Advanced Search
Volume 43 Issue 1
Feb.  2025
Turn off MathJax
Article Contents

FU WenNian, LI FengJie. Geochemical Characteristics and Sedimentary Environment Analysis of Manganese Ore from the Datangpo Formation in the Guzhang Area, Northwest Hunan Province[J]. Acta Sedimentologica Sinica, 2025, 43(1): 50-62. doi: 10.14027/j.issn.1000-0550.2023.054
Citation: FU WenNian, LI FengJie. Geochemical Characteristics and Sedimentary Environment Analysis of Manganese Ore from the Datangpo Formation in the Guzhang Area, Northwest Hunan Province[J]. Acta Sedimentologica Sinica, 2025, 43(1): 50-62. doi: 10.14027/j.issn.1000-0550.2023.054

Geochemical Characteristics and Sedimentary Environment Analysis of Manganese Ore from the Datangpo Formation in the Guzhang Area, Northwest Hunan Province

doi: 10.14027/j.issn.1000-0550.2023.054
Funds:

Program of Non-profit and Basic geological Survey, No. DD2016 0032 DD20160032

  • Received Date: 2023-01-09
  • Accepted Date: 2023-07-31
  • Rev Recd Date: 2023-07-05
  • Available Online: 2023-07-31
  • Publish Date: 2025-02-10
  • Objective We analyzed the sedimentary environment of manganese ore in the Datangpo Formation of the Nanhua System in the Guzhang area, northwest Hunan province. Methods Based on the geochemical analysis of major and trace elements, rare earth elements and carbon and oxygen isotopes, the oxidation-reduction environment and the source of ore-forming materials during the deposition of manganese ore in the Datangpo Formation were studied. Results (1) There is a positive correlation between SiO2, TiO2, K2O, and Al2O3, weak negative correlation with MgO and CaO, and weak correlation with MnO, Na2O, TFe, and P2O5 for the main elements of manganese ore in the Guzhang area. The deposit is similar to the Gucheng manganese ore in Hubei, Xiangtan manganese ore in Hunan, and Zhaodong manganese ore in Hunan, with an overall high Si, low Fe, and P-bearing manganese ore. (2) The redox-sensitive elemental indicators, Fe/Mn<1, 2<V/Cr<4.5, V/(V+Ni)>0.57, Ni/Co<5, and U/ Th<0.75, of the depositional environment indicate that the water column was in a normoxic-poor environment when the manganese ore was formed in the Datangpo Formation. The enrichment pattern of the medium rare earth elements, depletion of light and heavy rare earth elements, and the weak positive Ce anomaly indicate that Mn was first precipitated in the form of manganese oxides or hydroxides and then changed into Mn carbonate during digenesis. (3) A variety of metallogenic material source identification indicators, SiO2/Al2O3>3.6, Y/Ho close to that of the hydrothermal fluid on the seafloor, results of Fe-Mn-(Ni+Cu+Co)×10 triangulation, and Co/Zn-(Cu+Ni+Co) diagrammatic show that the formation of Mn elements from the manganese ores in the Datangpo Formation in the Guzhang area is closely related to submarine hydrothermal action and has characteristics of hot-water deposition. Conclusions The manganese ore of the Datangpo Formation was formed in a normoxic-poor environment in the Guzhang area, northwest Hunan province. The formation of manganese is closely related to submarine hydrothermal action.
  • [1] 王尔贤. 中国的锰矿资源[J]. 电池工业,2007,12(3):184-188.

    Wang Erxian. The resources of Chinese manganese ore[J]. Chinese Battery Industry, 2007, 12(3): 184-188.
    [2] 邓文兵,张彦文,孔令湖,等. 中国锰矿资源现状与国家级锰矿床实物地质资料筛选[J]. 中国矿业,2019,28(9):175-182.

    Deng Wenbing, Zhang Yanwen, Kong Linghu, et al. Current status of manganese ore resources in China and selecting for national physical geological data of manganese ore deposits[J]. China Mining Magazine, 2019, 28(9): 175-182.
    [3] 陈祎,张均,刘安璐,等. 贵州松桃千公坪锰矿地质地球化学特征[J]. 矿物岩石地球化学通报,2014,33(2):185-192.

    Chen Yi, Zhang Jun, Liu Anlu, et al. Geological and geochemical characteristics of the Qiangongping manganese deposit in Songtao, Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 185-192.
    [4] 王丹. 黔东地区新元古代“大塘坡式”锰矿沉积地球化学条件研究[D]. 成都:成都理工大学,2015.

    Wang Dan. Study on geochemical conditions of the Neoproterozoic “Datangpo style” manganese deposits in eastern Guizhou province, China[D]. Chengdu: Chengdu University of Technology, 2015.
    [5] 陈多福,陈先沛. 贵州省松桃热水沉积锰矿的地质地球化学特征[J]. 沉积学报,1992,10(4):35-43.

    Chen Duofu, Chen Xianpei. Geological and geochemical characteristices of Songtao hydrothermal sedimentary mangenes deposits, Guizhou[J]. Acta Sedimentologica Sinica, 1992, 10(4): 35-43.
    [6] 何志威,杨瑞东,高军波,等. 贵州省松桃杨家湾锰矿含锰岩系地质地球化学特征[J]. 现代地质,2013,27(3):593-602.

    He Zhiwei, Yang Ruidong, Gao Junbo, et al. Geological and geochemical characteristics of manganese-bearing rock series of Yangjiawan manganese deposit, Songtao county, Guizhou province[J]. Geoscience, 2013, 27(3): 593-602.
    [7] 周琦,杜远生,颜佳新,等. 贵州松桃大塘坡地区南华纪早期冷泉碳酸盐岩地质地球化学特征[J]. 地球科学:中国地质大学学报,2007,32(6):845-852.

