Advanced Search
Volume 43 Issue 1
Feb.  2025
Turn off MathJax
Article Contents

TANG HeYuan, XIAN BenZhong, LI Cong, WANG PengYu, CHEN Lei, CHEN SiRui, YANG RongChao, TIAN RongHeng. Quality Difference and Genesis of Clastic Reservoirs in the Nanpu Sag: A case study of the Paleogene in the No.4 structural belt[J]. Acta Sedimentologica Sinica, 2025, 43(1): 288-300. doi: 10.14027/j.issn.1000-0550.2022.160
Citation: TANG HeYuan, XIAN BenZhong, LI Cong, WANG PengYu, CHEN Lei, CHEN SiRui, YANG RongChao, TIAN RongHeng. Quality Difference and Genesis of Clastic Reservoirs in the Nanpu Sag: A case study of the Paleogene in the No.4 structural belt[J]. Acta Sedimentologica Sinica, 2025, 43(1): 288-300. doi: 10.14027/j.issn.1000-0550.2022.160

Quality Difference and Genesis of Clastic Reservoirs in the Nanpu Sag: A case study of the Paleogene in the No.4 structural belt

doi: 10.14027/j.issn.1000-0550.2022.160
Funds:

National Natural Science Foundation of China 41872113

National Natural Science Foundation of China 42172109

National Natural Science Foundation of China 42172108

China National Petroleum Corporation- China University of Petroleum (Beijing) Strategic Cooperation Science and Technology Project ZLZX2020-02

National Key of Research and Development Project 2018YFA0702405

Science Foundation of China University of Petroleum (Beijing) 2462020BJRC002

Science Foundation of China University of Petroleum (Beijing) 2462020YXZZ020

  • Received Date: 2022-10-10
  • Accepted Date: 2023-02-20
  • Rev Recd Date: 2022-12-20
  • Available Online: 2023-02-20
  • Publish Date: 2025-02-10
  • Objective In this study, we clarified the difference and development rule of clastic reservoirs in the middle and deep layers of the No. 4 structural belt in the Nanpu Sag and explored the key factors affecting the quality of middle and deep reservoirs. Methods We used scanning electron microscopy, casting thin section, mercury, injection analysis and other techniques, combined with the empirical calculation formula of diagenetic strength. Reservoir petrology, porosity and permeability, pore structure, and the reason of reservoir quality difference were analyzed in a stratified system. Results The study shows that the sandstones of different strata are similar in lithology, mainly composed of lithic feldspar sandstone and feldspar lithic sandstone, but the reservoir quality obviously differs between layers, showing the "abnormal" phenomenon that the reservoir quality of the First member of the Shahejie Formation (Es1) ,which is the underlying member, improves with depth. And the Second member of Dongying Formation (Ed2) and the Third member of Dongying Formation (Ed3) decreases rapidly with the increase of burial depth. From Es1 to Ed2, the average porosity and permeability increased from16.61% and 9.58×10-3 μm2 to 12.96% and 3.39×10-3 μm2, respectively. Based on the analysis of the high-pressure mercury injection experiment, the study area can be divided into three types of mercury injection curves. The proportions of types Ⅰ, Ⅱ, and Ⅲ in Es1 were 43.75%, 25%, and 31.25%, respectively. The types of mercury injection curves in Ed3 were 28.57%, 64.29%, and 7.14%, respectively. The types of mercury injection curves in Ed2 accounted for 36.36%, 45.45%, and 18.18%, respectively. In general, Es1 has both type Ⅰ and high-quality pore-throat and type Ⅲ with small pore-throat radius, and its physical properties are better than those of other strata. Furthermore, through the calculation of the difference of diagenetic strength, differences are discovered in the diagenesis of different reservoirs. The compaction intensity of Es1 is the weakest (COPL-P = 38.13%), and the dissolution intensity is the strongest (CRPI-P = 46.47%). The reservoirs are well reformed and have good physical properties. Ed3 has the strongest compaction (COPL-P = 53.30%), the weakest dissolution (CRPI-P = 26.03%), and poor physical properties. Conclusions The difference of sedimentary facies and diagenesis under the control of tectonic evolution and burial is the fundamental reason for the "anomaly" of reservoir quality layers. From Es1 to Ed3 and Ed2, the rifting activity was enhanced, topography steepened, meander river delta evolved into braided river delta, reservoir grain size became coarser, sandstone composition and structure maturity was reduced, sandstone compressive ability decreased, and compaction porosity reduction rate increased, resulting in better preservation of primary pores in Es1. In addition, the rate of dissolution and porosity increase at depth, and high pressure of the formation further increased the interlayer "anomaly" of reservoir quality.
  • [1] 郝军,苏雪波,鲁改欣,等. 苏北盆地白驹凹陷洋心次凹泰一段孔隙演化特征分析[J]. 中国地质,2011,38(4):1094-1101.

    Hao Jun, Su Xuebo, Lu Gaixin, et al. An analysis of porosity evolution in 1st member of Taizhou Formation within Yangxin sub-depression, Baiju Sag, Subei Basin[J]. Geology in China, 2011, 38(4): 1094-1101.
    [2] El-Ghali M A K, Morad S, Mansurbeg H, et al. Distribution of diagenetic alterations within depositional facies and sequence stratigraphic framework of fluvial sandstones: Evidence from the Petrohan Terrigenous Group, Lower Triassic, NW Bulgaria[J]. Marine and Petroleum Geology, 2009, 26(7): 1212-1227.
    [3] Tavakoli V, Rahimpour-Bonab H, Esrafili-Dizaji B. Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach[J]. Comptes Rendus Geoscience, 2011, 343(1): 55-71.
    [4] Souque C, Fisher Q J, Casey M, et al. Structural controls on mechanical compaction within sandstones: An example from the Apsheron Peninsula, Azerbaijan[J]. Marine and Petroleum Geology, 2010, 27(8): 1713-1724.
    [5] Yuan G H, Gluyas J, Cao Y C, et al. Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag, Bohai Bay Basin, East China[J]. Marine and Petroleum Geology, 2015, 62: 77-89.
    [6] Stricker S, Jones S J, Sathar S. Overpressure preventing quartz cementation?: A reply[J]. Marine and Petroleum Geology, 2017, 79: 337-339.
    [7] 陈吉,吴远坤,孙爱艳,等. 南堡油田沙一段储层特征及控制因素[J]. 特种油气藏,2015,22(1):36-40.

