉴定、阴极发光和扫描电镜观察等方法,结合测试分析数据,对须二段石英边界溶蚀特征进行精细观察与统计分析,通过建立不同石英边界溶蚀类型,厘定石英的溶蚀过程,进行溶蚀机理分析,可以为砂岩骨架颗粒溶蚀分析及致密砂岩中孔隙成因提供新的思路和参考。

  • 四川盆地位于青藏高原东侧、扬子板块西北侧,是一个多旋回的沉积盆地[2932]。从震旦纪到中三叠世,盆地为一套海相沉积;在中三叠世末期,受到印支运动的影响,特提斯洋的海水退出四川,四川盆地大多地层受到不同程度剥蚀,盆地由海盆逐渐转变为陆盆[3334];到了晚三叠世,在印支运动的持续影响下,板块之间发生挤压碰撞,使得一些海相地层隆起并遭受剥蚀,发生沉积超覆现象,四川盆地由海相沉积过渡为陆相沉积[3536]。川西新场地区须家河组就是在此构造背景下形成的(图1),自下而上划分成六个岩性段,须三段和须五段以煤系地层为主,发育灰黑色泥页岩夹砂岩,须二、须四和须六段以砂岩为主,发育岩屑石英砂岩夹灰黑色泥页岩,须一段则发育一套海陆交互的地层组合[38]

    Figure 1.  Sedimentary background of the Second member of Xujiahe Formation in the western Sichuan area, and a columnar sketch of Xujiahe Formation [37]

    其中川西新场地区须二段继承了须一段的沉积格局,发育一套海陆过渡三角洲沉积物,沉积了从下至上岩屑砂岩—岩屑石英砂岩—岩屑砂岩夹互层序列组合,相比其他段,须二段的石英含量相对较高[39]

  • 基于川西新场地区须二段典型取心井新10和新5等井近200块岩心样品,开展了薄片鉴定等分析。观察结果表明,须二段岩性以岩屑砂岩和岩屑石英砂岩为主,有少量的石英砂岩和长石石英砂岩。石英的含量介于45%~96%,平均为75.3%;长石含量较少,部分被溶蚀,含量介于1%~34%,平均为6.5%;岩屑含量介于6%~32%,平均为18.2%,岩屑中主要以沉积岩岩屑和变质岩岩屑为主,少量岩浆岩岩屑,其中变质岩岩屑中硅质岩屑含量较多,以燧石和变质石英岩岩屑为主。除了骨架颗粒之外,还发育少量自生矿物和胶结物,包括多期次的方解石胶结、自生白云石胶结、硅质胶结等,含量介于7%~9%;杂基含量较少,一般小于3%,以泥质为主,含少量云母及黏土矿物(图2a)。

    Figure 2.  Characteristics of quartz particle boundary under microscope

    在须家河组二段高石英、低长石、少杂基结构特征的背景下,结合扫描电镜及阴极发光特征,对须二段石英颗粒溶蚀特征进行了分析。特征如表1所示,石英颗粒普遍发生溶蚀(图2a),并形成多种边界形态及特征。

    边界形态边界特征溶蚀特征描述举例
    凹凸状边界清晰光滑偏光显微镜下,石英发生溶蚀后,被溶蚀边界光滑清晰,呈凹凸状,形成孔隙图2b
    雨痕状边界清晰光滑扫描电镜下,石英发生溶蚀后,被溶蚀许多凹坑,呈雨痕状,形成微型孔隙图2c,d
    港湾状边界清晰偏光显微镜下和扫描电镜下,溶蚀后,被溶蚀边界清晰,呈港湾状,溶蚀形成的孔隙被黏土矿物和碳酸盐矿物充填图2e,f,h,i
    蜂窝状边界清晰扫描电镜下,溶蚀后,边界清晰,呈蜂窝状,溶蚀形成的孔隙被黏土矿物充填图2g
    锯齿状边界模糊,粗糙偏光显微镜下和扫描电镜下,溶蚀后,被溶蚀边界模糊、粗糙,呈锯齿状,在阴极发光下可看出边界与黏土矿物或碳酸盐矿物发生物质交换图2j~l