    Zhou Qi, Du Yuansheng, Yan Jiaxin, et al. Geological and geochemical characteristics of the cold seep carbonates in the early Nanhua System in Datangpo, Songtao, Guizhou province[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(6): 845-852.
    [8] 周琦,杜远生,覃英. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式:以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例[J]. 矿床地质,2013,32(3):457-466.

    Zhou Qi, Du Yuansheng, Qin Ying. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: A case study of ‘Datangpo type’ manganese deposits formed in rift basin of Nanhua period along Guizhou-Hunan-Chongqing border area[J]. Mineral Deposits, 2013, 32(3): 457-466.
    [9] 张遂,周琦,张平壹,等. 黔东松桃西溪堡南华系大塘坡组超大型锰矿床地质特征与找矿预测[J]. 地质科技情报,2015,34(6):8-16.

    Zhang Sui, Zhou Qi, Zhang Pingyi, et al. Geological characteristics and prospecting prediction of Xixibao super-large manganese deposit in Songtao, eastern Guizhou[J]. Geological Science and Technology Information, 2015, 34(6): 8-16.
    [10] 刘丙秋,汤飞,胡海丰. 湖南古丈县大龙锰矿床地质特征及找矿[J]. 资源信息与工程,2016,31(3):29-30,33.

    Liu Bingqiu, Tang Fei, Hu Haifeng. Geological characteristics and prospecting of Dalong manganese deposit in Guzhang county, Hunan province[J]. Resource Information and Engineering, 2016, 31(3): 29-30, 33.
    [11] 杨立志. 湘西古丈烂泥田锰矿床地质地球化学特征研究[D]. 长沙:中南大学,2014.

    Yang Lizhi. Geology and geochemistry characters study of Guzhang lannitian manganese deposit in west Hunan province[D]. Changsha: Central South University, 2014.
    [12] 李凤杰,雷玉龙,龚光林,等. 湘西南南华系大塘坡组锰矿地球化学特征与沉积环境分析:以湖南靖州照洞锰矿床为例[J]. 地球科学,2019,44(10):3484-3494.

    Li Fengjie, Lei Yulong, Gong Guanglin, et al. Geochemical characteristics and sedimentary environment analysis from Datangpo Formation in Neoproterozoic Nanhua System, southwestern Hunan province:An example from Zhaodong manganese ore deposits in Jingzhou county, Hunan province, China[J]. Earth Science, 2019, 44(10): 3484-3494.
    [13] 朱祥坤,彭乾云,张仁彪,等. 贵州省松桃县道坨超大型锰矿床地质地球化学特征[J]. 地质学报,2013,87(9):1335-1348.

    Zhu Xiangkun, Peng Qianyun, Zhang Renbiao, et al. Geological and geochemical characteristics of the Daotuo super-large manganese ore deposit at Songtao country in Guizhou province[J]. Acta Geologica Sinica, 2013, 87(9): 1335-1348.
    [14] 史富强,朱祥坤,闫斌,等. 湖南湘潭锰矿的地球化学特征及成矿机制[J]. 岩石矿物学杂志,2016,35(3):443-456.

    Shi Fuqiang, Zhu Xiangkun, Yan Bin, et al. Geochemical characte-ristics and metallogenic mechanism of the Xiangtan manganese ore deposit in Hunan province[J]. Acta Petrologica et Mineralogica, 2016, 35(3): 443-456.
    [15] 张飞飞,闫斌,郭跃玲,等. 湖北古城锰矿的沉淀形式及其古环境意义[J]. 地质学报,2013,87(2):245-258.

    Zhang Feifei, Yan Bin, Guo Yueling, et al. Precipitation form of manganese ore deposits in Gucheng, Hubei province, and its paleoenvironment implication[J]. Acta Geologica Sinica, 2013, 87(2): 245-258.
    [16] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[A]// Lipin B R, McKay G A. Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, 1989, 21:169-200.
    [17] 王佳,李凤杰,张玺华,等. 湘西南黔阳盆地“大塘坡式”锰矿成因分析:以湖南靖州地区为例[J]. 中国地质,2023,50(1):249-263.

    Wang Jia, Li Fengjie, Zhang Xihua, et al. Genetic analysis of “Datangpo type” manganese deposit in Qianyang Basin, southwest Hunan: A case study of Jingzhou, Hunan province[J]. Geology in China, 2023, 50(1): 249-263.
    [18] Chetty D, Gutzmer J. REE redistribution during hydrothermal alteration of ores of the Kalahari manganese deposit[J]. Ore Geology Reviews, 2012, 47: 126-135.
    [19] 任向文. 西太平洋富钴结壳成矿系统[D]. 青岛:中国科学院研究生院(海洋研究所),2005.

    Ren Xiangwen. The metallogenic system of co-rich manganese crusts in western pacific[D]. Qingdao: University of Chinese Academy of Sciences (Marine Research Institute), 2005.
    [20] Liu X M, Hardisty D S, Lyons T W, et al. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank[J]. Geochimica et Cosmochimica Acta, 2019, 248: 25-42.
    [21] 李佐强. 东昆仑三通沟北地区中—新元古界万宝沟群锰矿成因分析[D]. 成都:成都理工大学,2021.

    Li Zuoqiang. Genesis of manganese deposit of meso-Neoproterozoic Wanbaogou Group in Santonggoubei area, East Kunlun[D]. Chengdu: Chengdu University of Technology, 2021.
    [22] Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated–massive–laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
    [23] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [24] 罗杰斯,亚当斯. 钍铀地球化学手册[M]. 萧学军,徐仲伦,译. 北京:原子能出版社,1976: 1-106.

    Rogers J J W, Adams J A S. Handbook of thorium and uranium geochemistry[M]. Xiao Xuejun, Xu Zhonglun, trans. Beijing: Atomic Press, 1976: 1-106.
    [25] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88.

    Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88.
    [26] Elderfield H, Greaves M J. The rare earth elements in seawater[J]. Nature, 1982, 296(5854): 214-219.
    [27] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985.
    [28] Rona P A. Criteria for recognition of hydrothermal mineral deposits in oceanic crust[J]. Economic Geology, 1978, 73(2): 135-160.
    [29] Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118.
    [30] Epstein S, Buchsbaum R, Lowenstam H, et al. Carbonate-water isotopic temperature scale[J]. GSA Bulletin, 1951, 62(4): 417-426.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(4)

Article Metrics

Article views(130) PDF downloads(38) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-01-09
  • Revised:  2023-07-05
  • Accepted:  2023-07-31
  • Published:  2025-02-10

Geochemical Characteristics and Sedimentary Environment Analysis of Manganese Ore from the Datangpo Formation in the Guzhang Area, Northwest Hunan Province

doi: 10.14027/j.issn.1000-0550.2023.054
Funds:

Program of Non-profit and Basic geological Survey, No. DD2016 0032 DD20160032

Abstract: Objective We analyzed the sedimentary environment of manganese ore in the Datangpo Formation of the Nanhua System in the Guzhang area, northwest Hunan province. Methods Based on the geochemical analysis of major and trace elements, rare earth elements and carbon and oxygen isotopes, the oxidation-reduction environment and the source of ore-forming materials during the deposition of manganese ore in the Datangpo Formation were studied. Results (1) There is a positive correlation between SiO2, TiO2, K2O, and Al2O3, weak negative correlation with MgO and CaO, and weak correlation with MnO, Na2O, TFe, and P2O5 for the main elements of manganese ore in the Guzhang area. The deposit is similar to the Gucheng manganese ore in Hubei, Xiangtan manganese ore in Hunan, and Zhaodong manganese ore in Hunan, with an overall high Si, low Fe, and P-bearing manganese ore. (2) The redox-sensitive elemental indicators, Fe/Mn<1, 2<V/Cr<4.5, V/(V+Ni)>0.57, Ni/Co<5, and U/ Th<0.75, of the depositional environment indicate that the water column was in a normoxic-poor environment when the manganese ore was formed in the Datangpo Formation. The enrichment pattern of the medium rare earth elements, depletion of light and heavy rare earth elements, and the weak positive Ce anomaly indicate that Mn was first precipitated in the form of manganese oxides or hydroxides and then changed into Mn carbonate during digenesis. (3) A variety of metallogenic material source identification indicators, SiO2/Al2O3>3.6, Y/Ho close to that of the hydrothermal fluid on the seafloor, results of Fe-Mn-(Ni+Cu+Co)×10 triangulation, and Co/Zn-(Cu+Ni+Co) diagrammatic show that the formation of Mn elements from the manganese ores in the Datangpo Formation in the Guzhang area is closely related to submarine hydrothermal action and has characteristics of hot-water deposition. Conclusions The manganese ore of the Datangpo Formation was formed in a normoxic-poor environment in the Guzhang area, northwest Hunan province. The formation of manganese is closely related to submarine hydrothermal action.

FU WenNian, LI FengJie. Geochemical Characteristics and Sedimentary Environment Analysis of Manganese Ore from the Datangpo Formation in the Guzhang Area, Northwest Hunan Province[J]. Acta Sedimentologica Sinica, 2025, 43(1): 50-62. doi: 10.14027/j.issn.1000-0550.2023.054
Citation: FU WenNian, LI FengJie. Geochemical Characteristics and Sedimentary Environment Analysis of Manganese Ore from the Datangpo Formation in the Guzhang Area, Northwest Hunan Province[J]. Acta Sedimentologica Sinica, 2025, 43(1): 50-62. doi: 10.14027/j.issn.1000-0550.2023.054
  • 锰矿是一种关系到国民经济和可持续发展的大宗支柱型金属矿产,在现代工业中用途广泛[1],而且也是当今新能源、新材料的重要原料。截至2016年底,中国锰矿查明资源量为15.5亿吨[2]。尽管我国锰矿资源丰富,但因开采条件差、高品质矿石严重缺乏,因而已经被列入我国紧缺矿种。从空间分布上看,我国锰矿资源主要集中分布于扬子陆块及周缘地区、华北陆块的燕辽地区、新疆天山和祁连山的部分地区,在已查明锰矿中,以湘、贵、渝交界的地区最为丰富[2]

    南华系大塘坡早期是我国南方重要的锰矿成矿期,大塘坡组底部的黑色岩系是该时期锰矿的重要富集层位,该类型的锰矿俗称“大塘坡式”锰矿,是我国最重要的锰矿资源类型之一[36],广泛分布于华南黔湘渝地区,尤以黔东松桃盆地、湘中湘潭盆地和湘西的黔阳盆地最为集中。众多学者对“大塘坡式”锰矿形成时的矿床地质、成矿物质来源以及沉积环境等方面进行了大量研究,但对其成因机制一直存在争议[3]。主要的观点包括生物化学成因[4]、海底热液成因[47]、冷泉碳酸盐岩沉积成因[7]和古天然气渗漏成因[79]等。

    位于湘西北部的古丈地区大塘坡组锰矿成矿前景良好,目前已发现龙家寨锰矿、大龙锰矿、烂泥田锰矿和河蓬锰矿等众多锰矿(图1)。对于该区锰矿的研究仅见于烂泥田锰矿和大龙锰矿,而且局限于锰矿的矿床地质特征和地质勘探[10]以及矿床的地球化学特征研究[11],这些研究均忽视了对该区锰矿成矿环境和成矿物质来源的研究。基于此,本文从湘西北古丈地区的锰矿床地质及地球化学特征入手,并与湖北古城、贵州道坨及湖南湘潭等地的锰矿床进行对比,进而探讨古丈地区大塘坡组锰成矿环境和成矿物质来源,以期为该区大塘坡组锰矿的勘探提供理论依据。