    Chen Ji, Wu Yuankun, Sun Aiyan, et al. Reservoir features and controlling factors of Shayi member, Nanpu oilfield[J]. Special Oil and Gas Reservoirs, 2015, 22(1): 36-40.
    [8] Chen L, Ji H C, Zhang L, et al. Effect of burial processes on the evolution of organic acids and implications for acidic dissolution from a case study of the Nanpu Sag, Bohai Bay Basin, China[J]. Journal of Natural Gas Science and Engineering, 2017, 39: 173-187.
    [9] 杨佳奇,纪友亮,吴浩,等. 南堡凹陷深层储层成岩作用与孔隙演化:以3号构造带古近系沙一段为例[J]. 沉积学报,2022,40(1):203-216.

    Yang Jiaqi, Ji Youliang, Wu Hao, et al. Diagenesis and porosity evolution of deep reservoirs in the Nanpu Sag: A case study of Sha 1 member of the Paleogene in No. 3 structural belt[J]. Acta Sedimentologica Sinica, 2022, 40(1): 203-216.
    [10] 王恩泽,刘国勇,庞雄奇,等. 南堡凹陷中深层碎屑岩储集层成岩演化特征及成因机制[J]. 石油勘探与开发,2020,47(2):321-333.

    Wang Enze, Liu Guoyong, Pang Xiongqi, et al. Diagenetic evolution and formation mechanisms of middle to deep clastic reservoirs in the Nanpu Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2020, 47(2): 321-333.
    [11] 赵晓东,时阳,文雯,等. 渤海湾盆地南堡凹陷南部深层沙一段优质碎屑岩储层特征及成因机制[J]. 地质论评,2021,67(5):1373-1388.

    Zhao Xiaodong, Shi Yang, Wen Wen, et al. Characteristics and genetic mechanism of high-quality clastic reservoirs in the 1st member, Paleogene Shahejie Formation in the southern Nanpu Sag, Bohai Bay Basin[J]. Geological Review, 2021, 67(5): 1373-1388.
    [12] 朱光有,张水昌,王拥军,等. 渤海湾盆地南堡大油田的形成条件与富集机制[J]. 地质学报,2011,85(1):97-113.

    Zhu Guangyou, Zhang Shuichang, Wang Yongjun, et al. Forming condition and enrichment mechanism of the Nanpu oilfield in the Bohai Bay Basin, China[J]. Acta Geologica Sinica, 2011, 85(1): 97-113.
    [13] 乔海波,赵晓东,刘晓,等. 南堡4号构造中深层异常高孔带类型及成因[J]. 断块油气田,2016,23(6):726-730.

    Qiao Haibo, Zhao Xiaodong, Liu Xiao, et al. Types and causes of anomalously high porosity zone in middle and deep reservoir of 4th Structure, Nanpu Depression[J]. Fault-block Oil & Gas Field, 2016, 23(6): 726-730.
    [14] 吴浩,纪友亮,周勇,等. 南堡凹陷南部古近系深层优质储层成因[J]. 中国矿业大学学报,2019,48(3):553-569.

    Wu Hao, Ji Youliang, Zhou Yong, et al. Origin of the Paleogene deep burial high-quality reservoirs in the southern Nanpu Sag[J]. Journal of China University of Mining & Technology, 2019, 48(3): 553-569.
    [15] 方欣欣,王华,姜华,等. 南堡凹陷柳南地区东营组沉积体系分析[J]. 地质科技情报,2010,29(2):38-43.

    Fang Xinxin, Wang Hua, Jiang Hua, et al. Sedimentary system analysis in Dongying Formation of Liunan region, Nanpu Sag[J]. Geological Science and Technology Information, 2010, 29(2): 38-43.
    [16] 罗彪. 南堡凹陷主要目的层欠压实特征及其成因分析[D]. 北京:中国石油大学(北京),2018:18-19.

    Luo Biao. Characteristics and causes of under-compaction layers of main target formations in Nanpu Sag[D]. Beijing: China University of Petroleum (Beijing), 2018: 18-19.
    [17] Zhang J G, Jiang Z X, Gierlowski-Kordesch E, et al. A double-cycle lake basin formed in extensional to transtensional setting: The Paleogene Nanpu Sag, Bohai Bay Basin, China[J]. Sedimentary Geology, 2017, 349: 15-32.
    [18] 管红,朱筱敏. 南堡凹陷东营组层序地层格架与沉积体系[J]. 沉积学报,2008,26(5):730-736.

    Guan Hong, Zhu Xiaomin. Sequence framework and sedimentary facies of Ed Formation in Paleogene, Nanpu Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2008, 26(5): 730-736.
    [19] Beard D C, Weyl P K. Influence of texture on porosity and permea-bility of unconsolidated sand[J]. AAPG Bulletin, 1973, 57(2): 349-369.
    [20] 杨文婷. 德惠断陷下部断陷层储层分类评价[D]. 大庆:东北石油大学,2020:41-55.

    Yang Wenting. Reservoir classification evaluation of the lower fault depression of Dehui Fault Depression[D]. Daqing: Northeast Petroleum University, 2020: 41-55.
    [21] 毛倩茹,范彩伟,罗静兰,等. 超压背景下中深层砂岩储集层沉积—成岩演化差异性分析:以南海莺歌海盆地中新统黄流组为例[J]. 古地理学报,2022,24(2):344-360.

