Advanced Search
Volume 43 Issue 3
Jun.  2025
Turn off MathJax
Article Contents

WANG JiMing, FAN Fu, ZHAO WeiYong, HOU XianHua. Source of Potassium in the Shizigou Deep Potassium-Rich Brine, Western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1007-1018. doi: 10.14027/j.issn.1000-0550.2023.066
Citation: WANG JiMing, FAN Fu, ZHAO WeiYong, HOU XianHua. Source of Potassium in the Shizigou Deep Potassium-Rich Brine, Western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1007-1018. doi: 10.14027/j.issn.1000-0550.2023.066

Source of Potassium in the Shizigou Deep Potassium-Rich Brine, Western Qaidam Basin

doi: 10.14027/j.issn.1000-0550.2023.066
Funds:

National Key Research and Development Program of China 2023YFE0104000

  • Received Date: 2023-04-17
  • Accepted Date: 2023-09-12
  • Rev Recd Date: 2023-07-28
  • Available Online: 2023-09-12
  • Publish Date: 2025-06-10
  • Objective The Shizigou anticline structure is located in the western part of Qaidam Basin. The upper section of the Paleogene Lower Ganchaigou Formation, with high contents of K, B, and Li, and has development prospects. Methods By systematically analyzing the geochemical characteristics of this set of brine, halite, trace elements and strontium isotopes, the source and metallogenic model of potassium-rich brine are explored. Results (1) The content of K+ in the brine in the study area is 1.06~15.87 g/L, of which 70% exceeds 3 g/L; the chemical type of brine is mainly chloride type; (2) By calculating the characteristic coefficient of brine and combining with the phase diagram analysis of water-salt system, it is found that the leaching salt layer is the main cause of the high salinity brine; (3) At the same time, the relationship between the strontium isotope characteristics of the brine and the halite layer and the correlation between K+ and Li+ reflect that the deep thermal fluid source K also has a certain contribution. Conclusions The metallogenic model of brine potassium in the study area was preliminarily established. During the Lower Ganchaigou period of Paleogene, the Shizigou area was in a weak extensional environment, and the sedimentary environment was relatively stable. The upper part of the Late Eocene Lower Ganchaigou Formation was deposited with halite and other salts; In the later period, the tectonic activity intensified, and the potassium-rich thermal fluid rose into the lake along the tensile fault, providing some deep material source K, At the same time, it caused the dissolution of the existing potassium-containing salt minerals and some halite deposits, which in turn provided another important source of dissolved potassium for the brine in this area.
  • [1] 刘盼盼. 中国首次发布全球锂、钴、镍、锡、钾盐矿产资源储量评估报告[N]. 中国矿业报,2021-10-22(001).

    Liu Panpan. China first published a global assessment report on lithium, cobalt, nickel, tin and potassium mineral resources reserves[N]. China Mining Journal, 2021-10-22 (001).
    [2] 熊增华,王石军. 中国钾资源开发利用技术及产业发展综述[J]. 矿产保护与利用,2020,40(6):1-7.

    Xiong Zenghua, Wang Shijun. Overview of potassium resources exploitation & utilization technology and potash industry development[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 1-7.
    [3] 李政. 四川盆地富钾卤水地球化学特征及成因探讨[D]. 成都:成都理工大学,2014.

    Li Zheng. Geochemical characteristics of potassium-rich brine in Sichuan Basin and its genesis[D]. Chengdu: Chengdu University of Technology, 2014.
    [4] 张苏江,崔立伟,高鹏鑫,等. 中国钾盐资源形势分析及管理对策建议[J]. 无机盐工业,2015,47(11):1-6.

    Zhang Sujiang, Cui Liwei, Gao Pengxin, et al. Analysis on development situation of potash ore resources and recommended management strategies in China[J]. Inorganic Chemicals Industry, 2015, 47(11): 1-6.
    [5] 谭红兵,曹成东,李廷伟,等. 柴达木盆地西部古近系和新近系油田卤水资源水化学特征及化学演化[J]. 古地理学报,2007,9(3):313-320.

    Tan Hongbing, Cao Chengdong, Li Tingwei, et al. Hydrochemistry characteristics and chemical evolution of oilfield brines of the Paleogene and Neogene in western Qaidam Basin[J]. Journal of Palaeogeography, 2007, 9(3): 313-320.
    [6] 毛建业,汪青川,王占巍,等. 青海茫崖狮子沟地区深层卤水钾盐成矿远景区矿产资源调查[J]. 中国锰业,2017,35(5):87-89,93.

    Mao Jianye, Wang Qingchuan, Wang Zhanwei, et al. Mineral resources of potash ore prospecting of deep brines in Shizigou area of Mangnai in Qinghai[J]. China’s Manganese Industry, 2017, 35(5): 87-89, 93.
    [7] 刘溪溪,岳鑫,袁文虎,等. 柴达木盆地西部狮子沟背斜构造区深部卤水水化学特征及演化分析[J]. 盐湖研究,2019,27(1):73-81.

    Liu Xixi, Yue Xin, Yuan Wenhu, et al. Hydrochemical characteristics and evolutionary process of deep brines from Shizigou anticline structure in Qaidam Basin, China[J]. Journal of Salt Lake Research, 2019, 27(1): 73-81.
    [8] 王琳霖,于冬冬,浮昀,等. 柴达木盆地西部构造演化与差异变形特征及对油田水分布的控制[J]. 石油实验地质,2020,42(2):186-192.