    Figure 1.  Geological map of the Guzhang area, Hunan province

  • 古丈地区(109°39′15″~110°11′00″ E,28°23′00″~28°43′40″ N)位于湖南省西北部、湘西自治州中部,构造上位于上扬子陆块东南缘与雪峰造山带之间的过渡带,跨八面山陆内变形带、雪峰带等次级构造单元。

    区域内断裂和褶皱构造较发育,总体为北东—北北东向构造形迹。区域内自北向南发育古丈—吉首断裂。区域内褶皱以古丈复式背斜为主体,总体呈北北东—北东向线状延展;断裂活动强烈,断层数目众多,大小不一。主要有与褶皱轴线近乎一致的北北东向逆断层、正断层,或与褶皱轴线呈明显斜交的北东向—北东东向正断层、正—平错断层,并常见北东东向断层切断北北东向断层[1011],区内共发育12条断裂。该复式背斜在古丈一带对区内锰矿的分布和变化特征具有不同程度的控制作用,锰矿主要分布在复式背斜的两侧(图1)。

  • 研究区已探明锰矿床(点)有5处,分别为烂泥田、河蓬田、牛角山、龙家寨和野竹锰矿,其中中型锰矿一处(烂泥田),小型矿山2处(河蓬田和龙家寨),其余为锰矿点(图1)。矿区主要出露的地层有青白口系板溪群(Pt)、南华系(Nh)、震旦系(Z)、寒武系(Є)和古近系,其中南华系自下而上出露地层为古城组(Nh1g)、大塘坡组(Nh1d)和南沱组(Nh2n)(图2),部分地区古城组缺失,下伏为富禄组(Nh1f)。

    Figure 2.  Comprehensive stratigraphic column of the Nanhua System section, Guzhang area

    古城组(Nh1g)岩性为砾岩、砾砂岩及含砾白云岩,顶部接近分界处含铁锰物质。总体来看,北部以砾岩、砂砾岩为主,向南过渡为含砾白云岩或含砾砂岩。

    大塘坡组(Nh1d)主要分布于工作区中部古丈复式向斜核部,与上部南沱组呈假整合,与下部古城组或富禄组以板状页岩或砂岩分界,其中含锰岩系赋存于南华系大塘坡组的下段。根据岩性组合特征的不同可分为上、下两段(图2)。

    大塘坡组下段为黑色页岩段,主要为黑色炭质板状页岩、夹含锰灰岩、含锰白云岩及碳酸锰矿。厚度1~5 m,普遍夹碳酸锰矿2~3层,单层厚10~20 cm。所含菱锰矿层普遍发育细脉状、网脉状石英脉,具一定程度的硅化现象。有机质、黄铁矿含量较高,蓝藻等古藻类化石较丰富,水平纹层理发育。大塘坡组上段为灰色页岩段,岩性为灰—灰绿色粉砂质页岩、砂质页岩,局部夹少量白云岩透镜体。水平层理发育,厚度15~30 m。

    南沱组(Nh2n)为冰碛沉积物,主要为灰绿色冰碛含砾砂岩及冰碛砂岩夹含砾泥岩。

  • 本文样品采于古丈地区4个野外剖面及2个钻孔岩心。主、微量元素分别分析22件样品,其中锰矿12件,围岩10件;稀土元素分析11件样品,其中锰矿6件,围岩5件。样品的前期处理以及测试工作均由武汉上谱分析科技有限责任公司完成,主量元素采用波长色散X射线荧光光谱仪(型号ZSX Primus Ⅱ)进行测试分析,检测依据为GB/T14506.28—2010;微量元素和稀土元素利用电感耦合等离子体质谱仪(型号Agilent 7700e)进行测试分析,分析质量RSD优于10%;碳氧同位素分析样品9件,其中锰矿6件,围岩3件。测试仪器为稳定气体同位素质谱仪/253plus,符合DZ/T 0184.17—1997标准。

  • 古丈地区样品的主量元素测试结果如表1所示。古丈地区大塘坡组锰矿石中MnO的平均含量为20.16%,远高于围岩中的含量(3.35%)。锰矿石中Fe2O3介于0.23%~18.82%,平均值为4.02%,大于围岩(2.46%)。而锰矿石中ω(CaO)、ω(Na2O)、ω(Al2O3)、ω(SiO2)、ω(TiO2)分别介于0.14%~22.27%、0.06%~0.32%、1.13%~16.71%、6.46%~66.33%、0.04%~0.81%,平均值为5.95%、0.18%、8.53%、36.33%、0.35%,均低于围岩中相对应元素含量(8.43%、1.10%、10.51%、47.57%、0.50%)。锰矿石中MgO、K2O和P2O5的含量与围岩相差较小。相比较而言,古丈地区锰矿的MnO略低于湘西南照洞锰矿[12]、贵州松桃道坨锰矿[13]及湖南湘潭锰矿[14],而Fe2O3、SiO2、P2O5含量均高于以上三个地区的锰矿,整体为高Si、低Fe、含P锰矿石。

