Advanced Search
Volume 43 Issue 3
Jun.  2025
Turn off MathJax
Article Contents

LIN YiPeng, HAN DengLin, DENG Yuan, SU Ao, QIN Peng, MA BinYu, JIANG XingChao, WANG JingMin. Influence of Reservoir Forming Dynamics on Shale Oil and Gas Accumulation: A case study from the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1130-1144. doi: 10.14027/j.issn.1000-0550.2023.068
Citation: LIN YiPeng, HAN DengLin, DENG Yuan, SU Ao, QIN Peng, MA BinYu, JIANG XingChao, WANG JingMin. Influence of Reservoir Forming Dynamics on Shale Oil and Gas Accumulation: A case study from the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1130-1144. doi: 10.14027/j.issn.1000-0550.2023.068

Influence of Reservoir Forming Dynamics on Shale Oil and Gas Accumulation: A case study from the Lucaogou Formation in Jimusar Sag, Junggar Basin

doi: 10.14027/j.issn.1000-0550.2023.068
Funds:

National Natural Science Foundation of China 42072121

National Natural Science Foundation of China 42302175

  • Received Date: 2023-07-10
  • Accepted Date: 2023-09-01
  • Rev Recd Date: 2023-08-08
  • Available Online: 2023-09-01
  • Publish Date: 2025-06-10
  • Objective The pressure differences between source and reservoir rocks is not only the driving force for unconventional oil and gas accumulation, but also indispensable key content in the study of the genesis of shale oil sweet spots. In addition, laminar structures are widely developed in continental shale, and the degree of development results in differences in the accumulation dynamics of reservoir rocks, which affect the accumulation of shale oil and gas. However, there are relatively few studies on the accumulation dynamics of shale oil. The sweet spot section of the Permian Lucaogou Formation in the Jimusar Sag was taken as the research object, and the intrinsic relationship between the development degree of laminar structure and shale oil and gas accumulation was revealed from the perspective of accumulation dynamics. Methods Through the evaluation of source rocks, classification of petrographic types and characterization of pores, etc., the characteristics of the source rocks, different types of reservoir rocks, and source-reservoir assemblages in the study area were obtained. Using the equivalent depth method and fluid inclusion simulation, the pressure difference between source and reservoir rocks during the accumulation period was recovered, and the accumulation dynamics of different types of reservoir rocks were obtained. Results The results show that the study area is dominated by source-reservoir interbedded combinations, and the hydrocarbon generation of high-quality source rocks creates a strong source-reservoir pressure difference between the source and reservoir, promoting the continuous migration of oil and gas to adjacent reservoir spaces. Interbedded silty and argillaceous laminae are widely developed in the reservoir rocks, which constitute a large area of frequent contact between the source and reservoir. The degree of development results in differences in the accumulation dynamics of different types of reservoir rocks, the laminar reservoir has developed laminar structure, and the migration distance of oil and gas is shortened; thus, it has stronger accumulation power and oil-bearing properties. Conclusions The interaction between the pressure difference between source and reservoir rocks and the laminar structure causes the difference in the accumulation effect of oil and gas in the reservoir rocks,and the development of laminar reservoir rocks in the lower sweet spot is a favorable area for studying oil and gas migration and accumulation in the shale sweet spot.
  • [1] 胡素云,白斌,陶士振,等. 中国陆相中高成熟度页岩油非均质地质条件与差异富集特征[J]. 石油勘探与开发,2022,49(2):224-237.

    Hu Suyun, Bai Bin, Tao Shizhen, et al. Heterogeneous geological conditions and differential enrichment of medium and high maturity continental shale oil in China[J]. Petroleum Exploration and Development, 2022, 49(2): 224-237.
    [2] 张少敏,操应长,朱如凯,等. 湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘,2018,25(4):198-209.

    Zhang Shaomin, Cao Yingchang, Zhu Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209.
    [3] 霍进,支东明,郑孟林,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油藏特征与形成主控因素[J]. 石油实验地质,2020,42(4):506-512.

    Huo Jin, Zhi Dongming, Zheng Menglin, et al. Characteristics and main controls of shale oil reservoirs in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 506-512.
    [4] Liang C, Cao Y C, Liu K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128.
    [5] 许琳,常秋生,杨成克,等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质,2019,40(3):535-549.

    Xu Lin, Chang Qiusheng, Yang Chengke, et al. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag[J]. Oil & Gas Geology, 2019, 40(3): 535-549.
    [6] 李二庭,王剑,李际,等. 源储一体烃源岩精确评价:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 石油实验地质,2021,43(2):335-342.

    Li Erting, Wang Jian, Li Ji, et al. Accurate evaluation of source rocks in source-reservoir integration: A case study of source rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 335-342.
    [7] Liu D D, Li Z, Jiang Z X, et al. Impact of laminae on pore structures of lacustrine shales in the southern Songliao Basin, NE China[J]. Journal of Asian Earth Sciences, 2019, 182: 103935.
    [8] Liu C, Liu K Y, Wang X Q, et al. Chemo-sedimentary facies analysis of fine-grained sediment formations: An example from the Lucaogou Fm in the Jimusaer Sag, Junggar Basin, NW China[J]. Marine and Petroleum Geology, 2019, 110: 388-402.
    [9] Qiao J C, Zeng J H, Jiang S, et al. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: Implications for macroscopic and microscopic heterogeneities[J]. Marine and Petroleum Geology, 2020, 111: 279-300.
    [10] 郑民,李建忠,王文广,等. 致密储层石油充注成藏过程分析:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地球科学,2018,43(10):3719-3732.