    Mao Qianru, Fan Caiwei, Luo Jinglan, et al. Analysis of sedimentary-diagenetic evolution difference on middle-deep buried sandstone reservoirs under overpressure background: A case study of the Miocene Huangliu Formation in Yinggehai Basin, South China Sea[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(2): 344-360.
    [22] 王华,姜华,林正良,等. 南堡凹陷东营组同沉积构造活动性与沉积格局的配置关系研究[J]. 地球科学与环境学报,2011,33(1):70-77.

    Wang Hua, Jiang Hua, Lin Zhengliang, et al. Relations between synsedimentary tectonic activity and sedimentary framework of Dongying Formation in Nanpu Sag[J]. Journal of Earth Sciences and Environment, 2011, 33(1): 70-77.
    [23] 张梦迪. 南堡凹陷拾场次洼沙三段油气成藏规律研究[D]. 大庆:东北石油大学,2017:12-61.

    Zhang Mengdi. Hydrocarbon accumulation regularity of Es3 member of Shichang sub-sag in Nanpu Sag[D]. Daqing: Northeast Petroleum University, 2017: 12-61.
    [24] 范西哲,李晓,吴永川,等. 北极永冻区钻井地层压力预测方法[J]. 天然气工业,2022,42(3):99-105.

    Fan Xizhe, Li Xiao, Wu Yongchuan, et al. A formation pressure prediction method for well drilling in the Arctic permafrost region[J]. Natural Gas Industry, 2022, 42(3): 99-105.
    [25] 余志云,陈世悦,张顺,等. 成岩作用对泥页岩储集性能的影响:以东营凹陷古近系沙四上亚段为例[J]. 古地理学报,2022,24(4):771-784.

    Yu Zhiyun, Chen Shiyue, Zhang Shun, et al. Influence of diagenesis on reservoir performance of shale: A case study of the upper sub-member of member 4 of Paleogene Shahejie Formation in Dongying Sag[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(4): 771-784.
    [26] 魏柳斌,陈洪德,朱平,等. 鄂尔多斯盆地上古生界盒8段南北储层差异性对比[J]. 断块油气田,2011,18(3):285-288,345.

    Wei Liubin, Chen Hongde, Zhu Ping, et al. Difference comparison between southern and northern sandstone reservoirs of Upper Paleozoic He 8 member in Ordos Basin[J]. Fault-Block Oil and Gas Field, 2011, 18(3): 285-288, 345.
    [27] 曹江骏. 鄂尔多斯盆地西峰地区长8储层黏土矿物特征及对储层的影响[J]. 石油地质与工程,2018,32(6):77-81.

    Cao Jiangjun. Clay mineral characteristics of Chang 8 reservoir in Xifeng region of Ordos Basin and its influence on reservoirs[J]. Petroleum Ge-ology and Engineering, 2018, 32(6): 77-81.
    [28] 安天下. 松辽盆地梨树断陷白垩系营城组—沙河子组超压特征及其对成岩作用的影响[J]. 东北石油大学学报,2020,44(1):65-76.

    An Tianxia. Characteristics of overpressure in Cretaceous Yingcheng-Shahezi Formation and its effect on diagenesis in Lishu Fault Sag, Songliao Basin[J]. Journal of Northeast Petroleum University, 2020, 44(1): 65-76.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(4)

Article Metrics

Article views(112) PDF downloads(13) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-10-10
  • Revised:  2022-12-20
  • Accepted:  2023-02-20
  • Published:  2025-02-10

Quality Difference and Genesis of Clastic Reservoirs in the Nanpu Sag: A case study of the Paleogene in the No.4 structural belt

doi: 10.14027/j.issn.1000-0550.2022.160
Funds:

National Natural Science Foundation of China 41872113

National Natural Science Foundation of China 42172109

National Natural Science Foundation of China 42172108

China National Petroleum Corporation- China University of Petroleum (Beijing) Strategic Cooperation Science and Technology Project ZLZX2020-02

National Key of Research and Development Project 2018YFA0702405

Science Foundation of China University of Petroleum (Beijing) 2462020BJRC002

Science Foundation of China University of Petroleum (Beijing) 2462020YXZZ020

Abstract: Objective In this study, we clarified the difference and development rule of clastic reservoirs in the middle and deep layers of the No. 4 structural belt in the Nanpu Sag and explored the key factors affecting the quality of middle and deep reservoirs. Methods We used scanning electron microscopy, casting thin section, mercury, injection analysis and other techniques, combined with the empirical calculation formula of diagenetic strength. Reservoir petrology, porosity and permeability, pore structure, and the reason of reservoir quality difference were analyzed in a stratified system. Results The study shows that the sandstones of different strata are similar in lithology, mainly composed of lithic feldspar sandstone and feldspar lithic sandstone, but the reservoir quality obviously differs between layers, showing the "abnormal" phenomenon that the reservoir quality of the First member of the Shahejie Formation (Es1) ,which is the underlying member, improves with depth. And the Second member of Dongying Formation (Ed2) and the Third member of Dongying Formation (Ed3) decreases rapidly with the increase of burial depth. From Es1 to Ed2, the average porosity and permeability increased from16.61% and 9.58×10-3 μm2 to 12.96% and 3.39×10-3 μm2, respectively. Based on the analysis of the high-pressure mercury injection experiment, the study area can be divided into three types of mercury injection curves. The proportions of types Ⅰ, Ⅱ, and Ⅲ in Es1 were 43.75%, 25%, and 31.25%, respectively. The types of mercury injection curves in Ed3 were 28.57%, 64.29%, and 7.14%, respectively. The types of mercury injection curves in Ed2 accounted for 36.36%, 45.45%, and 18.18%, respectively. In general, Es1 has both type Ⅰ and high-quality pore-throat and type Ⅲ with small pore-throat radius, and its physical properties are better than those of other strata. Furthermore, through the calculation of the difference of diagenetic strength, differences are discovered in the diagenesis of different reservoirs. The compaction intensity of Es1 is the weakest (COPL-P = 38.13%), and the dissolution intensity is the strongest (CRPI-P = 46.47%). The reservoirs are well reformed and have good physical properties. Ed3 has the strongest compaction (COPL-P = 53.30%), the weakest dissolution (CRPI-P = 26.03%), and poor physical properties. Conclusions The difference of sedimentary facies and diagenesis under the control of tectonic evolution and burial is the fundamental reason for the "anomaly" of reservoir quality layers. From Es1 to Ed3 and Ed2, the rifting activity was enhanced, topography steepened, meander river delta evolved into braided river delta, reservoir grain size became coarser, sandstone composition and structure maturity was reduced, sandstone compressive ability decreased, and compaction porosity reduction rate increased, resulting in better preservation of primary pores in Es1. In addition, the rate of dissolution and porosity increase at depth, and high pressure of the formation further increased the interlayer "anomaly" of reservoir quality.

