Advanced Search
Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents

ZHAO Lei, SHI ZhengTao, YE Lei, XI WenFei, SU Huai. Grain Size Characteristics of Flood Sediment from the “11·03” Jinsha River Baige Barrier Lake Outburst[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1530-1540. doi: 10.14027/j.issn.1000-0550.2022.145
Citation: ZHAO Lei, SHI ZhengTao, YE Lei, XI WenFei, SU Huai. Grain Size Characteristics of Flood Sediment from the “11·03” Jinsha River Baige Barrier Lake Outburst[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1530-1540. doi: 10.14027/j.issn.1000-0550.2022.145

Grain Size Characteristics of Flood Sediment from the “11·03” Jinsha River Baige Barrier Lake Outburst

doi: 10.14027/j.issn.1000-0550.2022.145
Funds:

National Natural Science Foundation of China 41762014

  • Received Date: 2022-07-08
  • Accepted Date: 2022-11-23
  • Rev Recd Date: 2022-11-16
  • Available Online: 2022-11-23
  • Publish Date: 2024-10-10
  • Objective To study particle size characteristics of the burst flood sediment in barrier. Methods Composition of flood sediment particle samples from the “11· 03” Baige dammed lake outburst flood on the Jinsha River were analyzed, and size parameters of sediment were calculated. Changes in sediment characteristics from upstream to downstream and its causes were analyzed. Then, the granularity characteristics of this flood sediment were compared with those of other primary river basins in China, while sand particle size characteristics of ancient flood sediment were discussed. Results and Discussions The sediment types of the Baige barrier lake outburst flood were silt, sandy silt, and silty sand, with 23.65%, 64.19% and 12.16%, respectively. All particle sizes of sediment in barrier lake were less than 2.0 mm. The proportion of silt was 55.18%, sand of 32.86%, and clay of 11.97%. The silt content gradually increased, while the sand content gradually decreased from the upstream Maoding village to the downstream Shigu town. Moreover, the clay content always fluctuated around 12%. As the flow rate of the flood was reduced gradually, the ability of hydrodynamic to carry particulate matter was weakened by degrees. The clay was less affected by the hydrodynamic conditions as a result of the small particles and the electric charge, that’s why the clay had a relatively stable proportion during the flood peak process. The median particle size was 41.34 μm, and the average particle size was 31.73 μm. Both of the value decreased gradually in pace with the increasing distance from the White River barrier lake. The skewness value was 0.27, which is a positive deviation. The peak value was 0.94 and was moderately sharp. The sorting coefficient was 0.57, indicating good sorting performance. Bimodal distribution accounted for 52% of the grain size distribution curve of sediment. The main peak was high and narrow, located at 100 μm. And the secondary peak is low and wide, the peak value located at 10 μm. The single peak accounted for 48%, with a narrow peak at 50 μm. All sediment sizes in the profile were less than 2.0 mm. There were very small differences in composition. The predominant component was the sand. The silty content was slightly less than the fine sand, and the proportion of clay content was approximately 11.0%. The median value of particle size was larger than the average, both have a tendency to increase from the surface layer to the bottom. The sorting coefficient was less than 0.6, with the extremely positive deviation and the moderate peak state. Compared with other floods, the "11·03" outburst flood had a finer sediment particle size of mainly silt, followed by a smaller median and average value of particle size, with wider peak state and positive skewness, indicating better sorting performance by this flood. Conclusions The research results have important reference value for understanding the sediment characteristics in barrier lake outburst floods, burst flood hydrodynamic transport process and mechanism in the future. It will promote the development of water conservancy and hydropower projects and ecological civilization construction in river basins.
  • [1] 苏怀,史正涛,董铭,等. 金沙江“11·3”白格堰塞湖溃决洪水事件在奔子栏—石鼓段的地貌作用和沉积特征[J]. 地学前缘,2021,28(2):202-210.

    Su Huai, Shi Zhengtao, Dong Ming, et al. The geomorphic process and sedimentary characteristics of the "11·3" Baige dammed lake outburst flood event in the upper reaches of the Jinsha River from Benzilan to Shihku[J]. Earth Science Frontiers, 2021, 28(2): 202-210.
    [2] Li N, Wang R, Liu Y B, et al. Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan Earthquake from high resolution SAR images combining local connectivity and ACM[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 94: 91-101.
    [3] Carrivick J L, Jones R, Keevil G. Experimental insights on geomorphological processes within dam break outburst floods[J]. Journal of Hydrology, 2011, 408(1/2): 153-163.
    [4] 钟启明,陈小康,梅胜尧,等. 滑坡堰塞湖溃决风险与过程研究进展[J]. 水科学进展,2022,33(4):659-670.

    Zhong Qiming, Chen Xiaokang, Mei Shengyao, et al. A state of the art review on the failure risk and process of the landslide-induced dammed lake[J]. Advances in Water Science, 2022, 33(4): 659-670.
    [5] 蔡耀军,栾约生,易杜靓子,等. 堰塞体危险性快速评价指标与分级研究[J]. 人民长江,2022,53(2):35-40.

    Cai Yaojun, Luan Yuesheng, Yi Duliangzi, et al. Rapid evaluation on risk level of barrier dams and its classification[J]. Yangtze River, 2022, 53(2): 35-40.
    [6] 贾珂程,庄建琦,占洁伟,等. 基于数值模拟的戈龙布滑坡—堵江—溃决洪水地质灾害链动力学过程重建[J]. 地球科学,2023,48(9):3402-3419.