    Zheng Min, Li Jianzhong, Wang Wenguang, et al. Analysis of oil charging and accumulation processes in tight reservoir beds: A case study of Lucaogou Formation in Jimsar Sag of Junggar Basin, NW China[J]. Earth Science, 2018, 43(10): 3719-3732.
    [11] 杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560-568.

    Du Jinhu, Hu Suyun, Pang Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
    [12] 吴松涛,朱如凯,罗忠,等. 中国中西部盆地典型陆相页岩纹层结构与储层品质评价[J]. 中国石油勘探,2022,27(5):62-72.

    Wu Songtao, Zhu Rukai, Luo Zhong, et al. Laminar structure of typical continental shales and reservoir quality evaluation in central-western basins in China[J]. China Petroleum Exploration, 2022, 27(5): 62-72.
    [13] Bai H, Pang X Q, Kuang L C, et al. Hydrocarbon expulsion potential of source rocks and its influence on the distribution of lacustrine tight oil reservoir, Middle Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, northwest China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 740-755.
    [14] 王剑,袁波,刘金,等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组混积岩成因及其孔隙发育特征[J]. 石油实验地质,2022,44(3):413-424.

    Wang Jian, Yuan Bo, Liu Jin, et al. Genesis and pore development characteristics of Permian Lucaogou migmatites, Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(3): 413-424.
    [15] 张宸嘉,曹剑,王俞策,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油富集规律[J]. 石油学报,2022,43(9):1253-1268.

    Zhang Chenjia, Cao Jia, Wang Yuce, et al. Enrichment law of shale oil of Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Acta Petrolei Sinica, 2022, 43(9): 1253-1268.
    [16] 刘金,王剑,张晓刚,等. 准噶尔盆地吉木萨尔凹陷芦草沟组甜点页岩油微观赋存特征及成因机制[J]. 地质论评,2022,68(3):907-920.

    Liu Jin, Wang Jian, Zhang Xiaogang, et al. Microscopic occurrence characteristics and genetic mechanism of shale oil in sweet spot reservoir of the Lucaogou Formation in Jimsar Sag[J]. Geological Review, 2022, 68(3): 907-920.
    [17] Pang X Q, Shao X H, Li M W, et al. Correlation and difference between conventional and unconventional reservoirs and their unified genetic classification[J]. Gondwana Research, 2021, 97: 73-100.
    [18] Xu Z J, Liu L F, Wang T G, et al. Characteristics and controlling factors of lacustrine tight oil reservoirs of the Triassic Yanchang Formation Chang 7 in the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 82: 265-296.
    [19] 乔俊程. 致密砂岩气藏气水分布特征及其成因机制[D]. 北京:中国石油大学(北京),2020.

    Qiao Juncheng. Distribution characteristics and Formation mechanisms of gas-water distribution in the tight sandstone gas reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2020.
    [20] Lao H G, Wang Y S, Shan Y X, et al. Hydrocarbon downward accumulation from an Upper oil source to the oil reservoir below in an extensional basin: A case study of Chezhen Depression in the Bohai Bay Basin[J]. Marine and Petroleum Geology, 2019, 103: 516-525.
    [21] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187.

    Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J] Acta Petrolei Sinica, 2012, 33(2): 173-187.
    [22] 曾溅辉,杨智峰,冯枭,等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展,2014,29(6):651-661.

    Zeng Jianhui, Yang Zhifeng, Feng Xiao, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651-661.
    [23] 罗群,高阳,张泽元,等. 中国与美国致密油形成条件对比研究[J]. 石油实验地质,2022,44(2):199-209.

    Luo Qun, Gao Yang, Zhang Zeyuan, et al. A comparative study of geological conditions of tight oils in China and USA[J]. Petroleum Geology & Experiment, 2022, 44(2): 199-209.
    [24] 许马光,范彩伟,张丹妮,等. 莺歌海盆地乐东01超高温高压气藏形成条件及成藏模式[J]. 天然气工业,2021,41(11):43-53.

    Xu Maguang, Fan Caiwei, Zhang Danni, et al. Formation condition and hydrocarbon accumulation model in Ledong 01 gas reservoir of super high temperature and high pressure in the Yinggehai Basin[J]. Natural Gas Industry, 2021, 41(11): 43-53.
    [25] 屈童,高岗,梁晓伟,等. 鄂尔多斯盆地长7段致密油成藏机理分析[J]. 地质学报,2022,96(2):616-629.

    Qu Tong, Gao Gang, Liang Xiaowei, et al. Analysis of tight oil accumulation mechanism of Chang 7 member in the Ordos Basin[J]. Acta Geologica Sinica, 2022, 96(2): 616-629.
    [26] 印森林,陈恭洋,许长福,等. 陆相混积细粒储集岩岩相构型及其对甜点的控制作用:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组页岩油为例[J]. 石油与天然气地质,2022,43(5):1180-1193.

    Yin Senlin, Chen Gongyang, Xu Changfu, et al. Lithofacies architecture of lacustrine fine-grained mixed reservoirs and its control over sweet spot: A case study of Permian Lucaogou Formation shale oil reservoir in the Jimsar Sag, Juggar Basin[J]. Oil & Gas Geology, 2022, 43(5): 1180-1193.
    [27] Lin M R, Xi K L, Cao Y C, et al. Petrographic features and diagenetic alteration in the shale strata of the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108684.
    [28] Jiang Z X, Kong X X, Yang Y P, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 30-42.
    [29] 金之钧,朱如凯,梁新平,等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发,2021,48(6):1276-1287.