TANG HeYuan, XIAN BenZhong, LI Cong, WANG PengYu, CHEN Lei, CHEN SiRui, YANG RongChao, TIAN RongHeng. Quality Difference and Genesis of Clastic Reservoirs in the Nanpu Sag: A case study of the Paleogene in the No.4 structural belt[J]. Acta Sedimentologica Sinica, 2025, 43(1): 288-300. doi: 10.14027/j.issn.1000-0550.2022.160
Citation: TANG HeYuan, XIAN BenZhong, LI Cong, WANG PengYu, CHEN Lei, CHEN SiRui, YANG RongChao, TIAN RongHeng. Quality Difference and Genesis of Clastic Reservoirs in the Nanpu Sag: A case study of the Paleogene in the No.4 structural belt[J]. Acta Sedimentologica Sinica, 2025, 43(1): 288-300. doi: 10.14027/j.issn.1000-0550.2022.160
  • 埋藏过程中储层的层间差异及质量评价是开展沉积盆地油气勘探与开发高效部署的重点和难点[1]。碎屑岩储集层的形成需要经历一系列成岩作用,导致储层质量通常随深度增大而不断变差。国内外学者的大量研究表明,孔隙的形成及演化受沉积作用、成岩作用、构造作用、埋藏史、地温、异常高压及流体等多种因素的综合影响[26]

    南堡凹陷油气资源丰富,是渤海湾盆地重要的富烃凹陷。随着南堡凹陷油气勘探的不断深入,勘探开发的目标逐渐由浅层转向中深层[7]。前人对南堡凹陷古近系碎屑岩储层的研究主要集中在储集空间、孔隙结构、成岩作用、成岩演化等方面[811]。古近系的沙河街组和东营组是南堡4号构造带的重点勘探层位,其中东二段是冀东油田产能建设与升级的主要含油层系[12],沙一段也发现了工业油流,并发现埋藏相对较深的沙一段储层质量反而优于其上覆的东三段和东二段[1314],揭示了南堡凹陷古近系碎屑岩储层非均质性很强,可能受到构造运动、沉积环境的差异以及复杂的埋藏成岩过程的控制。油气勘探的目标层系日渐转向中深部,中深层低孔低渗储层广泛发育的背景下,如何探索岩石内部成分、结构差异及其影响下的储层发育规律,准确评价不同层系储层质量的差异性特征及主控因素,建立优质储层预测地质模型,成为包括南堡凹陷在内的我国东西部地区中—高勘探程度沉积盆地中深层油气勘探科技攻关的重点和难点。

    本文以南堡凹陷4号构造带古近系沙河街组一段(沙一段,Es1),东营组三段(东三段,Ed3)、东营组二段(东二段,Ed2)为研究对象,综合利用物性测试及扫描电镜、铸体薄片、高压压汞等技术,系统开展了三个层段储层岩石学、储集物性及孔隙结构特征研究,分析了层间储层质量的差异性及其影响因素,旨在深化研究区中深层储层发育规律,为我国东西部地区中—高勘探程度沉积盆地中深层油气储层预测提供地质支撑。

  • 南堡凹陷位于渤海湾盆地黄骅凹陷东北部,勘探面积1 362 km2。构造位置上北以西南庄断层—柏各庄断层为界,南以沙垒田凸起为界[15]。南堡凹陷自中生代就处于裂陷期,中新生代构造演化可分为早期的侏罗系—白垩系与晚期沙河街组—东营组的两期断陷和侏罗系、白垩系、沙河街组、东营组四幕裂陷。在沙河街组三段—二段经历强烈断裂活动,在沙一段由抬升转为断陷,断裂活动性相对减弱;东营组时期高柳断层活动性增强,到东营组末期构造抬升,地层剥蚀作用较强烈,裂陷活动逐渐消失;之后馆陶组开始进入坳陷沉积期,断裂活动性明显变弱[16]。根据构造特征,南堡凹陷可划分为南堡1-5号构造带、北堡、老爷庙、林雀、老堡、高尚堡、曹妃甸等11个次级构造区块(图1)。研究区南堡4号构造带,主体面积约220 km2,受西北方的西南庄断层、东北方的柏各庄断层及内部断层断裂带控制,形成了“北断南超”的构造格局[18]

    Figure 1.  Structural map and division of the Paleogene stratigraphic units in Nanpu Sag, Bohai Bay Basin (adapted from Zhang et al.[17])