    编号样品类型MnOCaONa2OMgOK2OAl2O3Fe2O3SiO2P2O5TiO2Fe/Mn
    T01-1碳酸锰矿49.490.230.070.612.678.512.6322.750.340.220.05
    T01-3碳酸锰矿10.190.460.320.350.527.605.8666.250.300.290.57
    T01-4碳酸锰矿15.520.180.100.984.3116.713.4848.390.190.640.22
    T03-6碳酸锰矿8.825.020.062.623.429.845.3649.670.300.420.61
    T01-2碳酸锰矿45.310.230.050.491.987.903.6625.350.160.420.08
    T02-3碳酸锰矿45.970.600.090.562.525.562.1228.330.480.100.05
    T02-5碳酸锰矿45.340.520.180.814.278.180.2326.910.120.380.01
    T02-6碳酸锰矿1.750.160.161.485.9316.551.2366.330.030.810.70
    T02-7碳酸锰矿10.060.140.081.104.3010.3218.8245.440.980.451.87
    Z101-8碳酸锰矿3.0614.900.739.812.938.613.0431.690.960.420.99
    Z101-9碳酸锰矿1.5026.750.1019.240.371.130.236.460.050.040.15
    P01-9碳酸锰矿4.9122.270.2514.550.401.431.6318.410.130.040.33
    平均值20.165.950.184.382.808.534.0236.330.340.350.47
    湘西南照洞锰矿25.196.670.203.492.516.322.7815.800.240.250.05
    贵州松桃道坨锰矿31.008.570.424.250.692.762.1414.900.300.140.06
    湖南湘潭锰矿32.6210.000.133.530.592.253.0915.400.210.200.09
    T03-8含锰页岩10.776.460.101.683.3410.599.0344.903.800.420.84
    T03-4黑色页岩2.790.130.060.854.4712.244.5966.500.050.621.65
    T03-7黑色页岩3.710.620.191.274.2812.594.5664.180.070.541.23
    Z101-3炭质页岩0.150.271.172.144.2414.161.0068.170.100.606.70
    Z101-6炭质页岩2.0322.530.0913.661.203.260.0619.070.060.120.03
    P01-7黑色页岩1.768.581.555.354.5913.511.9543.900.330.821.11
    P01-8黑色页岩0.691.263.431.282.8712.001.9272.530.070.352.80
    Z01-11灰绿色页岩5.6422.530.4211.851.263.630.2417.570.070.140.04
    Z01-12灰绿色页岩5.6621.870.4611.491.183.940.2218.090.090.150.04
    平均值3.358.431.105.093.3210.512.4647.570.470.50
    注:湘西南照洞锰矿数据引自文献[12],贵州松桃道坨锰矿数据引自文献[13],湖南湘潭锰矿数据引自文献[14]。

    Table 1.  Major elements of manganese ore and surrounding rock from the Datangpo Formation in the Guzhang area (%)

    古丈地区大塘坡组锰矿石及围岩的主量元素相关性图解如图3所示,锰矿石和围岩中Al2O3与SiO2、TiO2、K2O均具有较强的正相关性,同时Al2O3与MgO、CaO呈弱的负相关,而与MnO、Na2O、TFe、P2O5的相关性不强。Al2O3可以作为陆源物质输入的替代指标,且在成岩过程中难以迁移[1215],表明陆源输入物质主要为黏土矿物,Fe是以氢氧化物或氧化物的形式通过黏土矿物吸附带入沉积物,这与湘西南照洞锰矿[12]、贵州道坨锰矿[13]、湖南湘潭锰矿[14]和湖北古城锰矿[15]相似。

    Figure 3.  Correlation of main elements in the Datangpo Formation manganese ore and surrounding rock in the Guzhang area

  • 古丈地区的样品微量元素测试结果见表2,锰矿石和围岩除Cr、Nb、U平均含量类似,其他微量元素含量均相差极大。古丈地区大塘坡组锰矿石的微量元素PAAS(Post-Archaean average Australian shale)标准化图见图4(标准化值参见McLennan[16])。

    编号样品类型VCrCoNiCuZnRbSrZrNbBaThU
    T01-1碳酸锰矿49.9020.10131.0093.0040.302 537.0066.70299.00112.008.20518.004.302.5
    T01-2碳酸锰矿100.0032.60107.00339.0077.401 992.0058.00674.00159.0017.50763.006.403.3
    T01-3碳酸锰矿29.3012.9022.9084.10277.00342.0015.7061.10197.007.90864.004.301.1
    T01-4碳酸锰矿88.4043.1060.30112.00137.00905.00119.00207.00375.0019.604 746.0013.803.4
    T03-6碳酸锰矿56.9031.4038.8029.8035.80118.0083.70192.00221.0013.401 010.009.102.7
    T02-3碳酸锰矿47.1016.50133.0034.5082.60575.0053.40211.0062.203.90713.001.201.0
    T02-5碳酸锰矿65.8029.5011.9060.8017.101 421.0079.70332.00143.0014.10714.002.801.6
    T02-6碳酸锰矿138.0070.103.504.1017.2053.80154.0025.00473.0027.801 323.0016.003.6
    T02-7碳酸锰矿89.5032.1058.8045.5095.90611.00102.0043.30268.0014.901 376.0010.102.6
    Z101-8碳酸锰矿58.5029.90191.00235.0036.0049.5073.60439.00252.009.382 044.006.1012.0
    Z101-9碳酸锰矿14.305.009.0011.906.1017.208.02506.0012.601.10129.000.302.3
    P01-9碳酸锰矿11.405.307.706.6011.1042.8010.90296.0025.3001.30236.001.001.5
    T03-4黑色页岩243.0049.8039.6064.20107.00166.00116.0055.10328.0016.001 068.0013.203.2
    T03-7黑色页岩63.2038.7053.1033.9041.30178.00114.0040.90281.0015.80954.0012.602.6
    T03-8含锰页岩56.9026.5034.6048.2056.30140.0089.90331.00269.0010.403 359.008.9013.2
    P01-7黑色页岩75.8020.1011.1016.0023.9057.20112.00224.00413.0025.50940.008.803.0
    P01-8黑色页岩27.6015.904.029.4016.70266.0066.4086.50193.009.10718.003.501.0
    Z101-3炭质页岩67.9045.4014.8031.1048.2056.50121.0047.40295.0016.00805.0013.602.0
    Z101-6炭质页岩24.005.101.804.906.9017.9027.80634.0062.403.30200.002.900.8
    Z01-11灰绿色页岩25.009.302.996.309.20234.0026.10424.0074.104.40327.001.600.7
    Z01-12灰绿色页岩28.5012.402.707.5010.50279.0029.90482.0063.204.80381.001.300.8