    Jin Zhiyun, Zhu Rukai, Liang Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287.
    [30] Wang J M, Han D L, Deng Y, et al. Differential characteristics and the main controlling factors of shale oil sweet spot reservoirs in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Geofluids, 2022, 2022: 6936161.
    [31] 付广,吕延防,杨勉. 欠压实泥岩异常孔隙流体压力的定量研究[J]. 新疆石油地质,2002,23(4):295-298.

    Fu Guang, Lu Yanfang, Yang Mian. Quantitative study on abnormal pore fluid pressure in undercompacted mudstone[J]. Xinjiang Petroleum Geology, 2002, 23(4): 295-298.
    [32] Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Petroleum Research, 2018, 3(1): 1-24.
    [33] 赖仁. 吉木萨尔凹陷芦草沟组超压演化及其对致密油富集的影响[D]. 青岛:中国石油大学(华东),2017.

    Lai Ren. Evolution of overpressure and its influence on enrichment of tight oil of Lucaogou Formation in Jimsar Depression[D]. Qingdao: China University of Petroleum (East China), 2017.
    [34] 张云钊,曾联波,罗群,等. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学,2018,29(2):211-225.

    Zhang Yunzhao, Zeng Lianbo, Luo Qun, et al. Research on the types and genetic mechanisms of tight reservoir in the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2018, 29(2): 211-225.
    [35] 马永生,蔡勋育,赵培荣,等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报,2022,96(1):155-171.

    Ma Yong-sheng, Cai Xunyu, Zhao Peirong, et al. Geological characte-ristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155-171.
    [36] 王剑,李二庭,陈俊,等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组优质烃源岩特征及其生烃机制研究[J]. 地质论评,2020,66(3):755-764.

    Wang Jian, Li Erting, Chen Jun, et al. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Geological Review, 2020, 66(3): 755-764.
    [37] Wu S T, Yang Z, Zhai X F, et al. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints[J]. Marine and Petroleum Geology, 2019, 102: 377-390.
    [38] Katz B J, Arango I. Organic porosity: A geochemist's view of the current state of understanding[J]. Organic Geochemistry, 2018, 123: 1-16.
    [39] Zou C N, Jin X, Zhu R K, et al. Do shale pore throats have a threshold diameter for oil storage?[J]. Scientific Reports, 2015, 5: 13619.
    [40] 陈红汉. 单个油包裹体显微荧光特性与热成熟度评价[J]. 石油学报,2014,35(3):584-590.

    Chen Honghan. Microspectrofluorimetric characterization and thermal maturity assessment of individual oil inclusion[J]. Acta Petrolei Sinica, 2014, 35(3): 584-590.
    [41] 张鑫,陈红汉,孔令涛,等. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系[J]. 地球科学,2020,45(5):1769-1781.

    Zhang Xin, Chen Honghan, Kong Lingtao, et al. The coupling relationship between paleofluid pressure evolution and hydrocarbon - charging events in the deep of Biyang Depression, central China[J]. Earth Science, 2020, 45(5): 1769-1781.
    [42] 刘念,邱楠生,秦明宽,等. 冀中坳陷束鹿潜山带油气成藏主控因素与成藏模式[J]. 地质学报,2023,97(3):897-910.

    Liu Nian, Qiu Nansheng, Qin Mingkuan, et al. Main controlling factors and models of hydrocarbon accumulation in the Shulu buried-hill belt, Jizhong Depression, Bohai Bay Basin[J]. Acta Geologica Sinica, 2023, 97(3): 897-910.
    [43] Pironon J, Canals M, Dubessy J, et al. Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy[J]. European Journal of Mineralogy, 1998, 10(6): 1143-1150.
    [44] Aplin A C, Macleod G, Larter S R, et al. Combined use of Confocal Laser Scanning Microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology, 1999, 16(2): 97-110.
    [45] Volk H, George S C. Using petroleum inclusions to trace petroleum systems–A review[J]. Organic Geochemistry, 2019, 129: 99-123.
    [46] Zheng D Y, Pang X Q, Zhou L M, et al. Critical conditions of tight oil charging and determination of the Lower limits of petrophysical properties for effective tight reservoirs: A case study from the Fengcheng Formation in the Fengcheng area, Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107135.
    [47] 吉鸿杰,邱振,陶辉飞,等. 烃源岩特征与生烃动力学研究:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏,2016,28(4):34-42.

    Ji Hongjie, Qiu Zhen, Tao Huifei, et al. Source rock characteristics and hydrocarbon generation kinetics: A case study of the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Lithologic Reservoirs, 2016, 28(4): 34-42.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(3)

Article Metrics

Article views(648) PDF downloads(43) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-07-10
  • Revised:  2023-08-08
  • Accepted:  2023-09-01
  • Published:  2025-06-10

Influence of Reservoir Forming Dynamics on Shale Oil and Gas Accumulation: A case study from the Lucaogou Formation in Jimusar Sag, Junggar Basin

doi: 10.14027/j.issn.1000-0550.2023.068
Funds:

National Natural Science Foundation of China 42072121

National Natural Science Foundation of China 42302175

Abstract: Objective The pressure differences between source and reservoir rocks is not only the driving force for unconventional oil and gas accumulation, but also indispensable key content in the study of the genesis of shale oil sweet spots. In addition, laminar structures are widely developed in continental shale, and the degree of development results in differences in the accumulation dynamics of reservoir rocks, which affect the accumulation of shale oil and gas. However, there are relatively few studies on the accumulation dynamics of shale oil. The sweet spot section of the Permian Lucaogou Formation in the Jimusar Sag was taken as the research object, and the intrinsic relationship between the development degree of laminar structure and shale oil and gas accumulation was revealed from the perspective of accumulation dynamics. Methods Through the evaluation of source rocks, classification of petrographic types and characterization of pores, etc., the characteristics of the source rocks, different types of reservoir rocks, and source-reservoir assemblages in the study area were obtained. Using the equivalent depth method and fluid inclusion simulation, the pressure difference between source and reservoir rocks during the accumulation period was recovered, and the accumulation dynamics of different types of reservoir rocks were obtained. Results The results show that the study area is dominated by source-reservoir interbedded combinations, and the hydrocarbon generation of high-quality source rocks creates a strong source-reservoir pressure difference between the source and reservoir, promoting the continuous migration of oil and gas to adjacent reservoir spaces. Interbedded silty and argillaceous laminae are widely developed in the reservoir rocks, which constitute a large area of frequent contact between the source and reservoir. The degree of development results in differences in the accumulation dynamics of different types of reservoir rocks, the laminar reservoir has developed laminar structure, and the migration distance of oil and gas is shortened; thus, it has stronger accumulation power and oil-bearing properties. Conclusions The interaction between the pressure difference between source and reservoir rocks and the laminar structure causes the difference in the accumulation effect of oil and gas in the reservoir rocks,and the development of laminar reservoir rocks in the lower sweet spot is a favorable area for studying oil and gas migration and accumulation in the shale sweet spot.

LIN YiPeng, HAN DengLin, DENG Yuan, SU Ao, QIN Peng, MA BinYu, JIANG XingChao, WANG JingMin. Influence of Reservoir Forming Dynamics on Shale Oil and Gas Accumulation: A case study from the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1130-1144. doi: 10.14027/j.issn.1000-0550.2023.068
Citation: LIN YiPeng, HAN DengLin, DENG Yuan, SU Ao, QIN Peng, MA BinYu, JIANG XingChao, WANG JingMin. Influence of Reservoir Forming Dynamics on Shale Oil and Gas Accumulation: A case study from the Lucaogou Formation in Jimusar Sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1130-1144. doi: 10.14027/j.issn.1000-0550.2023.068
  • 近年来,页岩油已经成为非常规油气资源中的热门领域。准噶尔盆地吉木萨尔凹陷二叠系芦草沟组页岩油在国内非常规油气资源量中优势明显,已探明储量2.546×107 t,拥有良好的勘探开发潜力[1]。吉木萨尔凹陷芦草沟组为陆相咸化湖细粒沉积,主要发育粉砂质云岩、泥质粉砂岩、泥晶云岩等岩石类型[23],其在形成机制、储集性能等方面与常规油气储层有着很大的区别[4],体现在垂向上岩性变化较快,即:烃源岩频繁与富含粉砂质、泥晶白云石等组分的储集岩互层[56],微米级别下就会出现强烈的非均质性,使得有关研究区页岩油甜点形成机制方面的探究存在较大困难[79]。勘探实践表明,陆相页岩广泛发育纹层结构,并且其发育程度与油气富集程度之间存在关联性[1012]。然而前人的研究多集中于对研究区沉积环境、储集空间类型及特征、源岩品质等方面的探讨,在纹层结构对页岩油气聚集的影响方面研究相对较少[5,1316]

    与常规油气藏不同,细粒沉积本身会阻碍油气的运移,并且浮力对油气成藏的影响会被其他作用力减弱,几乎对油气成藏没有贡献[17]。目前研究层段虽总体上呈现源内滞留的地质特性,但仍存在短距离二次运移的致密油特征。因此,明确研究层段成藏动力的形成机制,对页岩油“甜点”的精确预测及后续高效开发有着十分重要的影响。近年来,一些学者探讨了非常规储层的成藏动力,源储压差这一概念逐渐在相关研究中被提出。目前多数学者认为源储压差是非常规油气成藏的主要动力,例如Xu et al.[18]利用等效深度法与流体包裹体压力恢复相结合得出成藏期的源储压差,分析出源储压差是鄂尔多斯盆地长7段湖相致密油的成藏动力;乔俊程[19]运用等效深度法计算源、储地层间剩余压力之差论证了源储压差是控制鄂尔多斯盆地上古生界气水展布的动力因素;Lao et al.[20]采取流体包裹体古压力恢复的方式,发现沙三段烃源岩与沙四段储集层之间存在古压力差,有利于油气克服阻力等因素向源岩下部的储集层中运聚。总之,前人虽然阐述了源储压差形成机理及其对非常规油气成藏的重要性[2025],但是源储压差对不同纹层结构发育程度页岩储层油气富集的控制机制,尚未得到系统揭示。

    本次研究中,利用铸体薄片、场发射扫描电镜(FE-SEM)、二维大视域多尺度组合电镜成像(Maps)等测试多尺度表征储集岩储集空间特征,利用总有机碳(TOC)、岩石热解(Rock-Eval)等测试手段进行甜点段生烃潜力评价。在此基础上,借鉴前人对成藏动力恢复的研究,采用等效深度法与流体包裹体古压力恢复相结合的方式对研究层段成藏动力进行恢复。首先对研究层段流体包裹体特征进行观察,利用所获得信息模拟恢复出成藏期储集岩压力,再结合等效深度法公式计算得到成藏动力—源储压差,从而揭示储集岩纹层结构发育程度与甜点段油气富集效果的内在关联,为页岩油的勘探开发提供理论参考。