    Table 1.  Dissolution characteristics of quartz grain boundary

    根据石英颗粒边界溶蚀形态及特征,将其边界类型分为两大类(图23)。

    Figure 3.  Boundary⁃type quartz particles

    (1) 边界光滑—溶蚀增孔型:石英颗粒边界被溶蚀,边界光滑清晰,呈凹凸状(图3a,d),形成微小孔隙(图2b),在扫描电镜下表现为颗粒表面的雨痕状溶蚀特征(图2c,d),在后续的成岩过程中,石英颗粒被溶蚀后所形成的孔隙会被黏土矿物或碳酸盐矿物充填(图2e,f),电镜下能观察到黏土矿物为伊利石和绿泥石(图2g~i)。

    (2) 边界模糊—溶蚀交代型:石英颗粒被黏土矿物或碳酸盐胶结物溶蚀交代,从而破坏了原有的边界特征,导致石英边界模糊粗糙(图2j,k),呈锯齿状。通过扫描电镜观察,与石英颗粒发生溶蚀交代的矿物主要是黏土矿物以及少量铁方解石(图2l)。因此,根据交代矿物的不同,进一步划分为两类,分别为边界模糊—溶蚀—碳酸盐交代型(图3b,e)、边界模糊—溶蚀—黏土矿物交代型(图3c,f)。

  • 石英颗粒不同边界溶蚀形态类型,具有不同的物质交换特征,也代表了不同的溶蚀成因过程。

  • 研究区该类溶蚀边界发育较少,以颗粒原有边界特征相对完整,光滑清晰,基本没有被溶蚀破坏为典型表现形式(图2b,c)。颗粒表面多呈现雨痕状溶蚀,代表了石英颗粒处于一个较弱的溶蚀环境。该类溶蚀特征在大牛地气田上古生界储层中也有发现,普遍认为这类“雨痕状”溶坑是处于溶蚀作用较弱或者是溶蚀时间较短的溶蚀环境的结果[1617]

    实验结果表明,在酸性溶液下,温度达到200 ℃以上时,石英颗粒表面才开始发生微弱的溶蚀[16]。结合四川盆地的地温梯度和包裹体的均一温度,须二段地层温度在地质历史时期普遍达不到200 ℃[28],故须二段石英颗粒难以在酸性条件下发生溶蚀。然而,前人在实验室进行了有机酸对石英颗粒溶解速率及机理研究,发现草酸等有机酸的加入会使石英颗粒的溶解速度提高[13,15,19],但不会增加石英的溶解度[11,14,40]。然而在有机酸环境中,二氧化硅会与有机酸发生反应,H+链接到二氧化硅的Si-O-Si键上形成络合物H4SiO4,从而降低酸性条件下的反应活化能,并且生成的络合物扩散到地层水中,从而使得反应正向进行,加快石英颗粒的溶解[18]

    四川盆地须家河组在早成岩期有机质开始成熟[28],提供了一个富含有机酸的成岩环境,有机酸能起到提高石英溶解速率的催化作用,使得研究区须二段石英颗粒发生溶蚀(图4)。但这个过程属于弱溶蚀,主要表现为石英颗粒边界局部开始发生溶蚀的过程,并提供微小的孔隙(图2b)。边界光滑—溶蚀增孔型为石英颗粒边界发生有机酸溶蚀成因。

    Figure 4.  Genesis diagram of smooth boundary⁃dissolution pore⁃increasing type at well Xin 10

  • 前人对碱性条件下石英溶解机制的研究中[6,20,41],认为石英在碱性环境下受OH-的催化作用,溶解速率会随着pH值的增加而增加。同时,电解质的“盐效应”会降低石英颗粒的活化能,从而提高溶解速率。前人在实验中证实了石英颗粒在碱性条件下有电解质的参与,会提高石英溶解速率[3,5]