    Table 2.  Trace elements of manganese ore and surrounding rock from the Datangpo Formation in the Guzhang area (×10-6)

    Figure 4.  Post⁃Archaean average Australian sedimentary rock standardization diagram of trace elements in manganese ore and surrounding rock of the Datangpo Formation, Guzhang area (PAAS after reference [16])

    由微量元素标准化图解可知,锰矿石和围岩样品微量元素的变化趋势基本一致。锰矿石中Zn、Co、Ba、Sr相对富集,Ni、Cu、Zr、U轻微富集,V、Cr元素含量相对较低,Rb、Nb、Th明显亏损。在围岩样品中Co、Zn、Ba相对富集,Ni、Nb轻微亏损,Cr、Rb、Th明显亏损。锰矿石中微量元素富集特征与湘西南黔阳盆地锰矿[17]具有一定相似性。

  • 古丈地区大塘坡组锰矿石和围岩稀土元素含量见表3。锰矿石的稀土总量整体较高,轻稀土元素大于重稀土元素。稀土总量介于167.07×10-6~843.28×10-6,平均值为459.74×10-6,明显高于PAAS和古元古代Kalahari锰碳酸岩(18.87×10-6[18],略低于现代海底铁锰结壳(稀土元素总量普遍大于500×10-6[19]。锰矿石∑REE+Y的变化范围为233.824~1 033.02×10-6,平均值为562.792×10-6。轻稀土元素(∑LREE)和重稀土元素(∑HREE)的比值可以有效地反映样品轻、重稀含量的分异程度,比值越大表明轻稀土元素越富集。古丈地区大塘坡组锰矿石∑LREE/∑HREE比值介于0.98~3.05,平均值为2.15,轻稀土元素相对富集,而重稀土元素相对亏损。

    锰矿石围岩
    样品类型碳酸锰矿碳酸锰矿碳酸锰矿碳酸锰矿碳酸锰矿碳酸锰矿黑色页岩黑色页岩含锰页岩炭质页岩炭质页岩
    编号T01-1T01-2T01-3T01-4T03-6Z101-8T03-4T03-7T03-8Z101-3Z101-6
    La118.16160.1036.33105.6233.2318.5030.9924.4132.2245.3613.32
    Ce231.14281.5797.01254.9486.4442.6268.4280.1587.7585.4129.73
    Pr30.7742.1512.1831.0011.666.088.457.9414.7210.213.95
    Nd127.82166.1349.16125.7948.9830.4931.2238.3789.5537.4316.46
    Sm25.8637.9312.3928.3411.3413.816.138.9250.597.293.99
    Eu5.859.343.836.742.803.961.381.9114.231.550.85
    Gd26.5739.3010.6023.8210.0917.485.348.1763.086.573.93
    Tb4.767.752.094.771.903.081.121.4611.261.260.84
    Dy27.6745.8011.8925.6311.4116.166.849.0050.687.464.71
    Ho5.358.592.054.602.222.631.481.787.131.650.87
    Er12.7919.724.8911.605.855.754.214.2913.554.112.14
    Tm1.893.350.781.850.870.860.750.751.610.730.33
    Yb10.9818.874.4610.344.894.945.384.968.424.742.00
    Lu1.412.700.591.450.710.710.750.681.180.660.29
    Y168.39189.7542.8897.1053.4166.7533.8940.58175.3736.1725.98
    ∑REE+Y799.051 033.03291.11733.57285.81233.82206.34233.36621.36250.61109.40
    ∑LREE539.61697.21210.89552.42194.45115.46146.58161.70289.08187.2568.30
    ∑HREE259.80335.8280.22181.1591.37118.3759.7571.67332.2863.3641.10
    ∑LREE/ ∑HREE2.082.082.633.052.130.982.452.260.872.961.66
    δEu2.453.372.082.781.571.970.931.164.591.000.65
    δCe0.400.370.430.440.390.340.460.500.260.470.40
    注:PAAS标准化值参见McLennan [16]

    Table 3.  Rare earth elements of manganese ore and surrounding rock from the Datangpo Formation in the Guzhang area (×10-6)

    锰矿石的稀土元素PASS标准化见图5(标准参照McLennan[16])。从标准化图解可以看出Eu、Ce呈现弱的正异常,呈典型的“帽式”分配特征,即表现出明显的中稀土元素富集,轻、重稀土元素亏损。围岩样品稀土元素含量整体低于锰矿石样品,但仍呈弱的“帽式”分配特征。

    Figure 5.  PASS standardization diagram of rare earth elements in the Datangpo Formation manganese ore and surrounding rock in Guzhang and several other typical area (PAAS after reference [16])

  • 古丈地区大塘坡组锰矿石碳、氧同位素测试分析结果如表4所示,锰矿石δ13C介于-24.81‰~-0.6‰,平均为-13.05‰;围岩样品δ13C介于-25.45‰~-7.83‰,平均为-19.01‰。δ13C均值介于无机碳和有机碳之间(-28‰~0‰),并且很接近两者混合的平均值(-14‰)。δ18O介于-18.71‰~-2.26‰,平均为-11.28‰;围岩样品δ18O介于-17.63‰~-11.84‰,平均为-15.45‰。

    样品编号样品类型δ13CPDB/‰δ18OPDB/‰
    T01-1菱锰矿-20.08-15.17
    T02-3菱锰矿-24.38-18.30
    T02-5菱锰矿-24.81-18.71
    C03-6菱锰矿-7.07-9.71
    Z101-8菱锰矿-1.34-3.57
    Z101-9菱锰矿-0.60-2.26
    C03-8含锰页岩-7.83-11.84
    T01-3含锰白云岩-23.75-16.88
    T01-4黑色页岩-25.45-17.63