    南堡凹陷古近系自下而上发育古近系沙河街组与东营组,其中沙河街组细分为沙一段、沙二段、沙三段、沙四段,东营组细分为东一段、东二段、东三段。研究的目的层为沙一段、东三段、东二段,其中沙一段内可识别出两个三级层序(沙一上亚段层序与沙一下亚段层序),东三段内识别出两个三级层序(东三上亚段层序与东三下亚段层序),而东二段只识别为一个三级层序。主要发育辫状河三角洲和正常(曲流河)三角洲沉积,其中水下分流河道、河口坝等沉积微相均可作为良好储集体。近年来,南堡4号构造北部在沙一段、东三段、东二段发现了较大储量规模的低渗透油藏,普遍存在油层厚度薄、产量低、丰度低、埋藏深等特点[13],规模性优质储层的预测成为制约后续油气勘探的主要问题之一。

  • 本次研究数据来源于南堡凹陷4号构造带古近系,具体包括测井及录井资料。其中,基于岩心录井资料制作砂岩普通岩石薄片295块,主要来自NP401X33、43-X4830、43-X4805等6口井;铸体岩石薄片、高压压汞37份,主要来自NP403X14、43-4950、4-68、4-80等11口井。

    利用砂岩普通薄片、铸体薄片进行储层岩石学和成岩作用研究,结合岩石学特征和储层物性测试,开展储层物性特征研究,综合利用高压压汞测试结果和扫描电镜分析开展储层孔隙结构分析。高压压汞采用GB/T 29171—2012《岩石毛管压力曲线的测定》标准,利用美国corelab CMS300和美国AutoPore Ⅳ 9500压汞仪测定。

    在常规储层岩石学、物性与成岩作用研究基础上,根据前人提出的经验公式(式1~6)定量讨论成岩强度差异[1921]

    COPL=Фo-[IGV×(100-Фo)]/(100-IGV) (1)
    CEPL=(Фo-COPL)×(CEM/IGV) (2)
    CRPI=CRP×(100-COPL)/100 (3)
    COPL-P=(COPL/Фo)×100% (4)
    CEPL-P=(CEPL/Фo)×100% (5)
    CRPI-P=(CEPL/TP)×100% (6)

    式中:COPL为压实作用减少孔隙度(%),CEPL为胶结作用减少孔隙度(%),CRPI为溶蚀作用增加孔隙度(%);Φ0为原始孔隙度(%),可以用Beard et al.[19]提出的原始孔隙度与分选系数之间的经验公式Φ0=20.91+22.9/So求得;IGV为负胶结物孔隙度(%),即原生孔隙度与胶结物体积之和(%);CEM为胶结物含量(%),CRP为溶蚀孔含量(%);COPL-P为压实作用减孔率(%),CEPL-P为胶结作用减孔率(%),CRPL-P为溶蚀作用增孔率;TP为面孔率(%)。

  • 研究区岩石类型以岩屑长石砂岩和长石岩屑砂岩为主(图2)。沙一段到东二段石英平均质量分数分别为51%、45%、37%,东二段石英含量低,其成分成熟度较东三段和沙一段低,指示了近物源的沉积环境。东二段与东三段岩屑类型及含量相似,以岩浆岩和变质岩岩屑为主,沙一段岩屑含量较低,占比为13%,以变质岩和沉积岩岩屑为主。

    Figure 2.  Ternary diagrams of rock compositions for the Paleogene clastic reservoir in the No. 4 structural belt, Nanpu Sag

    储层岩石的碎屑结构特征对储层质量起着至关重要的作用,粒度粗细、分选好坏、胶结类型、磨圆度以及颗粒间接触关系是主要的评价指标。东二段岩性以中砂岩为主,东三段以细砂岩为主,沙一段以细砂岩和不等粒砂岩为主。分选系数介于1.22~3.78,平均为1.60,随深度加深,分选逐渐变好。东二段磨圆度以次圆为主,东三段以次棱—次圆为主,沙一段以次棱、次棱—次圆为主。从接触关系上来看,自东二段到沙一段颗粒接触程度逐渐降低,反应压实作用影响变小,沙一段以点接触为主,受压实作用影响较小,东二段、东三段受压实作用影响相对较强,以点—线接触为主(表1)。

    层位岩性占比/%分选占比/%磨圆占比/%胶结类型接触关系样品/个
    细砂中砂粗砂不等粒次棱次棱—次圆次圆
    东二段2648618384714283140孔隙型点—线95
    东三段68164124240198415孔隙型点—线51
    沙一段4437456320175148孔隙型149
    注:表中均为平均值。

    Table 1.  Structure characteristics of sandstone clastics from the Paleogene clastic reservoirs in the No. 4 structural belt, Nanpu Sag

  • 南堡凹陷4号构造带古近系砂岩在整体低孔低渗的背景下,局部发育少量中孔中渗型储层。储层物性数据表明,沙一段储层孔隙度介于4.20%~23.90%,平均值为16.61%;渗透率介于0.46×10-3~96.48×10-3 μm2,平均值为9.58×10-3 μm2,孔、渗分布频率多集中在15%~20%与1×10-3~10×10-3 μm2区间(图3d,f);东三段储层孔隙度介于4.30%~28.80%,平均值为13.74%;渗透率介于0.05×10-3~20.91×10-3 μm2,平均值为2.39×10-3 μm2;东二段储层孔隙度介于0.15%~20.50%,平均值为12.96%;渗透率介于0.002×10-3~59.00×10-3 μm2,平均值为3.39×10-3 μm2。结合各层段孔隙度垂向演化(图3)发现,同一层段样品,孔隙度随埋藏深度的增加而变差,但不同层位孔隙度随埋藏深度变化下降幅度存在较大差异。沙一段埋藏深度更大但孔隙度下降不明显(图3a),而东三段与东二段孔隙度随埋藏深度变化更加明显(图3b,c)。综上,沙一段埋藏深度虽然较大,但储层孔渗分布频率与孔渗均值均优于东三段与东二段(图3d,e)。

    Figure 3.  Physical properties of the Paleogene clastic reservoirs in the No. 4 structural belt, Nanpu Sag