  • 吉木萨尔凹陷是我国重要的陆相页岩油产地,位于准噶尔盆地东部隆起带西南部,是一个西断东超的箕状凹陷[14]。该凹陷页岩油的主要产层为二叠系芦草沟组(P2l),分为芦一段(P2l1)、芦二段(P2l2),岩性以泥、页岩,粉砂岩、细砂岩及碳酸盐岩为主,部分存在火山碎屑岩,同时兼具混积特征,下甜点相比于上甜点水体较深,地层厚度大,岩性以云质粉砂岩为主,上甜点发育滨湖、浅湖相沉积,岩性以砂屑云岩、白云质粉砂岩为主(图1[3,5,14,16,2628]。良好的沉积环境有利于有机质的富集,使得芦草沟组曾一度被认为是一套优质烃源岩层。吉木萨尔凹陷芦草沟组勘探开发过程中的成功实践,使得研究区受到了众多学者的关注[2930]

    Figure 1.  Regional geological map of the Jimusar Sag in the Junggar Basin (modified from references [27⁃28])

  • 本研究对J10025井芦草沟组甜点段108块样品进行测试。为了方便研究将样品按照岩心上相邻纹层间厚度划分为三种类型,分别为纹层状(<1 cm)、层状(1~10 cm)、块状(>10 cm)(图2),其中纹层状样品60块,层状样品31块和块状样品17块。并对样品进行包括TOC测试、铸体薄片鉴定、场发射扫描电镜观察等。据上述实验结果进一步对不同类型储集岩样品进行二维大视域多尺度组合电镜成像(Maps)、流体包裹体和激光共聚焦等实验并结合测井含油饱和度等资料,获取不同类型储集岩样品的孔喉发育特征及成藏期古压力特征。

    Figure 2.  Microscopic characteristics of different types of reservoir rock cores and cast thin sections

  • 利用LECO CS-230碳硫分析仪按照GB/T 19145—2003标准进行岩石TOC分析,根据总有机碳测试结果选取部分适宜样品粉末样进行岩石热解实验。岩石热解实验利用Rock-Eval 6设备按照GB/T 18602—2012标准测试,以便获得游离液态烃(S1)、裂解烃(S2)、最高热解峰温(Tmax)等数据。

  • 储集空间表征实验均在长江大学储层微观结构演化及数字表征实验室测试分析。样品经过铸体制片后,利用LEICA DM4P偏光显微镜对样品进行岩性识别和孔隙发育程度等方面的观察;并采用Helios NanoLab 660进行了FE-SEM、Maps的测试,测试视域为800 μm×800 μm,分辨率达到10 nm,可以对储集空间发育程度、矿物颗粒间及颗粒内孔隙特征、孔喉半径等方面进行观察(图3)。

    Figure 3.  Schematic diagram of the storage space in shale oil reservoirs observed by two⁃dimensional large⁃view multi⁃scale combined electron microscope imaging

  • 本研究借助流体包裹体显微形态及荧光特征对流体包裹体成因和类型进行区分;并测量与烃类包裹体同时期形成盐水包裹体的均一温度,根据其频率分布情况在埋藏—热演化史图件上的投点恢复研究区成藏期次;配合激光共聚焦测量气液比等参数进行流体包裹体PVTx古压力模拟获得主成藏期储集岩压力大小。流体包裹体相关测试均在中国地质大学(武汉)构造与油气资源教育部重点实验室完成。其中,使用Maya 2000 Pro光谱仪进行流体包裹体显微形态观察及荧光测试,紫外光激发波长介于330~380 μm,室内温度20 ℃;盐水包裹体显微测温实验仪器为THMS600液氮型冷/热台,温度误差为±0.1 ℃。

    烃源岩成藏时期压力恢复是本研究的重要内容,虽然目前地层压力恢复的方法很多,但能够真实反映生烃时期烃源岩压力的方法并不常见。本文借助等效深度法恢复欠压实泥岩段古埋深压力[31],即正常压实段泥岩声波测井曲线与欠压实地层声波曲线上具有相同孔隙度和有效应力的深度为等效深度[32]图4),该深度的孔隙压力可表示为:

    Pz=ρrgZ+(ρr-ρw)gClnΔtΔt0

    式中:Pz 为欠压实泥岩的孔隙压力,Pa;ρr为埋藏深度与等效深度间的岩层平均密度,kg/m3;g为重力加速度,m/s2Z为欠压实泥岩的埋深,m;ρw为地层水密度,kg/m3;C为正常压实泥岩的压实系数,m-1∆t为欠压实泥岩的声波时差,μs/m;∆t0为地表的原始声波时差,μs/m;由于J10025井缺失正常压实段泥岩声波时差资料,故本文中C、∆t0等参数来自于前人的研究,即C取0.000 4,∆t0=631.62 μs/m[33]

    Figure 4.  Schematic diagram of calculation of formation pressure using the equivalent depth method (modified from references [32⁃33])