    Table 4.  δ13C and δ18O from the Datangpo Formation manganese ore in the Guzhang area (%)

    古丈地区大塘坡组锰矿石δ13C与δ18O及Mn元素相关关系图解显示(图6a,b),δ13C与δ18O存在明显的正相关性,相关系数为0.93,而δ13C与Mn的含量之间呈负相关关系。

    Figure 6.  (a, b) correlation of δ13C with δ18O and Mn in the Guzhang area; (c⁃h) Correlation diagram of Al, Zr, and Th with rare earth elements in the Datangpo Formation manganese ore and surrounding rock

  • 沉积物的地球化学性质可能受到成岩作用以及后期风化作用等的影响,进而改变微量稀土元素的原始特征[11],因此在进行微量稀土元素分析之前,需要考虑成岩作用过程中陆源碎屑输入对微量稀土元素的影响[20]

    稀土元素通常集中分布在碎屑矿物中,可以利用与陆源输入相关的稳定元素如Al、Zr、Th等进行验证[2021]。若稀土元素主要源自碎屑输入,而不是周围海水,则∑REE+Y与Al、 Zr、Th之间具有较强的正相关性[21]。锰矿石和围岩中∑REE+Y与Al、Zr、Th显示相关性极低(图6c~e),此外,锰矿石和围岩中Al与各种稀土元素均呈弱的负相关或无相关性(图6f~h),上述结果指示锰矿石基本不受陆源碎屑物质的影响。

    Fe、Mn、U、V、Ni、Ce等元素均属于氧化—还原敏感元素,其溶解度明显受沉积环境氧化—还原状态的控制[22]。因此,可以通过分析沉积物中这些元素的含量以及彼此之间的比值来判断沉积成矿时的氧化—还原条件。

    Fe3+/Fe2+的氧化还原电位比Mn4+/Mn2+低,因此Fe离子相对Mn离子对水体氧化还原条件的变化更加敏感。因此,Fe/Mn比值的高低能够反映Fe、Mn在沉积过程中的分离程度以及沉积环境的氧化—还原状态[1415]。当环境处于迅速氧化或还原状态时,Fe、Mn趋向于同时发生沉淀;而在水体处于缓慢氧化的状态时,Fe、Mn先后沉淀[13]。研究区锰矿石Fe/Mn值介于0.01~0.99,均小于1,平均值为0.47,表明沉积过程中Fe先于Mn沉淀,反映其沉积环境可能为次氧化—氧化状态。

    V元素与Ni、Cr元素具有相似的化学性质,但在缺氧条件下,V元素相对于Ni和Cr元素在含有机质的沉积岩中更容易富集,因此V/Cr和V/(V+Ni)值可以反映沉积物形成时的氧化—还原环境[15]

    V/Cr小于2指示常氧环境,当V/Cr介于2~4.25时,指示贫氧环境,当V/Cr大于4.5时为缺氧环境[23]。研究区内锰矿石样品V/Cr值介于1.81~2.84,平均值为2.22,指示古丈地区大塘坡组锰矿石形成于贫氧环境(图7a)。

    Figure 7.  Redox sensitive element pairs from the Datangpo Formation manganese ores in the Guzhang area

    V/(V+Ni)小于0.46时反映氧化环境、0.46小于V/(V+Ni)小于0.57反映弱氧化环境、V/(V+Ni)大于0.57反映缺氧环境[6,24]。研究区内V/(V+Ni)值介于0.20~0.97,平均值为0.50,该比值介于弱氧化—缺氧的沉积环境之间(图7c)。

    Ni/Co小于5为常氧环境,Ni/Co介于5~7时为次富氧环境,Ni/Co大于7时反映缺氧和厌氧环境[12]。研究区锰矿样品Ni/Co比值介于0.26~3.68,平均值为1.74,指示古丈地区大塘坡组锰矿形成于氧化环境(图7b)。

    Th和U在还原状态下的地球化学性质相似,但在氧化状态下差别很大[10,22]。表生环境下,Th只有+4价一种价态且不易溶解;U在强还原状态下为+4价,不溶解于水,导致它在沉积物中富集;而在氧化状态下,U以易溶的+6价存在,造成沉积物中U的丢失。因此U/Th比值可以反映沉积水体的氧化—还原条件,是沉积环境的氧化—还原条件常用的测量参数[2425]

    U/Th小于0.75时反映氧化水体环境,U/Th介于0.75~1.25时反映贫氧水体环境,U/Th大于1.25时反映缺氧的水体环境。古丈地区锰矿样品U/Th比值介于0.22~1.99,平均值为0.66,绝大部分样品点落在贫氧环境区域(图7d),指示研究区锰矿沉积环境为贫氧—缺氧环境。

    Ce元素对于氧化—还原环境的变化非常敏感,沉积体系中Ce异常能够有效地反映水体氧化—还原的变化。一般而言,δCe大于1为正异常,代表还原环境;δCe小于0.95为负异常,代表氧化环境[26]。古丈地区大塘坡组锰矿石样品δCe值介于0.79~1.33,平均值为0.97,指示区内锰矿沉积环境为弱的氧化环境。

    Mn是氧化—还原敏感元素,在还原条件下,Mn2+会与CO32-结合直接形成菱锰矿沉淀[15];在氧化条件下,Mn3+、Mn4+先以氧化物或氢氧化物的形式沉淀,埋藏后在缺氧条件下与有机物反应转化为菱锰矿[1215],后者会使锰矿具有与现代海底锰结壳[19]相类似的稀土元素特征。此外,锰的氧化物或氢氧化物对稀土元素具有强烈的吸附作用,常造成高的REE总量和Ce正异常。