  • 压汞曲线可以很好地反应储集层微观孔喉特征。对研究区沙一段、东三段、东二段的孔喉特征参数分析发现,排驱压力、中值压力与物性好坏呈负相关,沙一段排驱压力平均为1.0 MPa,低于东三段的1.2 MPa和东二段的2.7 MPa。孔喉半径与孔渗呈正相关,沙一段最大孔喉半径为3.5 μm,平均孔喉半径为0.62 μm,中值孔喉半径平均为0.23 μm。均质系数与储层物性呈负相关关系,沙一段均质系数为0.2,小于其他两段。整体来看,沙一段储层孔喉特征参数较东三段、东二段好,但分选系数略高,非均质性略强,说明沙一段储集层存在连通性好的粗孔喉,同时也存在连通性差的细微孔喉(表2)。

    层位孔隙度/%渗透率/×10-3 μm2排驱压力/MPa中值压力/MPa最大孔喉半径/μm平均孔喉半径/μm中值半径/μm歪度特征结构系数分选系数均质系数样品数
    东二段11.63.22.732.11.80.330.210.233012.160.229
    东三段9.13.61.225.41.30.260.140.343062.090.2213
    沙一段9.76.91.022.43.50.620.230.047792.370.2013
    注:表中均为平均值。

    Table 2.  Pore structure parameters of the Paleogene clastic reservoir in the No. 4 structural belt, Nanpu Sag

    沙一段、东三段、东二段的压汞曲线形态可划分为Ⅰ、Ⅱ、Ⅲ三种类型(图4a~c)。Ⅰ型压汞曲线(图4中蓝色曲线)形态呈向下凹的斜线,曲线平台段不明显或发育位置很低,α角角度较小,代表分选较好、略粗歪度的毛管曲线类型。Ⅱ型压汞曲线(红色)形态可见平缓的倾斜直线段,有明显的平台段且发育位置较高,α角角度小,代表分选好、略细歪度的毛管曲线类型。Ⅲ型压汞曲线(黄色)形态为上凸的斜线状,α角角度很大,未见明显的平缓台阶段,代表分选差、细歪度的毛管曲线类型。

    Figure 4.  Capillary pressure curves of the Paleogene clastic reservoirs and the relationship between mercury increment and pore throat in the No. 4 structural belt, Nanpu Sag

    研究层段均具有上述三类曲线特征,单从形态上无法反映层间差异,于是结合孔喉分布来讨论。Ⅰ型压汞曲线孔隙度平均为18.61%,渗透率平均为71.26×10-3 μm2,排驱压力在三类曲线中最小,平均为0.055 MPa。该类压汞曲线的孔喉半径大于10 μm,孔喉组合种类多样,粒间孔、缩颈喉道、微裂缝组合是渗透率主要贡献者(图4d,g)。Ⅱ型压汞曲线孔隙度平均为11.26%,渗透率平均为8.56×10-3 μm2,排驱压力略大,平均为0.68 MPa。该类曲线渗透率主要贡献来源于分选好的粒间孔和缩颈状喉道组合(图4e,h),由于缺少微裂缝,孔喉半径小于10 μm,物性略差于Ⅰ型。Ⅲ型压汞曲线孔喉分布与Ⅱ型类似,但粒间孔和缩颈型喉道组合发育程度较低,孔喉半径多小于1 μm,物性较Ⅱ型更差。孔隙度平均为7.78%,渗透率平均为1.29×10-3 μm2,排驱压力最大,平均为3.56 MPa。渗透率主要贡献来自于粒内孔,片状、弯片状喉道组合和少量粒间孔,缩颈型喉道组合(图4f,i)。

    通过研究层段三种压汞曲线类型占比显示,沙一段Ⅰ型压汞曲线占比为43.75%,Ⅱ型压汞曲线占比为25%,Ⅲ型压汞曲线占比为31.25%;东三段压汞曲线类型占比分别为28.57%、64.29%、7.14%;东二段压汞曲线类型占比分别为36.36%、45.45%、18.18%。总体来看,沙一段既发育Ⅰ型优质孔喉也存在孔喉半径小的Ⅲ型孔喉,物性优于其他层段。

  • 沙一段沉积时期,南堡凹陷4号构造带北部的西南庄断层、柏各庄断层活动性减弱,高柳断层开始活动[2223],盆地内外地貌差异不明显,地势较平坦,水深变浅,呈现曲流河三角洲的沉积特征(图5a),在水下分流河道微相中可以识别出波纹交错层理、楔状交错层理、平行层理等层理构造。进入东营组沉积时期后,断层活动性增强,其中高柳断层活动尤为强烈[22],地貌高差增大,水体加深,早期的曲流河三角洲演变为近源特征的具有块状构造、递变层理等沉积构造的辫状河三角洲前缘沉积(图5b,c)。

    Figure 5.  Sedimentary facies column of characteristic wells in the No. 4 structural belt, Nanpu Sag

  • 经储层物性、孔隙结构研究发现,南堡凹陷4号构造带中深层碎屑岩储层中,沙一段储层条件优于东三段、东二段。针对埋藏较深的储层反而具有相对好的物性、孔喉特征这个现象,从沉积相带、成岩作用差异及其对孔隙发育影响入手,开展了储层质量的主要控制因素分析。

  • 结合砂体成因分析,认为研究区沙一段沉积时期以曲流河三角洲前缘沉积为主,东营组沉积时期主要发育辫状河三角洲前缘沉积。物性资料显示,曲流河三角洲前缘储层平均孔隙度为17.13%,平均渗透率为10.69×10-3 μm2;辫状河三角洲前缘储层平均孔隙度为14.68%,渗透率平均值为5.26×10-3 μm2,由此反应曲流河三角洲前缘储层物性整体优于辫状河三角洲前缘储层物性(图6a)。

    Figure 6.  Pore permeability cross map and microscopic characteristics of the Paleogene sedimentary microfacies in the No. 4 structural belt, Nanpu Sag