    Wang Linlin, Yu Dongdong, Fu Yun, et al. Tectonic evolution and differential deformation controls on oilfield water distribution in western Qaidam Basin[J]. Petroleum Geology and Experiment, 2020, 42(2): 186-192.
    [9] 李兆龙. 柴达木盆地狮子沟构造油气成藏条件与成藏模式研究[J]. 西部探矿工程,2017,29(10):49-52.

    Li Zhaolong. Research on hydrocarbon accumulation conditions and accumulation mode of Shizigou structure in Qaidam Basin[J]. Western Prospecting Project, 2017, 29(10): 49-52.
    [10] 张金明,付彦文,田成秀,等. 柴达木盆地西部始新世晚期岩相古地理特征及盐岩成因[J]. 地层学杂志,2021,45(4):545-553.

    Zhang Jinming, Fu Yanwen, Tian Chengxiu, et al. Lithofacies paleogeography and genesis of salt rock in the late Eocene of western Qaidam Basin[J]. Journal of Stratigraphy, 2021, 45(4): 545-553.
    [11] 赵加凡,陈小宏,杜业波. 柴达木第三纪湖盆沉积演化史[J]. 石油勘探与开发,2004,31(3):41-44.

    Zhao Jiafan, Chen Xiaohong, Du Yebo. The Tertiary sedimentary evolution of the Qaidam Basin, Northwest China[J]. Petroleum Exploration and Development, 2004, 31(3): 41-44.
    [12] 张世铭,张小军,张婷静,等. 柴西狮子沟地区古近系下干柴沟组混积岩储层特征及影响因素分析[J]. 现代地质,2017,31(5):1059-1068,1087.

    Zhang Shiming, Zhang Xiaojun, Zhang Tingjing, et al. Reservoir characteristics of the paleogene mixed carbonate-siliciclastic rock or succession and its influencing factors in the Shizigou area of the western Qaidam Basin[J]. Geoscience, 2017, 31(5): 1059-1068, 1087.
    [13] 李元奎,王铁成. 柴达木盆地狮子沟地区中深层裂缝性油藏[J]. 石油勘探与开发,2001,28(6):12-15.

    Li Yuankui, Wang Tiecheng. Middle-deep fractured oil reservoirs of Shizigou area in Qaidam Basin[J]. Petroleum Exploration and Development, 2001, 28(6): 12-15.
    [14] 莫志庭,晋生凯,莫建青,等. 探讨狮子沟油田地质特征与开发对策[J]. 中国石油和化工标准与质量,2013,34(2):188.

    Mo Zhiting, Jin Shengkai, Mo Jianqing, et al. Discussion on geological characteristics and development countermeasures of Shizigou oilfield[J]. Petroleum and Chemical Standards and Quality of China, 2013, 34(2): 188.
    [15] 隋立伟,方世虎,孙永河,等. 柴达木盆地西部狮子沟—英东构造带构造演化及控藏特征[J]. 地学前缘,2014,21(1):261-270.

    Sui Liwei, Fang Shihu, Sun Yonghe, et al. The tectonic evolution and accumulation controlling characteristics of Shizigou-Yingdong structural belt of western Qaidam Basin[J]. Earth Science Frontiers, 2014, 21(1): 261-270.
    [16] 李翔,王建功,张平,等. 柴达木盆地英西地区E32裂缝成因与油气地质意义[J]. 岩性油气藏,2018,30(6):45-54.

    Li Xiang, Wang Jiangong, Zhang Ping, et al. Fracture genesis mechanism and geological significance of E32 in Yingxi Area, Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(6): 45-54.
    [17] Dessert C, Dupré B, François L M, et al. Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater[J]. Earth and Planetary Science Letters, 2001, 188(3/4): 459-474.
    [18] Butterfield D A, Nelson B K, Wheat C G, et al. Evidence for basaltic Sr in midocean ridge-flank hydrothermal systems and implications for the global oceanic Sr isotope balance[J]. Geochimica et Cosmochimica Acta, 2001, 65(22): 4141-4153.
    [19] 苗忠英,郑绵平,娄鹏程,等. 云南思茅盆地钾盐矿床的深源浅储成因模式:来自于Sr同位素的证据[J]. 中国地质,2022,49(6):1923-1935.

    Miao Zhongying, Zheng Mianping, Lou Pengcheng, et al. The deep source and shallow mineralization model of potash deposits in the Simao Basin: Evidence from Sr isotope[J]. Geology in China, 2022, 49(6): 1923-1935.
    [20] Tan H B, Rao W B, Ma H Z, et al. Hydrogen, oxygen, helium and strontium isotopic constraints on the formation of oilfield waters in the western Qaidam Basin, China[J]. Journal of Asian Earth Sciences, 2011, 40(2): 651-660.
    [21] 李建森,山发寿,张西营. 阿尔金山两侧盐湖物质来源、成钾作用及其控制因素研究[J]. 地质学报,2021,95(7):2205-2213.

    Li Jiansen, Shan Fashou, Zhang Xiying. Study on the material source, potassium formation and its controlling factors in salt lakes on both sides of the Altun Mountain[J]. Acta Geologica Sinica, 2021, 95(7): 2205-2213.
    [22] 林晓英,曾溅辉,杨海军,等. 塔里木盆地哈得逊油田石炭系地层水化学特征及成因[J]. 现代地质,2012,26(2):377-383.

    Lin Xiaoying, Zeng Jianhui, Yang Haijun, et al. Hydrochemical characteristics and genesis of Carboniferous strata in Hudson oilfield, Tarim Basin[J]. Geoscience, 2012, 26(2): 377-383.
    [23] 尹菲. 四川盆地西南地区地下卤水水化学研究[D]. 北京:中国地质大学,2016.