    页岩油源储位置较近,致使源、储古埋深相差较小,烃源岩压力可以用等效深度法直接表示,故本研究定义烃源岩与储集岩之间的压力之差代表源储压差。借助等效深度法所反映的是保留在源岩孔隙中的压力,而研究区良好的烃源岩成藏期生烃增压形成的裂缝相对发育[15,34],使得烃源岩产生压力难以进行定量,从而影响对成藏时期烃源岩压力的判断。由于岩石压实作用的不可逆性,测井曲线反映地层处于最大埋深时的压实状态,进而等效深度法计算出的压力即为地层处于最大埋深时期的烃源岩压力,由此油气成藏时期所处埋深的烃源岩压力可用最大埋深时的地层压力来衡定。

  • 测试结果显示,研究区样品TOC含量多大于2%,生烃潜力(S1+S2)范围介于6.66~64.64 mg/g,热解峰温(Tmax)范围介于429 ℃~450 ℃,镜质体反射率(Ro)介于0.6%~1.6%[35]。在Tmax-HI图版投点,发现干酪根类型以I~II1型干酪根为主,整体处于低熟—成熟阶段,表明研究区有机质丰度较高,具有良好的生烃潜力(图5)。

    Figure 5.  Characteristics of total organic carbon and kerogen types in the Lucaogou Formation in the Jimusar Sag (data from reference [36])

  • 研究区储集空间类型包括粒间孔隙、粒内溶孔、微裂缝、黏土矿物晶间孔及少量有机质孔(图6),原生孔隙受埋藏过程中压实作用影响消耗殆尽,以致现今观察到的孔隙类型基本为溶蚀作用造成的次生孔隙(图6a~h)。通过铸体薄片观察发现,甜点段纹层结构较为发育,以粉砂质和泥质互层式纹层为主(图6i~j)。富含长石及砂屑等易溶组分的粉砂岩、云岩等岩石类型样品中溶蚀孔隙相对发育,还能观察到裂缝的存在(图6k)。其他样品孔隙多不发育,孔隙孤立且局部集中分布,甚至在薄片中观察不到孔隙(图6b)。扫描电镜观察到岩石颗粒表面大量的不规则溶蚀孔隙,具有一定的连通性,还存在一些粒间孔隙,但多被有机质和黏土矿物等充填(图6l~p)。通过Maps观察统计发现,相较基质孔而言,有机质孔不发育(图7a),这种差异性可能与烃源岩的成熟度及干酪根类型等存在关联[35,3738]

    Figure 6.  Pore type characteristics of the Lucaogou Formation in well J10025 of Jimusar Sag

    Figure 7.  Pore types, storage spaces, and oiliness differences of different types of reservoir rocks in the Lucaogou Formation in the Jimusar Sag

    利用Maps进行大视域微、纳米孔隙结合测井数据统计发现,不同类型储集岩储集性能和含油性(图7b~d)存在差异。以白云岩储层为例,利用Avizo软件对二维视域中孔隙进行分割提取,发现纹层状储集岩孔隙度分布范围介于2.19%~10.20%,平均为6.20%,层状储集岩孔隙度分布范围介于3.72%~8.42%,平均为6.07%,块状储集岩孔隙度分布范围介于4.76%~5.52%,平均为5.14%,可见纹层状储集岩具有较高的孔隙度,这与样品所对应测井含油饱和度(图7c)和孔隙度数据(图7d)反应出的不同类型储集岩物性趋势特征相吻合。纹层结构发育程度不同,储集岩孔隙半径大小及区间也存在差异,可以发现纹层状储集岩孔喉半径范围极大(表1),白云岩在孔隙半径主要集中在20~50 nm(图7b),纹层状白云岩在这一孔隙半径区间的分布频率要优于层状白云岩和块状白云岩(表1图7b);Zou et al.[39]通过实验分析认为页岩油流动孔喉下限为20 nm,说明纹层结构发育程度是研究区油气富集的影响因素之一。

    深度/m层位岩石类型孔喉半径/nm孔隙度/%
    最大孔喉/nm孔喉中值/nm平均孔喉/nm
    3 544.61P2l22-2纹层状白云岩656.3829.3239.552.19
    3 692.94P2l12-2纹层状白云岩3 701.3438.2759.7110.20
    3 547.92P2l22-2层状白云岩643.9041.8454.313.72
    3 693.36P2l12-2层状白云岩1 885.3451.4088.318.42
    3 554.34P2l22-3块状白云岩1 710.2250.1582.814.76
    3 696.35P2l12-2块状白云岩2 885.2043.3467.735.52

    Table 1.  Physical property characteristics of different types of dolomite in the Lucaogou Formation of well J10025 in Jimusar Sag

  • 流体包裹体主要在石英颗粒内裂纹中广泛富集,直径相对较小,以2~20 μm为主,多数小于6 μm,以次生成因为主,多呈现条状、似椭圆、似三角状等形态,以气液两相烃类包裹体为主(图8)。

    Figure 8.  Microscopic and fluorescence characteristics of hydrocarbon inclusions in the Lucaogou Formation of well J10025 in Jimusar Sag

    烃类包裹体颜色及最大强度波长(λmax)和红/绿商(Q650/500)能够指示主成藏期油气热演化特征。随着原油成熟度增高,组分中饱芳比增加,荧光颜色出现蓝移。红/绿商(Q值)为荧光强度在650 nm和500 nm处的比值,其依赖于荧光光谱参数来反映成熟度的特性[40]。研究区烃类荧光颜色以黄色为主,部分存在黄绿色、蓝绿色,Q650/500=0.25~2.08,λmax=441~635 nm,体现出油气成藏时期成熟度偏低(图8c,f,i)。