    川西新场地区须二段石英颗粒溶蚀现象普遍存在,其中溶蚀边界外存在的黏土矿物主要为伊利石和绿泥石(图2g,h),样品中高岭石和伊/蒙混层较少甚至没有(表2),另有少量具碱性成岩环境指示意义的碳酸盐胶结物(图2e)。伊利石和绿泥石的形成需要富含K+、Fe2+和Mg2+的碱性环境[4244],蒙脱石具有在碱性条件下向伊利石或绿泥石转化的特征,这几类黏土矿物的存在也是反映当时碱性成岩环境的标志。

    样品井号深度/m黏土矿物相对含量/%
    伊利石高岭石绿泥石伊/蒙混层
    川合100井4 337.65813124
    新场5井4 740.33817120
    新场10井4 852.84780220
    新场 10井4 880.54650350
    新场 5井4 933.357210180
    新场10井4 937.80610390

    Table 2.  Relative content of clay minerals

    同时,在扫描电镜下观察发现须二段砂岩中存在少量石盐矿物(图5),表明孔隙中存在NaCl电解质溶液。此外,黏土矿物中伊利石和绿泥石的存在,也指示了流体中具有K+、Fe2+和Mg2+。以上几类电解质在碱性环境下,提高了成岩流体对石英溶解的速率,使得石英颗粒边界发生较强烈溶蚀的同时,伴随着黏土矿物和碳酸盐矿物的溶蚀交代。研究区石英颗粒主要发育两种类型的溶蚀交代,其成因如下。

    Figure 5.  Shale salt in the second member of the Xujiahe Formation (scanning electron microscope and energy spectrum, well Xin 10, 4 931.40 m, lithic sandstone )

    1) 边界模糊—溶蚀—碳酸盐交代型

    此类边界溶蚀常伴随着碳酸盐胶结物的生成,表现为碳酸盐矿物破坏石英颗粒原有边界,使边界模糊粗糙,呈锯齿状,这类现象在塔中地区亦有发育。钟大康等[19]在塔中地区发现石英颗粒边界被碳酸盐矿物交代,并且解释这类现象发生在偏碱性环境。其过程表现为石英表面发生溶蚀,溶解形成的SiO2以H4SiO4分子的形式向孔隙水扩散,孔隙水中Ca2+和HCO3-浓度如果高于H4SiO4,则会因为浓度差发生扩散,从而导致碳酸盐矿物对石英颗粒发生交代。这与研究区须二段石英溶蚀特征一致,并且在镜下还观察到石英颗粒被铁方解石和铁白云石交代,认为在碱性条件下,铁方解石和铁白云石释放出的Fe2+提高了石英的溶蚀速率,使得孔隙中Ca2+和HCO3-浓度普遍高于H4SiO4,形成浓度差,从而发生碳酸盐矿物对石英颗粒的溶蚀交代(图6)。

    Figure 6.  Genesis diagram of fuzzy boundary⁃dissolution⁃carbonate metasomatic type

    2) 边界模糊—溶蚀—黏土矿物交代型

    该类型在研究区较为常见,是黏土矿物溶蚀交代的结果。该类石英颗粒边界被交代破坏,边界呈不清晰的锯齿状。前人研究认为,在富含CO2的孔隙水中,黏土矿物的存在能游离出K2CO3,形成局部强碱环境,使石英颗粒发生溶解,溶解的物质通过黏土矿物膜扩散而走,从而交代石英颗粒[45]。刘金库等[20]在川南须家河组储层研究中,认为黏土矿物溶蚀交代与黏土矿物的强吸附性有关,可在黏土矿物表面吸附电解质从而形成“盐效应”,加速石英颗粒溶蚀。笔者在镜下观察到石英颗粒被伊利石和绿泥石混层交代的锯齿状边界(图2l),认为是在碱性成岩环境,孔隙中含有Fe2+、K+和Mg2+等离子,所产生“盐效应”提高了石英颗粒的溶蚀速率,在离子浓度差的驱动下,通过黏土矿物薄膜对石英颗粒进行溶蚀交代,形成此类边界(图7)。