    Yin Fei. A study of the hydrochemistry of the subsurface brines in the southwestern Sichuan Basin[D]. Beijing: China University of Geosciences, 2016.
    [24] 李建森,李廷伟,彭喜明,等. 柴达木盆地西部第三系油田水水文地球化学特征[J]. 石油与天然气地质,2014,35(1):50-55.

    Li Jiansen, Li Tingwei, Peng Ximing, et al. Hydrogeochemical behaviors of oilfield water in the Tertiary in western Qaidam Basin[J]. Oil & Gas Geology, 2014, 35(1): 50-55.
    [25] 韩佳君,周训,姜长龙,等. 柴达木盆地西部地下卤水水化学特征及其起源演化[J]. 现代地质,2013,27(6):1454-1464.

    Han Jiajun, Zhou Xun, Jiang Changlong, et al. Hydrochemical characteristics, origin and evolution of the subsurface brines in western Qaidam Basin[J]. Geoscience, 2013, 27(6): 1454-1464.
    [26] 樊启顺,马海州,谭红兵,等. 柴达木盆地西部卤水特征及成因探讨[J]. 地球化学,2007,36(6):601-611.

    Fan Qishun, Ma Haizhou, Tan Hongbing, et al. Characteristics and origin of brines in western Qaidam Basin[J]. Geochimica, 2007, 36(6): 601-611.
    [27] 李雯霞,张西营,苗卫良,等. 柴达木盆地北缘冷湖三号构造油田水水化学特征[J]. 盐湖研究,2016,24(2):12-18.

    Li Wenxia, Zhang Xiying, Miao Weiliang, et al. Hydrochemical characteristics of oilfield waters in Lenghu No.3 structure area of north edge of Qaidam Basin[J]. Journal of Salt Lake Research, 2016, 24(2): 12-18.
    [28] 石国成,张西营,李永寿,等. 柴达木盆地北缘冷湖四号构造油田水水化学组成及其分布特征[J]. 盐湖研究,2016,24(2):19-25.

    Shi Guocheng, Zhang Xiying, Li Yongshou, et al. Hydrochemical components and their distribution characteristics of oilfield waters in No.4 structure of Lenghu, Qaidam Basin[J]. Journal of Salt Lake Research, 2016, 24(2): 19-25.
    [29] 李建康,王登红,张德会,等. 四川甲基卡伟晶岩型锂多金属矿床成矿流体来源研究[J]. 岩石矿物学杂志,2006,25(1):45-52.

    Li Jiankang, Wang Denghong, Zhang Dehui, et al. The source of ore-forming fluid in Jiajika pegmatite type lithium polymetallic deposit, Sichuan province[J]. Acta Petrologica et Mineralogica, 2006, 25(1): 45-52.
    [30] 刘喜方,郑绵平,齐文. 西藏扎布耶盐湖超大型B、Li矿床成矿物质来源研究[J]. 地质学报,2007,81(12):1709-1715.

    Liu Xifang, Zheng Mianping, Qi Wen. Sources of ore-forming materials of the superlarge B and Li deposit in Zabuye salt lake, Tibet, China[J]. Acta Geologica Sinica, 2007, 81(12): 1709-1715.
    [31] Munk L, Chamberlain C P. Lithium brine resources: A predictive exploration model[R]. U.S. Geological Survey, 2011.
    [32] Hofstra A H, Todorov T I, Mercer C N, et al. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: Implications for the origin of lithium-rich brines[J]. Economic Geology, 2013, 108(7): 1691-1701.
    [33] Cullen J T, Hurwitz S, Barnes J D, et al. The systematics of chlorine, lithium, and boron and δ37Cl, δ7Li, and δ11B in the hydrothermal system of the Yellowstone Plateau volcanic field[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(4): e2020GC009589.
    [34] 徐凤银,尹成明,巩庆林,等. 柴达木盆地中、新生代构造演化及其对油气的控制[J]. 中国石油勘探,2006,11(6):9-16,37.

    Xu Feng-yin, Yin Chengming, Gong Qinglin, et al. Mesozoic-Cenozoic structural evolution in Qaidam Basin and its control over oil and gas[J]. China Petroleum Exploration, 2006, 11(6): 9-16, 37.
    [35] 吴海,柳少波,王立新,等. 断层活动性及其对烃源岩发育的影响:以柴达木盆地西部为例[J]. 地质学报,2021,95(6):1921-1934.

    Wu Hai, Liu Shaobo, Wang Lixin, et al. Fault reactivation and its effect on the formation of source rock: A case study of western Qaidam Basin, Tibet Plateau[J]. Acta Geologica Sinica, 2021, 95(6): 1921-1934.
    [36] 郭泽清,龙国徽,周飞,等. 咸化湖盆页岩油地质特征及资源潜力评价方法:以柴西坳陷下干柴沟组上段为例[J]. 地质学报,2023,97(7):2425-2444.