    将古丈锰矿与湖北古城锰矿[15]和贵州道坨锰矿[13]两个典型的大塘坡式锰矿的稀土元素特征(图5a,c,d)对比,发现它们具有3个相似的特征:(1)稀土元素总量较高,高于或接近PAAS;(2)稀土元素PAAS标准化分配模式图均呈现出一定程度的中稀土元素富集,即“帽式”分配特征,且有别于现代海水;(3)均与现代海底铁锰结壳[19]相似,Ce正异常明显,没有明显的Y异常。湖北古城和贵州道坨锰矿均属于相似的氧化的沉积环境[1314]。可见,研究区锰矿形成环境应属于由氧化过渡到次氧化条件。

    一般认为缺氧环境有利于锰矿的形成,且黑色页岩也指示缺氧环境,但研究区大部分的地球化学信息均指示其成矿期为一种弱的氧化环境,有学者在研究古丈烂泥田锰矿床时认为这是缺氧环境和微氧环境交替出现造成的[11],这种现象有利于锰元素呈低价通过碳酸锰直接沉积成矿[20]。并且,在湖北古城锰矿和贵州松桃锰矿的研究中,前人均认为其沉积环境可能经历了从氧化到次氧化的渐变过程[1314]

    综上所述,Fe/Mn、V/Cr、V/(V+Ni)、Ni/Co和Ce标志等指标以及与湖北古城锰矿、贵州道坨锰矿等的对比,均指示古丈地区大塘坡组锰矿石沉积时处于氧化—次氧化的环境。

  • SiO2/Al2O3的比值是区分沉积物质来源的重要标志,陆壳中的SiO2/Al2O3比值3.6,与此值接近的沉积物源以陆源为主,超过此值则多由生物或热水作用造成[27]。本区锰矿石中SiO2/Al2O3的比值介于2.67~12.86,平均为5.13。因此,古丈地区大塘坡组锰矿石可能与生物或热水作用关系密切。

    在海底热液系统中,由于热液沉积物沉积速率快,没有足够时间与海水相互作用,故其Co、Ni含量低。而海底热卤水中相对富集Fe、Mn,故热液沉积物中Fe、Mn含量较高。不同成因的沉积物在Fe-Mn-(Ni+Cu+Co)×10三角图解上有各自的集中范围[28],利用这一图解,可以较好地区分热水沉积物与非热水沉积物。将研究区锰矿石与围岩样品Fe-Mn-(Co+Ni+Cu)×10进行投点,所有锰矿石及围岩样品点均落在热水沉积区域(图8a)。锰矿石样品绝大部分靠近Mn端元,围岩样品则Fe、Mn端元均有分布。

    Figure  8.  (a) Triangle diagram of Fe⁃Mn⁃(Co+Ni+Cu)×10; (b) relationship diagram of Co/Zn⁃(Cu+Ni+Co) from manganese ore and surrounding rock in the Guzhang area

    在热水沉积物中,Ni、Co、Cu由于缺乏与海水之间的作用大量迁移呈亏损状态,Fe、Mn、Zn相对富集,富Zn而贫Co使得热水沉积物中Co/Zn值较低。可以用Co/Zn-(Cu+Ni+Co)图解来判别锰矿成因。将研究区样品的Zn、Co、Cu、Ni值投点到Co/Zn-(Cu+Ni+Co)关系图(图8b),锰矿石和围岩的样品点均落在热水(液)沉积区内,也表明研究区锰矿石的形成与海底热液关系密切。

    Y/Ho比值是判断锰矿是否为海底热水沉积作用的又一指标[6]。海底热流体中Y/Ho比值大多介于25~28,而海相水成的铁锰壳的Y/Ho比值大多介于17~25,研究区内锰矿石样品Y/Ho比值介于21.9~31.5,与海底热流体的比值类似;同时,研究区内Nb/Ta比值介于14~37,平均值为24,远高于大陆地壳Nb/Ta的比值11~12或12~13,说明古丈地区锰矿的形成与海底热水(液)有关。

    热水沉积物因沉淀堆积过快而无法吸收海水中大量的Th而导致富U贫Th[29]。研究区内U/Th值介于0.22~7.95,平均值为1.27,表明研究区内锰矿沉积受热水活动影响较大。

    古丈地区含锰岩系δ13C介于-0.60‰~-24.81‰,平均值为-13.05‰,与正常碳酸盐的δ13C值(>0.0‰)明显不同,而与生物藻类的δ13C值(-12‰~-23‰)、海泥有机质δ13C值(-20‰)以及现代洋底热泉中溶解的同位素值(δ13C介于-5‰~-8‰)均有部分重合[5],反映古丈地区锰矿中碳同位素可能存在生物作用影响或热水沉积的特点。根据氧同位素外部测温法原理,利用公式t=16.9-4.2×δ18OPDB×1 000+0.13×(δ18OPDB×1 000)2[6,30],计算出古丈地区成矿(岩)温度介于27.03 ℃~140.97 ℃,平均温度为95.59 ℃。

    综上所述,古丈地区大塘坡组锰矿石显示出明显的热水沉积特征,热液作用是研究区锰质的主要来源。

  • (1) 古丈地区大塘坡组锰矿石MnO2、SiO2、Al2O3的含量较高,Na2O、P2O5含量较低,研究区锰矿整体为高Si、低Fe、含P锰矿。稀土元素PAAS标准化图解显示趋势为明显的中稀土元素富集,轻、重稀土元素富集,呈典型的“帽式”分配特征。

    (2) 古丈地区大塘坡组锰矿沉积时为氧化—次氧化的环境,与湖北方城锰矿和贵州道坨锰矿等典型的大塘坡式锰矿相类似,Mn先是以锰的氧化物或氢氧化物的形式沉淀,在后期转化为菱锰矿。

    (3) 古丈地区大塘坡组锰矿中Mn元素的形成与海底热液作用关系密切,深部热液为研究区锰质的主要来源。

Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return