    Figure 7.  Genesis diagram of fuzzy boundary⁃dissolution clay mineral metasomatic type in lithic quartz sandstone at well Xin 10

  • 对石英颗粒溶蚀边界的研究发现,黏土矿物和碳酸盐矿物组合能反映出导致石英溶蚀的成岩流体演化特征。镜下观察到至少两期次的碳酸盐矿物,为方解石和白云石组合以及铁方解石和铁白云石组合。前人研究认为,川西坳陷须家河组发育早期方解石和晚期铁方解石、铁白云石组合,说明成岩期至少经历两个碱性成岩流体演化时期[24,28]。但是高岭石的生成主要来自有机酸环境中的长石溶蚀[23],并且由于须二段K+/H+活度比较高,使得部分层段的长石又得到了有效保存。这不仅说明须家河组经历了酸性成岩流体过程,还解释了长石含量变化范围广的原因。比如统计须二段长石含量介于1%~34%,平均为6.5%。表2多个样品中高岭石含量几乎为零,基本转化为伊利石,说明酸性成岩环境之后又转化为碱性环境。因此,须家河组成岩流体表现为从初期的弱碱性变为酸性再到碱性的演化特征[28,31,46]

    须二段成岩流体弱碱性—酸性—碱性交替的演化特征,使石英颗粒发生不同类型的溶蚀,并形成不同类型的石英颗粒溶蚀边界。结合溶蚀边界特征发现,边界光滑—溶蚀增孔型石英颗粒边界为有机酸溶蚀成因,而边界模糊—溶蚀—碳酸盐交代型和边界模糊—溶蚀—黏土矿物交代型则是碱性环境溶蚀的结果,并且石英颗粒在碱性条件下没有碱金属离子的参与时不易发生溶蚀[89]。因此,可以认为石英颗粒先发生边界光滑—溶蚀增孔型溶蚀后发生边界模糊—溶蚀—碳酸盐交代型和边界模糊—溶蚀—黏土矿物交代型溶蚀(图8)。

    Figure 8.  Evolution diagram of quartz particle boundary dissolution

    在研究石英溶蚀演化的图2f中观察到石英颗粒溶蚀形成的孔隙被碳酸盐和黏土矿物充填,边界从光滑逐步变粗糙模糊,有发生溶蚀交代的趋势(图2f)。这可能是在酸性条件下发生边界光滑—溶蚀增孔型溶蚀,后进入碱性环境时孔隙开始被其他矿物充填,最后发生边界模糊—溶蚀—碳酸盐交代型和边界模糊—溶蚀—黏土矿物交代型溶蚀(图8)。

    边界模糊—溶蚀—碳酸盐交代型和边界模糊—溶蚀—黏土矿物交代型这两类溶蚀中,碳酸盐矿物对石英溶蚀边界交代溶蚀难以释放储集空间,故此类溶蚀对储层建设性作用较小[19],而黏土矿物对石英溶蚀边界的交代溶蚀可以解放出部分储集空间[20],因而对储层建设贡献较大。须二段中碳酸盐交代石英边界型溶蚀较少,而黏土矿物交代石英边界型溶蚀较多。这表明,石英颗粒继续溶蚀可对储层起更积极的建设性作用。

    石英颗粒边界演化最终向边界模糊—溶蚀—碳酸盐交代型和边界模糊—溶蚀—黏土矿物交代型转变,这不仅揭示了边界光滑—溶蚀增孔型少的成因,也反映了石英颗粒边界演化是往对储层有利的方向进行。