    Guo Zeqing, Long Guohui, Zhou Fei, et al. Geological characteristics and resource evaluation method for shale oil in a salinized lake basin: A case study from the upper member of the Lower Ganchaigou Formation in western Qaidam Depression[J]. Acta Geologica Sinica, 2023, 97(7): 2425-2444.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(4)

Article Metrics

Article views(447) PDF downloads(37) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-04-17
  • Revised:  2023-07-28
  • Accepted:  2023-09-12
  • Published:  2025-06-10

Source of Potassium in the Shizigou Deep Potassium-Rich Brine, Western Qaidam Basin

doi: 10.14027/j.issn.1000-0550.2023.066
Funds:

National Key Research and Development Program of China 2023YFE0104000

Abstract: Objective The Shizigou anticline structure is located in the western part of Qaidam Basin. The upper section of the Paleogene Lower Ganchaigou Formation, with high contents of K, B, and Li, and has development prospects. Methods By systematically analyzing the geochemical characteristics of this set of brine, halite, trace elements and strontium isotopes, the source and metallogenic model of potassium-rich brine are explored. Results (1) The content of K+ in the brine in the study area is 1.06~15.87 g/L, of which 70% exceeds 3 g/L; the chemical type of brine is mainly chloride type; (2) By calculating the characteristic coefficient of brine and combining with the phase diagram analysis of water-salt system, it is found that the leaching salt layer is the main cause of the high salinity brine; (3) At the same time, the relationship between the strontium isotope characteristics of the brine and the halite layer and the correlation between K+ and Li+ reflect that the deep thermal fluid source K also has a certain contribution. Conclusions The metallogenic model of brine potassium in the study area was preliminarily established. During the Lower Ganchaigou period of Paleogene, the Shizigou area was in a weak extensional environment, and the sedimentary environment was relatively stable. The upper part of the Late Eocene Lower Ganchaigou Formation was deposited with halite and other salts; In the later period, the tectonic activity intensified, and the potassium-rich thermal fluid rose into the lake along the tensile fault, providing some deep material source K, At the same time, it caused the dissolution of the existing potassium-containing salt minerals and some halite deposits, which in turn provided another important source of dissolved potassium for the brine in this area.

WANG JiMing, FAN Fu, ZHAO WeiYong, HOU XianHua. Source of Potassium in the Shizigou Deep Potassium-Rich Brine, Western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1007-1018. doi: 10.14027/j.issn.1000-0550.2023.066
Citation: WANG JiMing, FAN Fu, ZHAO WeiYong, HOU XianHua. Source of Potassium in the Shizigou Deep Potassium-Rich Brine, Western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1007-1018. doi: 10.14027/j.issn.1000-0550.2023.066
  • 钾盐资源在世界范围内储量十分丰富,据2021年中国地质调查局全球矿产资源战略研究中心发布的《全球锂、钴、镍、锡、钾盐矿产资源储量评价报告(2021)》显示,全球已探明钾盐(KCl)储量为129亿吨,主要集中在俄罗斯、加拿大、白俄罗斯、土库曼斯坦四国(其总量约占全球储量的80%),这些国家的钾盐资源主要以海相成因的钾石盐、光卤石等固体钾矿的形式存在[12]。我国是一个钾盐资源相对匮乏的国家,据2021年我国自然资源部发布的矿产资源报告,我国钾盐(KCl)储量仅为28 059.54万吨。作为一个人口大国,我国每年用于维持工农业发展所需的钾盐资源约有50%需要从国外进口。

    当前我国国内钾盐资源的开采主要集中于西北地区的第四纪地表卤水钾矿,青海察尔汗盐湖是我国现发现最大的卤水型钾盐矿床。我国固体钾盐矿资源稀少,仅在云南思茅地区勐野井钾盐矿进行过地下开采,但因其储量小,现已闭坑[34]。基于近十年国家对钾盐资源勘查工作的持续推进,发现柴达木盆地西部地区(以下简称柴西)存在众多北西西向分布的古近系—新近系背斜构造单元,例如南翼山、油泉子、干柴沟、狮子沟等,在这些构造深部存在大量的富钾卤水资源[5],尤以狮子沟地区水量最为丰富。毛建业等[6]在狮子沟地区对构造深层的卤水进行了一系列调查与评估,并指出该地区主要发育以硼、溴、碘等资源为主的古近系上干柴沟组和以钾、硼、锂、碘等资源为主的下干柴沟组上段两套卤水储层。刘溪溪等[7]通过实地取样对狮子沟新近纪地层卤水进行了水化学特征及成因分析。然而,关于该地区钾资源含量更高的古近系下干柴沟组上段赋存的卤水研究相对缺乏。

    本文拟通过对狮子沟古近系下干柴沟组上段深层卤水进行水化学分析,包括相关元素分析、同位素分析等,讨论研究区目的层位富钾卤水中钾的物质来源,并对其成矿模式进行探讨,为后续狮子沟地区深层卤水钾等多种资源勘查开发提供依据。

  • 研究区位于柴达木盆地西部,地面海拔3 035~3 310 m。其西北部与阿尔金山相连,西南部为昆仑山(图1a)[8]。狮子沟构造属于狮子沟—英东构造带,处在柴西隆起的茫崖凹陷内。因柴达木盆地历经多次构造运动,受阿尔金断裂左旋走滑和盆地晚期近南北向挤压应力场的共同影响,最终形成为北西—北西西向平缓的反“S”型背斜构造[9]。下干柴沟组上段(E32)时期,柴西地区已经形成为一个以常年性封闭水域为主体的湖泊,狮子沟构造在这一时期位于湖泊较深的中心部位[10]。到晚中新世狮子沟组(N23)时期,由于昆仑山北缘抬升,湖盆沉降,沉积中心则开始有规律的由南向北,自西向东迁移。至上新世,由于昆仑山迅速抬升,加之气候干旱,湖盆面积较中新世减小。到上新世中晚期,气候更加干旱,湖水进一步浓缩,出现了盐岩、石膏层,局部还出现钾盐矿物如光卤石的沉积[1011]