  • 前人多采用流体包裹体均一温度分布与埋藏—热演化史结合的方法来判断油气成藏期次[4142]。与烃类包裹体同期形成的盐水包裹体均一温度范围为:60 ℃~140 ℃,多集中于70 ℃~90 ℃、100 ℃~140 ℃(图9a)。在埋藏—热演化史图上投点发现,研究区发生了两期油气充注,一期晚三叠世,二期早侏罗世至白垩世时期,结合前文包裹体岩相学特征,表明以低熟油充注为主(图9b)。

    Figure 9.  Homogeneous temperature distribution and accumulation periods of brine inclusions in the Lucaogou Formation in the Jimusar Sag (modified from reference [33])

    成藏期储集岩压力的恢复依赖于烃类包裹体的均一温度(Thom)以及激光共聚焦显微镜沿Z轴方向分层对气液比的精确测定[4344]。利用VTFLINC软件模拟出的P-T相图和等容线中数据获取油气成藏时期的储集岩压力[45]。测算结果表明,研究区储集岩成藏期压力介于18.57~48.16 MPa,压力系数介于0.72~2.17,平均为1.55,体现了成藏期储集岩内部较高的压力(表2)。在埋藏—热演化史图上体现第一期油气成藏储集岩压力系数介于1.30~1.52,平均为1.41,第二期储集岩压力系数介于0.72~2.17,平均为1.57,第二期早侏罗世至晚白垩世比第一期晚三叠世储集岩压力高,说明早侏罗世至晚白垩世时期为研究区主成藏期。

    现埋深/m岩石类型层位油包裹体均一温度/℃平均盐水包裹体均一温度/℃捕获压力/MPa源岩压力/MPa源储压差/MPa
    3 527.39纹层状粉砂岩P2l258.3782.3332.0450.4218.38
    3 549.16块状砂岩P2l269.3580.8024.1548.2824.13
    3 549.63块状砂岩P2l264.6074.0318.5748.2829.71
    3 551.69层状粉砂岩P2l276.8785.1748.1651.993.83
    3 553.16块状砂岩P2l265.3080.5320.8551.4330.57
    3 683.16纹层状粉砂岩P2l181.6783.1523.0453.0730.03
    3 692.90层状白云岩P2l162.1084.1328.1252.4624.34
    3 693.36层状白云岩P2l159.8383.9329.5752.4622.89
    3 701.84层状粉砂岩P2l171.3594.7034.4957.6123.12
    3 704.48纹层状粉砂岩P2l177.3790.2026.7355.8129.09
    3 709.78层状粉砂岩P2l162.3781.2735.8855.8119.93

    Table 2.  Dynamic calculation results the Lucaogou reservoir in well J10025 of Jimusar Sag

  • 目前大多数学者认为泥岩欠压实、烃源岩生烃增压、水热膨胀增压、黏土矿物脱水增压等是油气成藏的动力来源[32]。研究区的成藏动力主要来源于地层的欠压实作用,烃类生成和黏土矿物转化,其中欠压实和烃类生成为主要成因[33]

    非常规储集岩孔喉半径小,毛细管力可能是主要阻力。随着芦草沟组埋深不断增加,泥岩欠压实程度加剧,烃源岩生烃速率增大,促使烃源岩和储集层之间的压力逐渐增大,源、储间呈现一种非平衡状态进而形成源储压差。由于烃源岩产生的超压最终总要向压力较低的低渗透空间和疏导通道中运聚,所以当压力增加到与毛细管阻力相同时,可突破致密储层,烃源岩产生的油气将源源不断运移至储集岩中聚集(图10a)。

    Figure 10.  (a) Schematic diagram of tight reservoir formation (modified from reference [46]) and (b) paleopressure change map of the Lucaogou Formation reservoir rocks

    地球化学数据结果表明研究区优质烃源岩广布,生烃时期烃源岩中密度较高的干酪根会向密度较低的烃类转化,导致孔隙流体体积膨胀,形成较强的烃源岩压力。前人对吉木萨尔凹陷芦草沟组烃源岩进行生烃体积膨胀率计算发现,当Ro处于0.8%~1.0%阶段,TOC为3%的烃源岩生烃膨胀引起的体积膨胀率可达到15.30%~34.99%[47]。研究区TOC含量大于3%的烃源岩较多,且现今仍处于生油阶段(图5),表明生烃增压作用对研究区源储压差的形成有积极的作用。

    泥岩欠压实作用与生烃增压过程随着地层埋深的增加出现时空叠置,形成较强的烃源岩压力,这种时空叠置使得成藏动力也发生变化(图9b)。从包裹体捕获压力随地质年龄的变化(图9图10b)可以看出,晚三叠世时期由于快速埋深,使得早先存在的原生粒间孔隙被破坏,储集岩内部压力开始增加,后期由于构造抬升作用生烃被迫终止。早侏罗世开始由于地层埋深再次加大,提供了有利于烃源岩生烃的温压条件,广布的优质烃源岩再次开始生烃,形成源储压差推动大量有机酸溶蚀改造储集空间,使得该时期储集岩仍具有较好的物性,有利油气的聚集(图11a)。白垩世至今,虽然烃源岩仍处于生烃时期,但是压实作用持续破坏孔隙,与此同时累积至该时期大规模的溶蚀改造为黏土矿物转化、长石溶蚀等成岩作用提供了契机,促进了颗粒间胶结物的形成,以致于源储压差无法驱动烃类物质进入临近孔隙中,最终只能滞留在源、储内部空间形成页岩油藏(图11b)。