  • 在对边界溶蚀特征的研究中,发现研究区石英颗粒溶蚀现象普遍。定量统计了新10井和新5井薄片中石英颗粒发生溶蚀的情况(图9),发现须二段对储层建设贡献较大的溶蚀边界含量较多,故统计石英溶蚀面孔率仍具有积极意义。为统计石英溶蚀面孔率,对被溶蚀石英颗粒进行颗粒形态恢复,然后比较溶蚀后形态,根据颗粒切片面积差异估算石英颗粒被溶蚀的比例(图10)。在统计石英溶蚀面孔率时,为提高统计准确度,需要将石英压溶作用及粒间溶孔的影响剔除,并且排除长石溶蚀的影响。

    Figure 9.  Quartz dissolution ratios

    Figure 10.  Dissolution face porosity of lithic quartz sandstone at well Xin 10

    统计结果表明,须二段砂岩中石英颗粒发生溶蚀比例较高。在发生溶蚀的石英颗粒中,溶蚀缺失部分占石英颗粒面积的4.33%~8.67%,平均为6.37%。发生溶蚀的石英颗粒占石英全部颗粒的比例达到55.33%以上,最大约72%,平均为63.02%。石英在薄片中的含量介于45%~96%,平均为75.3%。因此,石英溶蚀面孔率统计结果为2.05%~4.09%,平均为3.19%。将得到的溶蚀面孔率数据与实测孔隙度进行相关性耦合分析,溶蚀面孔率和孔隙度呈正相关,线性相关系数R2为0.792 6(图11),具有明显相关性,表明石英颗粒溶蚀作用的发育有效地改善了储层物性。于雯泉等[15]对金湖凹陷的石英溶蚀面孔率进行统计计算,得到溶蚀面孔率最大能达到20%。在庞大的石英颗粒基数下,石英颗粒的溶蚀作用能提供一定量的孔隙度,可以有效增加致密砂岩的储集空间,并且改善储层的孔隙结构,提高储层孔隙性能。

    Figure 11.  Relationship between dissolution surface porosity and porosity

    尽管须二段发生溶蚀的石英颗粒占比较高,但是石英颗粒被溶蚀的程度普遍较小,不同溶蚀颗粒边界对须二段砂岩储层中次生孔隙的意义具有明显差异(图12)。石英颗粒溶蚀比例与溶蚀形成的次生孔隙呈正相关关系,石英颗粒含量与溶蚀比例具负相关关系,这与石英颗粒的基数较高而溶蚀颗粒数量相对稳定有关。所以河口坝石英含量相对较高,石英溶蚀比例较低;水下分流河道石英颗粒含量相对较低,而溶蚀比例较高。因此,沉积微相与石英溶蚀比例具有一定的相关性,这为不同地区不同沉积微相所发育的石英溶蚀现象提供新的参考。

    Figure 12.  Comprehensive histogram of well Xin 10

  • (1) 石英颗粒边界溶蚀可划分为两大类,即边界光滑—溶蚀增孔型和边界模糊—溶蚀交代型,基于溶蚀交代矿物的不同,后者可进一步划分为边界模糊—溶蚀—碳酸盐交代型和边界模糊—溶蚀—黏土矿物交代型。

    (2) 边界光滑—溶蚀增孔型为酸性条件下有机酸促进石英颗粒溶蚀的结果。边界模糊—溶蚀交代型则发生在碱性条件下,当存在离子浓度差,可导致碳酸盐矿物发生溶蚀交代;或者由于黏土矿物产生“盐效应”,提高了石英颗粒溶蚀速率,并通过黏土矿物薄膜发生黏土矿物溶蚀交代。

    (3) 石英颗粒边界演化的趋势是向边界模糊—交代型并且对储层有利的方向进行。统计表明,石英溶蚀面孔率介于2.05%~4.09%,平均为3.19%。石英颗粒溶蚀可以增加油气储集空间,有效改善致密砂岩的孔隙结构。

Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return