    Figure 1.  Structure of the Western Qaidam Basin and sampling well location

    狮子沟地区主要发育古近系和新近系的半深湖相沉积,岩性以细粒粉砂岩、泥岩和碳酸盐岩为主(图2[12]。下干柴沟组上段(E32)作为主要含钾卤水层位,发育一套深色泥岩、钙质泥岩、含膏泥岩、泥质粉砂岩、碳酸盐岩及膏盐岩组合,包括石盐、硬石膏、石膏及钙芒硝等,具有典型的陆相湖泊混合沉积特征[13]。由于狮子沟构造内部断层发育,现有钻井揭示部分断层断距甚至达1 860~2 000 m[14],因此导致该套地层埋藏于2 000~5 000 m较大的深度变化范围。前人对该套储层研究表明,该区地层压实效应显著,储层剩余原生粒间孔隙不甚发育,储集空间以溶蚀孔洞和裂缝为主[1516]

    Figure 2.  Cenozoic strata development in the Qaidam Basin

  • 本文油田卤水及石盐样品均采自于狮子沟地区下干柴沟组上段,采样井位见图1b,卤水取样深度范围为2 148.60~5 079.00 m,采出时卤水温度为50 ℃~60 ℃;石盐样品为钻孔岩心取样,取出时多呈灰白色、灰黑色,质较纯,含少量黏土(图3),石盐晶体粒度为中、粗粒,钻孔取样深度2 694.88~2 698.88 m。

    Figure 3.  Core photographs of rock salt (well S37)

    卤水样品的密度、矿化度、常、微量元素及石盐样品的常、微量元素测定均在中国地质科学院矿产资源研究所盐湖中心实验室完成。测试方法如下:密度由标准比重计测定;K+、Na+、Ca2+、Mg2+、Li+、B2O3、Rb+、Sr2+元素含量采用ICPE-9000电感耦合等离子发射光谱仪进行测定,精度为RSD<1%;Br-采用苯酚红比色法;Cl-采用AgNO3容量法;SO42-采用BaSO4重量法;HCO3-采用酸碱滴定法;锶同位素(87Sr/86Sr)数据由北京核工业地质所检测分析,使用PHOENIX型质谱仪进行测定,测定标准为GB/T 37848,分析误差小于10-4。卤水及石盐样品元素含量的测定结果见下表1表2

    样品编号深度/m密度/(g/cm3K+Na+Ca2+Mg2+Cl-SO42-B2O3Li+HCO3-Rb+Sr2+Br-水化学类型矿化度/(g/L)
    g/Lmg/L
    S372 148.6~2 153.61.2562.06134.9267.01.30176.737.02 2200.113.269.6碳酸盐型352.89
    S433 520.0~3 529.01.2188.08122.8223.056.0187.812.04 4771.5934.243.511.931.7氯化物型336.10
    S2022 576.0~2 678.01.1661.8292.50.160.08123.526.22 3270.2383.27.93.1441.7氯化物型246.78
    S243 860.0~3 920.01.2046.90120.5164.020.0186.811.04 0081.2034.811.429.6氯化物型329.60
    S2014 120.4~4 181.41.1987.34113.0246.0127174.79.04 4620.7198.738.18.30.3氯化物型308.70
    S1-22 840.0~2 985.01.1893.77112.90.300.02167.012.93 3033.5131.520.77.529.3氯化物型300.50
    S404 075.8~4 086.31.1965.43114.6262.023.0177.011.04383.037.217.938.5氯化物型312.70
    S423 647.9~4 095.01.1997.25121.1187.0121181.112.04 3321.2214.540.112.92.7氯化物型326.10
    S603 022.0~3 455.01.1091.9562.3539.387.788.91.47 32538.8553.020.633.7氯化物型163.20
    S2053 378.4~3 598.71.1562.3294.10.170.07136.78.72 9784.2181.912.19.426.7氯化物型245.15
    S49-13 456.0~3 465.01.2171.94127.00.300.06182.317.64 8052.80.35.78.573.0氯化物型333.98
    S52-34 576.4~4 686.51.22011.36126.50.250.02189.319.17 6555.5148.793.614.532.9氯化物型354.25
    S23-13 945.6~4 500.01.1071.9057.20.250.1067.61 4834.79.010.976.0氯化物型156.20
    S41-34 284.0~5 079.01.1505.2184.10.760.10132.36.15 28278.4348.835.039.225.4氯化物型234.12
    S474 411.0~4 417.01.1657.0298.4562.092.0145.916.04 33588.49.932.50.1氯化物型271.90
    S49H13 860.0~4 642.01.1492.7682.82.220.37131.45.074 10779.1155.613.097.291.0氯化物型228.88
    S284 068.0~4 413.01.1815.07116.3141.124.4167.30.88 02288.476410.536.2硫酸钠型298.70
    S204 108.0~4 124.01.2034.6612.1495.085.0181.716.05 03477.529.220.330.4氯化物型329.10
    S2034 663.0~4 673.01.1947.44112.00.250.03173.78.24 479104.8133.352.718.19.9氯化物型306.24
    S203*4 490.0~4 502.01.2148.50122.30.410.06189.29.75 163129.8124.361.218.511.5氯化物型335.52
    S2064 442.8~4 448.11.1072.4858.01.760.2793.81.94 49167.421808.593.547.4氯化物型163.86
    S2073 788.0~4 418.01.2155.33128.00.100.02183.323.73 6720.2286.128.310.414.4氯化物型344.30
    S2114 710.4~4 711.61.21515.87102.414.800.90202.80.32 857692.9115.678.11195.841.6氯化物型340.79
    S2-23 710.0~3 716.01.1872.9046.30.4632.9145.929.169130.2127.52.78.331.4氯化物型258.30
    S32-34 135.0~4 178.01.1715.0198.4457.0116151.68.05 77088.539.329.636.7氯化物型269.50
    S2083 700.0~4 361.01.1664.7693.32.940.36154.21.33 921316.1209.930.6163.341.6氯化物型261.20
    S38-34 397.0~4 404.01.0752.0341.22.310.2667.00.62 5945.0138.25.9139.524.7氯化物型116.14
    S594 373.4~4 377.41.0761.0620.015.8613.333.380.81 82340.1481.654.826.4氯化物型116.86
    注:“—”为样品量不足无法测量。