    Figure 11.  Schematic diagram of reservoir space change and charging process of the study interval in different geological history periods (modified from reference [27])

  • 研究区岩性为细粒混积岩,源储关系的划分比较困难。本研究利用岩心观察和铸体薄片等手段进行岩性识别,结合样品总有机碳数据对甜点段源、储进行划分。将J10025井甜点段TOC含量大于2%、纵向厚度连续,岩心观察含油性低且薄片下泥质含量超过50%的岩石样品划分为烃源岩。根据储集岩厚度占所划定源储组合体系中厚度比例进行划分:源夹储型小于40%,源储互层型为40%~60%,储夹源型大于60%(图12)。

    Figure 12.  Schematic diagram of source⁃reservoir relationship in the Lucaogou Formation in well J10025

    由于源储压差的推动作用,油气更容易由压力高值区的烃源岩向压力较低的储集岩中运移。而储集性能好的储集空间压力较低,有利于形成较大源储压差促进油气向临近储集空间中运移。根据薄片及测井数据统计发现不同源储组合类型储集空间及含油饱和度存在差异,储夹源型最好,源储互层型其次,源夹储型最差(表3)。源夹储型很容易在油气成藏时期使临近储集空间中压力快速升高,导致这种源储组合不利于油气运聚。研究区以源储互层型组合为主,相比于源夹储型和储夹源型,源、储距离较近增大了源、储间接触面积,有利于烃源岩高效排烃从而促进研究区页岩油资源的富集。

    源储组合类型源储压差/MPa含油饱和度/%面孔率/%孔隙度/%储集空间特征
    源夹储型18.3821.401.002.05溶蚀孔隙发育
    储夹源型30.3052.3013.006.32粒间溶孔发育
    源储互层型22.1341.417.755.13溶蚀孔隙发育存在粒间溶孔

    Table 3.  Reservoir space differences of different source⁃reservoir assemblages from the Lucaogou Formation in well J10025 of Jimusar Sag

  • 研究区下甜点源岩品质及储集物性要优于上甜点(图57b~d),但不可否认的是,不同类型甜点储集物性差异并不明显,表明造成不同类型甜点含油性差异的根本原因在于,拥有更好源岩品质的下甜点在烃源岩生烃时期产生原油膨胀力更加充足,形成了相比于上甜点更强的源储压差。在源储压差的作用下,使得原本难以作为储集空间的孔隙也富集油气,降低了成藏物性下限。当源储压差达到岩石破裂压力时产生裂缝(图6k),有利于油气中有机酸运移,进而溶蚀改造储集空间造成上、下甜点的含油性差异(图7c)。

    不同类型储集岩成藏动力测试结果表明,纹层结构发育的纹层状储集岩成藏动力优于层状储集岩(图13a)。烃源岩生烃产生的原油膨胀力暂时无法驱动油气进入研究区这类低孔渗的储层中。由于研究区块状储集岩颗粒内流体包裹体极小,以致难以进行测温及压力恢复,所以只能通过对具备观察流体包裹体条件类型的样品进行研究。因为具备观测条件的块状样品存在粒间溶蚀孔隙,在具备同一生、排烃能力的烃源岩供烃条件下,块状样品由于发育粒间溶蚀孔隙,储集性能好,造成油气成藏时期源储压差相比于储集性能较弱的样品大,使得形成的油气先行选择运移到孔渗较好的储集空间。同理,利用Maps结合测井数据分析发现纹层状储集岩相比于其他两种类型储集岩在储集性能方面更具优势,因此在油气成藏时期纹层状储集岩会有更多的油气聚集。

    Figure 13.  (a) Accumulation dynamics of different types of reservoir rocks; (b) accumulation dynamics and oil saturation characteristics of different source⁃reservoir combinations

    纹层结构间成岩作用对油气富集存在影响,结合图13b可以看出,三种源储组合成藏动力和含油饱和度存在着正相关关系。研究区宏观上以源储互层式组合为主(4.2章节),在薄片尺度下可以发现除块状储集岩外,常见次一级微观层面上粉砂质和泥质互层的现象,并且粉砂质中有明显的溶蚀现象(图6g~j)。这说明纹层间形成了从微观到宏观层面上源储的大面积紧邻接触,有利于成藏时期在源储压差的作用下油气向互层单元中的储集空间运移;而在研究层段内湖相页岩发育纹层结构可能是研究区甜点段遍布油气显示的重要原因。

  • (1) 不同类型储集岩储集空间存在差异,纹层状储集岩相比于层状和块状储集岩内部纹层结构密度更高,以粉砂质和富有机质泥质互层型纹层结构为主。生烃阶段粉砂质临近的富有机质纹层产生有机酸溶蚀粉砂质中易溶组分,进而改造粉砂质内部储集空间,有利于油气的聚集,纹层状储集岩内部层间溶蚀改造是造成不同类型储集岩储集性能差异的主控因素。

    (2) 研究区广泛发育的Ⅰ~Ⅱ1优质烃源岩生烃形成了3.83~30.57 MPa源储压差,促进油气向研究区微纳米孔隙中运移,使甜点段储集空间优越的纹层状储集岩含油性更好,是研究区“甜点”形成的主控因素。

    (3) 研究区纹层状及层状储集岩内部发育不同程度的粉砂质和泥质互层式纹层结构,其构建了次一级微观源储互层式组合,有利于油气运聚。不同类型储集岩内部互层结构发育程度差异致使宏观尺度上纹层状储集岩油气富集程度优于层状和块状储集岩。

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return