    进一步对比微相差异,沙一段曲流河三角洲前缘沉积以细粒岩屑质长石砂岩为主,由于经历长距离的搬运淘洗作用,镜下分选好,磨圆以次棱角状、次棱角—次圆状为主,石英含量高,杂基含量少(图6b,c),成分成熟度与结构成熟度均优于东营组。东三段与东二段主要发育具近源特征的辫状河三角洲前缘沉积,粒度较粗,分选较差,杂基含量高,易被后期压实(图6d,e)。因此,沙一段曲流河三角洲前缘水下分流河道微相(平均孔隙度16.70%,渗透率11.32×10-3 μm2)、分流河道间微相(平均孔隙度14.55%,渗透率8.93×10-3 μm2)物性分别优于东营组的辫状河三角洲前缘水下分流河道微相(平均孔隙度15.73%,渗透率6.04×10-3 μm2)与分流河道间微相(平均孔隙度7.60%,渗透率0.01×10-3 μm2)(图6a)。结合毛管压力曲线及对应的孔喉分布图可以发现,水下分流河道微相常对应Ⅰ型压汞曲线,粒间孔+缩颈喉道+微裂缝的孔喉组合是渗透率主要贡献者,物性较好;水下分流河道间对应Ⅱ型压汞曲线,粒间孔+缩颈状喉道为其主要孔隙喉道组合;前缘席状沙等物性较差微相对应Ⅲ型压汞曲线,多为片状、弯片状喉道组合和少量粒间孔,缩颈型喉道组合。

  • 成岩作用对碎屑岩储层非均质性起到了重要的影响作用,其中破坏性成岩作用以压实作用和胶结作用为主,不利于储层孔隙的保存,建设性成岩作用以溶蚀作用为主,是储层发育的重要影响因素之一。本次通过对南堡凹陷4号构造带古近系碎屑岩储层的压实、胶结作用减孔率以及溶蚀作用增孔率的定量计算(表3),并结合其他资料,明确不同层段的成岩作用强度差异性并对这种差异性进行解释。

    层位COPLCOPL-PCEPLCEPL-PCRPICRPI-P样品/个
    东二段16.0445.876.6719.411.7230.5448
    东三段19.6053.307.5620.222.1526.0325
    沙一段13.7038.137.8221.975.4346.4783
    注:表中均为平均值,COPL为压实作用减少孔隙度/%,COPL⁃P为压实减孔率/%;CEPL为胶结作用减少孔隙度/%,CEPL⁃P为胶结减孔率/%;CRPI为溶蚀作用增加孔隙度/%,CRPI⁃P为溶蚀增孔率/%。

    Table 3.  Quantitative statistics of diagenesis intensity for the Paleogene clastic reservoirs in the No. 4 structural belt, Nanpu Sag

  • 研究区碎屑岩储层普遍经历压实作用,直接表现为石英、长石等刚性颗粒破碎,云母等塑性矿物压实变形(图7a)。正常情况下,随着埋藏深度加深,压实作用越强,颗粒碎屑之间的接触关系变紧密。结合表3定量讨论压实作用强度差异,沙一段压实减孔率平均为38.13%,东三段为53.30%,东二段为45.87%。由此可知,东营组压实作用强度随深度加深逐渐增大,而埋藏最深的沙一段受压实作用影响反而较小,有利于孔隙保存。

    Figure 7.  Diagenetic characteristics of the Paleogene clastic reservoirs in the No. 4 structural zone, Nanpu Sag

    就压实减孔率“反常”的原因进行深入研究,总结为沉积差异与地层超压的综合影响。结合前文关于沉积相观点,沙一段主要发育曲流河三角洲前缘亚相,优质储层主要发育在水下分流河道与河口坝微相,沉积物经历长距离的搬运与淘洗作用,分选性、磨圆性、成熟度均优于东营组,杂基含量低,石英颗粒含量高(平均为51%),所以沙一段抗压实性强于东三段与东二段。

    正常情况下,随深度加深,压实作用加剧会使岩石颗粒压实、密度变大,泥岩声波时差曲线呈逐渐减小的趋势,而在欠压实环境下会形成局部超压,曲线会出现偏离正常压实趋势的异常[24]。通过对南堡凹陷4号构造带的典型井NP4-57井的泥岩声波时差特征曲线分析发现,在3 500 m以深的沙一段局部发育超压,3 500 m以浅的东三段、东二段以常压为主(图8)。沙一段超压能够有效降低正常压实对储层的影响,对原生粒间孔隙有一定的保护作用。

    Figure 8.  Characteristic curve of the acoustic time difference with depth variation of mudstone in well NP 4⁃57, No. 4 structural belt, Nanpu Sag

  • 研究区主要发育碳酸盐、硅质和黏土矿物胶结。其中沙一段以铁白云石胶结为主,还有少量白云石与方解石胶结,自生硅质与黏土矿物含量高(表4);东三段同样以铁白云石胶结为主(图7c),方解石含量升高,其余胶结物含量不超过1%;东二段以方解石胶结为主,主要胶结形式包括粒间充填和充填次生溶蚀孔(图7b),也可见方解石交代长石、岩屑颗粒,其次为铁白云石胶结以及黏土矿物胶结,局部可见铁方解石胶结,整体溶蚀作用弱。

    地层硅质/%方解石/%白云石/%铁方解石/%铁白云石/%黏土矿物/%样品/个
    东二段0.202.800.130.360.901.0049
    东三段0.191.000.080.212.550.3525
    沙一段1.000.870.3101.371.0083
    注:表中均为平均值。

    Table 4.  Paleogene clastic reservoir cement properties in the No. 4 structural zone, Nanpu Sag

    同压实减孔率类似,定量计算胶结减孔率,沙一段到东二段分别为21.97%、20.22%、19.41%(表3),三个研究层段胶结减孔率整体相差不大,沙一段储层因胶结作用损失孔隙度与东营组损失孔隙度差距在1%左右,对储层贡献较小。在研究层段中,压实减孔率平均为45.77%,胶结作用减孔率平均为20.53%,所以认为压实作用减孔是研究区主要减孔机制,胶结作用减孔是次要机制。