    Table 1.  Chemical composition analysis of oilfield brine in the upper section of the Shizigou Lower Ganchaigou Formation

    深度/mNa+/%Cl-/%K/%Mg2+/%Ca2+/%Sr2+/10-6Br/10-6Li+/%SO42-/%B4O72-/%水不溶物
    2 694.88~2 698.8835.30~39.0453.60~60.590.003~0.0150.010~0.0240.006~0.5160~380~8.120.83~2.030~2.810~0.160~9.7

    Table 2.  Main chemical composition content of drilling salt rock samples in the upper section of the Shizigou Lower Ganchaigou Formation

  • 卤水的水化学分析结果显示,研究区卤水的矿化度集中在116.14~354.25 g/L,其中80%的卤水样品矿化度超过200 g/L,少数在100 g/L~200 g/L之间;K+含量范围为1.06~15.87 g/L,其中70%的样品K+含量超过了3 g/L;B2O3含量范围为438~8 022 mg/L,70%样品的B2O3含量超过3 000 mg/L;Li+含量范围为0.1~692.9 mg/L,50%的样品Li+含量超过30 mg/L。卤水整体表现为高矿化度,富K、B,部分富Li的特征。

    从研究区卤水样品主要元素含量Piper三线图可以看出(图4),卤水中阴离子以Cl-为主,含量多超过90%,少量SO42-,含量多低于20%,微量CO32-+HCO3-;阳离子则表现为部分样品以Ca2+为主,另一部分以Na+及K+为主的特征,并且卤水样品Mg2+含量总体不高。按照瓦利亚什科分类法划分标准,研究区卤水水化学类型以氯化物型为主,极少数硫酸钠亚型及碳酸盐型(表1)。

    Figure 4.  Piper Triplot of Brine Samples

    根据卤水化学分析数据计算相图指数投点到55℃ K+、Na+、Mg2+∥Cl、SO42--H2O五元水盐体系相图及钙盐相图中(图5,图中蓝色虚线代表钙盐相图)。结果显示样品点主要分布于I和II两个区域内:I区K+、SO42-含量均小于20%,Mg2+含量普遍大于75%,具有低硫酸根、低钾及高镁的特征。该区域卤水多投点于五元相图的光卤石相区,也有少数样品投点于硫镁矾、钾盐镁矾、钠镁矾相区,钙盐相图中则多数卤水样品投点于硬石膏相区,少数投点于杂卤石相区;II区K+、SO42-含量分布范围广泛且连续,Mg2+含量多小于30%,反映出低镁的特征。在此区域的卤水在五元相图中多投点于无水芒硝相区,少数投于钾芒硝和钾石盐相区,在钙盐相图中多投点于钙芒硝相区、少数投在杂卤石和硬石膏相区。

    Figure 5.  Phase diagram of five⁃element water⁃salt system and calcium salt phase diagram at 55 °C

  • 根据卤水样品常、微量元素含量数据,计算其钠氯系数、氯溴系数、脱硫系数及钙镁系数,如下表3

    样品编号γNa+/γCl-Cl/Br100(SO42-/2Cl-Ca/Mg
    S371.1785 722.13210.470205.385
    S431.00913 352.6313.1953.982
    S2021.156630.18810.6072.120
    S240.99614 223.8022.9448.200
    S2010.9981 312 508.6982.5761.937
    S1-21.04312 846.3393.86215.050
    S400.99910 361.9883.10711.391
    S421.032151 176.8273.3131.545
    S601.0825 945.6920.7716.147
    S2051.06211 539.5213.1932.492
    S49-11.0755 628.5224.8275.491
    S52-31.03112 968.3665.04513.889
    S23-11.3052 004.7662.500
    S41-30.98111 739.6912.3027.525
    S471.0413 288 409.0275.4836.109
    S49H10.9723 254.5021.9295.984
    S281.07310 416.4060.2515.779
    S200.10313 471.3734.4035.824
    S2030.99839 545.3262.3527.323
    S203*0.99837 081.2042.5617.509
    S2060.9554 460.2071.0296.452
    S2071.07828 689.9986.4655.556
    S2110.77910 987.6590.08416.372
    S2-20.48910 472.6409.9730.014
    S32-31.0029 310.3002.6393.940
    S2080.9348 354.5220.4128.108
    S38-30.9496 113.7600.4788.953
    S590.9252 849.7911.2131.192

    Table 3.  Chemical characteristic coefficient of sample water

    研究区地下卤水钠氯系数(γNa+/γCl-)数值范围为0.103~1.305,80%的样品γNa+/γCl-值接近1,少量样品该系数值大于1,极个别样品小于1。氯溴系数(Cl-/Br-)数值范围为630.188~3 288 409.027,仅一个样品该系数值小于2 500,其余样品该系数值均较大。脱硫系数[100(SO42-/2Cl-)]数值范围为0.084~10.607,仅有5个井位的卤水脱硫系数值小于1,其他井位样品该数值均大于1。钙镁系数(Ca2+/Mg2+)数值范围为0.014~205.385,75%卤水样品的Ca2+/Mg2+值大于3。

  • 对卤水较为富集的资源元素进行相关性分析,结果发现部分Li+大于30 mg/L的样品中K+与Li+含量表现出正相关特征;另一部分Li+含量小于30 mg/L的卤水样品,其K+含量则表现出较大的波动区间,K+与Li+含量未见明显相关特征(图6),指示研究区部分卤水中钾与锂具有一定成因联系。

    Figure 6.  Relationship between K+ and Li+

  • 锶同位素(87Sr/86Sr)作为一种重要手段,常用来区分沉积物发育的海、陆相环境,和蒸发盐岩的物源[1719]。对研究区部分地下卤水样品及卤水产出层位石盐样品进行87Sr/86Sr测定(表4),结果显示研究区内卤水样品的87Sr/86Sr值介于0.710 961~0.711 127,高于幔源锶(87Sr/86Sr均值为0.703 5)和海水(87Sr/86Sr均值为0.709 200),低于壳源锶(87Sr/86Sr均值为0.711 9)[19],且与柴西地表的苏干湖水(87Sr/86Sr均值为0.712 440)和茫崖湖水(87Sr/86Sr均值为0.712 700)[21]相比,也要明显较低。研究区卤水产出层位石盐样品87Sr/86Sr值为0.711 088~0.712 816,其中两个样品所测数据高于卤水样品87Sr/86Sr值,与地表湖水相近,另外一个样品所测数据与卤水样品结果接近。同时,通过查阅文献发现,前人在狮子沟地区分析地表和地下石盐87Sr/86Sr的值较本文卤水样品87Sr/86Sr值稍高[2021],但低于壳源锶的平均值(图7表4)。

    样品编号样品名称87Sr/86SrStd. err.备注
    S37-1石盐(钻孔岩心)0.712 8160.000 034自测
    S37-2石盐(钻孔岩心)0.712 6160.000 024自测
    S37-3石盐(钻孔岩心)0.711 0880.000 013自测
    Shizigou石盐(钻孔岩心)0.711 571谭红兵等[20]
    Zheng地表第三纪石盐0.711 383~0.711 462郑绵平等*
    S205卤水0.711 1270.000 015自测
    S38-3卤水0.711 0590.000 011自测
    S59卤水0.711 1110.000 016自测
    S37卤水0.710 9610.000 014自测
    Mangya茫崖湖水0.712 700李建森等[21]
    Sugan苏干湖水0.712 440李建森等[21]
    注:*引自郑绵平院士报告数据(2012年),尚未发表。

    Table 4.  Strontium isotope data of stone salt samples in Shizigou

    Figure 7.  Strontium isotope data of stone salt and brine samples in Shizigou

  • 柴西狮子沟地区古近系下干柴沟组上段油田卤水样品的矿化度较高且钾、锂、硼等元素含量丰富,表现为Ca2+富集以及Na++K+富集的氯化物型卤水为主的化学特征。

    通常随着沉积卤水蒸发作用进行,石盐不断析出,残余卤水中钠氯系数会不断降低。正常海水的钠氯系数为0.87,海水浓缩,石盐开始析出后,此系数会不断降低,因此沉积卤水的钠氯系数值一般小于0.87,非海相蒸发盐地层中保存的沉积地下卤水此系数更小[2223]。然而,溶滤卤水的该系数值一般比较高,可接近1[24]。另外,研究发现卤水氯溴系数大于2 500时,表示由岩盐溶解形成,沉积地下卤水该数值要小于400[2526]。研究区地下卤水的钠氯系数基本均接近1,且氯溴系数除了一个样品外其他均大于2 500。两个特征系数的分析结果表明,溶滤盐层为该套高矿化度卤水的主要成因。另外,脱硫系数常用来表示卤水所处环境的封闭程度,当该值越小,则表示地层的封闭性越好,卤水所处的还原环境越好,一般以1做为界限,脱硫系数小于1则卤水还原较彻底,地层封闭性较强。钙镁系数则反映地下卤水变质程度,变质程度越高卤水钙镁系数值越高,深层地下卤水此系数一般都大于3[2728]。研究区大部分卤水呈现脱硫系数大于1和钙镁系数大于3的特征,指示研究区地层封闭性较差,从而有利于溶滤作用发生,进一步佐证了溶滤卤水成因。研究区存在部分石盐与卤水的87Sr/86Sr值相近的情况(图7表4),说明部分石盐的溶解或为卤水提供了部分Sr。

    以上对研究区卤水及石盐87Sr/86Sr的分析结果以及氯化钙型卤水的大量存在,均反映了石盐溶解对卤水成分的贡献。然而,研究区卤水产出层位石盐样品的元素分析指示其K+、Li+含量极低,K+介于0.003%~0.015%(表2),推测溶滤石盐层对卤水中K+的贡献有限。