    碳酸盐胶结物是研究区最主要的胶结类型,碳酸盐含量与储层物性呈明显的负相关,碳酸盐含量越高,孔喉被阻塞,储层孔隙度越小(图9a~c);其次为黏土矿物胶结,高岭石主要以晶间孔的形式发育(图7d),能提供部分储集空间,且随着溶蚀作用的进行,钾长石被溶蚀产生次生高岭石沉淀[25],一定限度内较多的高岭石胶结物也间接地反应此时储层中长石颗粒的溶蚀作用较强,因此高岭石含量在一定限度内常与物性呈正相关。绿泥石包壳可以通过分隔孔隙水与石英表面接触来阻止石英胶结物在碎屑石英的表面成核,从而抑制石英次生加大使孔喉缩小[2627],有一定的保孔作用。东二段绿泥石多充填于孔隙间(图7e),阻塞孔隙喉道,导致物性下降,孔隙度与绿泥石含量呈负相关(图9i);而沙一段与东三段(图7f)绿泥石主要以包壳形式存在,能够抑制石英次生加大,并且提供一定抗压实性。在一定限度内绿泥石含量与孔隙度呈正相关(图9g,h),但随着绿泥石含量增多,也会逐渐向着阻塞孔隙的方向发展。伊利石通常呈丝缕状与毛发状(图7g),易以桥塞式阻塞于储层孔隙喉道中,研究区沙一段与东二段伊利石含量与孔隙度呈弱相关性,伊利石胶结作用影响不明显,而东三段相关性却更优(图9k),说明伊利石在东三段阻塞孔喉作用显著。

    Figure 9.  Relationship between cement content and physical properties of the Paleogene clastic reservoir in the No. 4 structural zone, Nanpu Sag

  • 溶蚀作用是改善储层物性的重要成岩作用,面孔率统计发现,沙一段原生孔隙面孔率(5%)略大于东营组(4.5%),但次生孔隙面孔率存在明显差异,沙一段、东三段、东二段分别为7%、4%、2%,应该是次生孔隙面孔率差异导致了总面孔率存在差异。粒间与粒内的溶蚀作用能够有效地改善孔喉连通性,提高储层质量。通过薄片观察与胶结物含量统计发现,沙一段、东三段以方解石等碳酸盐胶结物溶蚀、长石、岩屑溶蚀为主(图7h,i),而东二段以长石、岩屑溶蚀为主。

    通过定量计算得到溶蚀作用增加孔隙度,沙一段溶蚀作用最强,孔隙度增加5.43%,东三段其次,孔隙度增加2.15%,东二段溶蚀作用最弱,孔隙度增加1.72%。由于溶蚀增孔率与面孔率呈负相关(式6),所以东三段增孔率(26.03%)小于东二段增孔率(30.54%),沙一段溶蚀作用增孔率最高为46.47%(表3)。

    结合成岩阶段划分标准以及镜质体反射率Ro、伊蒙混层比I/S/%等数据(图10),对研究区地层成岩阶段进行划分。由于沙一段伊蒙混层比多在0~15%、15%~35%,整体达到中成岩A阶段,同时部分储层已达到中成岩B阶段,大量有机酸生成匹配连通性好的孔隙喉道,使得溶蚀作用对沙一段储层的改造最强,次生溶蚀孔发育。东三段成岩演化程度与沙一段类似,伊蒙混层比大部分集中在15%~35%,成岩阶段达到中成岩A1段,部分进入中成岩A2段,此时有机酸大量产生,溶蚀作用强,但由于东三段颗粒间压实作用极强,有机酸等流体在孔隙中运移被限制,导致对孔喉的改造不彻底,使得溶蚀增孔不明显。东二段演化程度相对较弱,伊蒙混层比大部分集中在15%~35%、35%~50%,主体达到中成岩A1阶段,但部分仍处于早成岩阶段,有机酸含量低,不利于溶蚀作用。此外,地层中发育超压不仅能保护原生孔隙,还可以抑制有机酸生成,使得烃源岩发生热演化生酸高峰的深度明显更深[28]。因此,研究区储层能够在埋藏更深的沙一段进行更强的溶蚀。

    Figure 10.  Histogram of the ratio frequency distribution for the eigen⁃mongolian mixed layer of the Paleogene clastic reservoir in the Nanpu 4 structural zone, Nanpu Sag

  • (1) 南堡凹陷4号构造带古近系不同层系砂岩储层岩性相似,但储层质量差异明显,呈随埋深增大、时代变老,储层质量反而变好的“反常”演化现象。埋藏较浅的上覆地层东二段、东三段砂岩孔隙度与渗透率数值平均值分别为12.96%和13.74%,3.39×10-3 μm2和2.39×10-3 μm2;但埋深较大的下伏地层沙一段中砂岩平均孔隙度、渗透率反而分别增加至16.61%、9.58×10-3 μm2

    (2) 研究区储层孔渗“反常”现象的主要原因是受构造演化影响的沉积作用,其次为加强的成岩演化作用。深部地层沉积作用搬运距离远、成分成熟度和结构成熟度高,其岩石抗压能力则越强,原生孔隙相对发育且保存度好。与此同时,埋深较大的下伏地层溶蚀程度增大、异常高压保孔作用,也进一步扩大了储层质量演化的“反常”现象。

    (3) 随着埋藏深度加大,研究区储层质量并不总是变差。准确区分不同层系沉积环境、沉积作用和成岩演化的差异,从原生孔隙发育程度与保存条件、成岩过程的储层贡献研究储层发育演化规律,这为构造活动型沉积盆地的储层预测和油气勘探提供了新的思路。

Reference (28)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return