    55 ℃五元体系相图及钙盐相图显示卤水Mg2+含量的显著差异,样品点在相图中呈两个区域分布:I区卤水样品具有高镁、低钾及硫酸根的特征,样品点多位于光卤石相区,卤水达到氯化物演化阶段;II区卤水具有低镁及钾含量分布范围较大两个特征,样品点大多数位于无水芒硝相区,个别位于钾芒硝、钾石盐相区。张世铭等[12]对狮子沟下干柴沟组储层特征研究,发现该套储层盐类矿物溶蚀孔大量存在,主要发育在灰岩或泥质包含的盐类矿物中,包括石膏、芒硝、钙芒硝等,反映了该储层围岩溶解作用广泛存在。结合上述55 ℃五元体系相图及钙盐相图II区卤水成分点特征,推测大量石膏、钙芒硝等含钙矿物的溶解,及少量含钾类矿物的溶解是该区卤水成分的主要物质来源,形成了卤水Piper图解中Ca2+较为富集的成分特征,并贡献了一定量的K+

    与此同时,研究区部分石盐样品与地表湖水87Sr/86Sr数值相近,且高于卤水中87Sr/86Sr组成的特征,反映了除溶滤盐层外,卤水中可能存在深部低87Sr/86Sr流体的混入。李建森等[21]在对阿尔金山两侧盐湖物质来源的研究中曾指出柴达木盆地西部部分卤水及油田水接受深源流体的补给导致其87Sr/86Sr低于地表水体。谭红兵等[20]关于柴达木盆地其他背斜构造深层卤水He3/He4的研究,也反映了深部卤水成矿物质中幔源分异岩浆流体的贡献。同时,研究区部分Li+含量大于30 mg/L的卤水样品,Li+与K+表现出一定的正相关特征,说明卤水中部分K+与Li+具有较为一致的来源。目前,前人对国内包括四川甲基卡伟晶岩型锂矿及西藏扎布耶超大型硼、锂矿床Li+物质来源的研究表明,成矿流体主要源于深部花岗岩浆结晶分异产生的热流体[2930]。Munk et al.[31]以及Hofstra et al.[32]对美国克莱顿谷内富锂卤水形成模式进行研究,认为锂主要来自于深部花岗岩的部分重熔和锂的浸出,经过蒸发浓缩及水岩反应最终形成富锂卤水矿。Jeffrey et al.[33]对美国黄石高原碱性氯化物热水的研究认为,Cl、Li和B来源于大量流纹岩的浸出。国内外多个硬岩锂矿和卤水锂关于锂物质来源研究,均反映了锂的深部物质来源特点。本研究区卤水样品K+与Li+具有很好正相关性的特征,也进一步说明了K+同Li+一样,有深部热液物质来源贡献。

    综合研究区目的层位卤水钠氯系数反映的溶滤卤水成因特征,以及部分卤水样品低于盐层的87Sr/86Sr特点和K+与Li+良好的正相关性特征,认为该套卤水可能为溶滤盐层的卤水与深部热液物质混合的结果。

    此外,在狮子沟附近阿尔金山东侧采石岭,发现古近纪花岗岩岩体刺穿侏罗系,并被中新统覆盖[34],指示了中新世前构造热液活动的存在。晚始新世下干柴沟组上段钻孔石盐样品显示了极低的Li、K含量特点,反映了晚始新世石盐沉积期,构造较为稳定。因此,含K、Li热液的冲注及盐类矿物的溶解主要发生于晚始新世下干柴沟组上段石盐沉积期后到中新世之前,推测应为渐新世。

    综上所述,深部携带一定量低87Sr/86Sr、富含K+、Li+热流体的充注,以及下干柴沟组上段储层中对已有少量钾盐矿物的溶解,为狮子沟地区地下卤水中的钾提供了重要物质来源。

  • 新生代以来,柴西地区一直处在印欧板块碰撞所引起的青藏高原阶段性隆升的挤压构造背景下[35]。古新世(路乐河期)—中新世早期(上油砂山期),柴西处于整体挤压坳陷与局部拉分弱断陷阶段[34],古湖盆水体蒸发浓缩,狮子沟地区于晚始新世下干柴沟组上段,沉积了大套碳酸岩地层卤水储集体及石盐沉积。在渐新世,由于构造运动加强,与岩浆伴生的热液物质侵入到下干柴沟组上部碳酸盐卤水储集层。这些热液不仅提供了深部来源的K、Li等物质,还溶解了地层中少量的含钾盐类(如钾长石[36])以及石盐、石膏、钙芒硝等盐类沉积物。这一过程在溶出少量的K的同时,还溶出了大量的Na+、Cl-、Ca2+等组分,最终形成了现今柴西狮子沟深层含钾卤水(图8)。

    Figure 8.  Pattern map of potassium⁃rich brine mineralization in the Shizigou underground

  • (1) 柴达木盆地西部狮子沟地区古近纪下干柴沟组上段地层中赋存的富钾卤水以溶滤成因为主,其丰富的K+主要有两个物质来源:其一为古近系花岗质岩浆相关的低87Sr/86Sr、富K+、Li+的热流体的注入;其二为卤水产出地层中含钾盐类矿物的淋滤溶解。

    (2) 初步建立了研究区油田卤水中钾的深层补给及溶滤补给的成矿模式。古近纪下干柴沟时期,狮子沟地区弱拉张环境,湖水蒸发浓缩至钾镁盐阶段,晚始新世下干柴沟组上段石盐沉积期后到中新世之前,构造活动加剧,富钾、锂热流体沿张性断裂上升入湖,提供了部分成钾物质来源。随着热液流体的加入,含钾盐类的溶滤,成为该区卤水中钾的另一种重要物质来源。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return