    Jia Kecheng, Zhuang Jianqi, Zhan Jiewei, et al. Reconstruction of the dynamic process of the Holocene Gelongbu landslide-blocking-flood geological disaster chain based on numerical simulation[J]. Earth Sciences, 2023, 48(9): 3402-3419.
    [7] 周招,蔡耀军,彭文祥,等. 高危堰塞湖引流槽结构形式优化试验研究[J]. 人民长江,2023,54(2):200-205,219.

    Zhou Zhao, Cai Yaojun, Peng Wenxiang, et al. Optimization research on spillway structure for high-risk barrier lakes [J]. Yangtze River, 2023, 54(2): 200-205, 219.
    [8] 刘宁,张建新,林伟,等. 汶川地震唐家山堰塞引流除险工程及溃坝洪水演进过程[J]:中国科学 E辑:技术科学,2009,39(8):1359-1366.

    Liu Ning, Zhang Jianxin, Lin Wei, et al. Draining Tangjiashan barrier lake after Wenchuan Earthquake and the flood propagation after the dam break[J]. Science in China Series E: Technological Sciences, 2009, 39(8): 1359-1366.
    [9] 蔡耀军,周招,杨兴国,等. 堰塞湖风险评估快速检测与应急抢险技术和装备研发[J]. 岩土工程学报,2022,44(7):1266-1280.

    Cai Yaojun, Zhou Zhao, Yang Xingguo, et al. Rapid detection for risk assessment, emergency disposal technology and equipment development of barrier lakes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1266-1280.
    [10] 刘建康,程尊兰,佘涛. 云南鲁甸红石岩堰塞湖溃坝风险及其影响[J]. 山地学报,2016,34(2):208-215.

    Liu Jiankang, Cheng Zunlan, She Tao. Assessment of dam failure and secondary hazards for Hongshiyan dammed lake caused by Ludian earthquake in Niulanjiang River[J]. Journal of Mountain Science, 2016, 34(2): 208-215.
    [11] 周招,蔡耀军,李建清,等. 堰塞湖柔性防护措施控溃削峰技术研究[J]. 人民长江,2023,54(1):220-226.

    Zhou Zhao, Cai Yaojun, Li Jianqing, et al. Study on outburst control and flood peak shaving technology by flexible protective measures during dam-break of barrier lakes [J]. Yangtze River, 2023, 54(1): 220-226.
    [12] 徐轶,蔡耀军,任翔,等. 堰塞湖应急处置方案评价方法及决策模型研究[J]. 水利水电快报,2021,42(12):107-113.

    Xu Yi, Cai Yaojun, Ren Xiang, et al. Research on evaluation method and decision-making model of emergency disposal schemes for barrier lakes[J]. Express Water Resources & Hydropower Information, 2021, 42(12): 107-113.
    [13] 程尊兰,崔鹏,李泳,等. 滑坡、泥石流堰塞湖灾害主要的成灾特点与减灾对策[J]. 山地学报,2008,26(6):733-738.

    Cheng Zunlan, Cui Peng, Li Yong, et al. Major disasters and countermeasures of dammed lakes from landslides and debris flows[J]. Journal of Mountain Science, 2008, 26(6): 733-738.
    [14] 牛志攀,陈昆廷,张新华,等. 滑坡堰塞坝坝体溃决机理与溃决实验研究综述[J]. 西南民族大学学报(自然科学版),2019,45(6):646-653.

    Niu Zhipan, Chen Kunting, Zhang Xinhua, et al. Review of relevant characteristics of landslide dams and dam-break experimental studies[J]. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(6): 646-653.
    [15] 王雄世,张建新. 基于经验公式的堰塞湖最大溃决洪水及演进分析[J]. 水文,2010,30(1):56-58.

    Wang Xiongshi, Zhang Jianxin. Analysis of maximum dam-break flood and its routing of barrier lake based on empirical formula[J]. Journal of China Hydrology, 2010, 30(1): 56-58.
    [16] 王双敬,李守义,周兴波,等. 基于FREAD溃坝体系的堰塞湖溃决过程反演分析[J]. 水利水电技术,2017,48(9):148-154.

    Wang Shuangjing, Li Shouyi, Zhou Xingbo, et al. FREAD's dam-break system-based backanalysis on failure process of landslide dam[J]. Water Resources and Hydropower Engineering, 2017, 48(9): 148-154.
    [17] 张永双,赵希涛,胡道功. 滇西北德钦地区金沙江奔子栏古堰塞湖的发现及意义[J]. 地质通报,2007,26(8):970-975.

    Zhang Yongshuang, Zhao Xitao, Hu Daogong. An ancient landslide-dammed lake found in the Jinsha River valley near Benzilan, Dêqên, Yunnan, China and its significance[J]. Geological Bulletin of China, 2007, 26(8): 970-975.
    [18] 蒙丽,张自森,王书兵,等. 四川汉源大树剖面沉积物年代与粒度特征初步研究[J]. 湖泊科学,2010,22(6):957-964.

    Meng Li, Zhang Zisen, Wang Shubing, et al. Ages and grain-size characteristics of Dashu sediment section in Hanyuan county, Sichuan province[J]. Journal of Lake Sciences, 2010, 22(6): 957-964.
    [19] 陈剑,崔之久. 金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积体的发现及其环境与灾害意义[J]. 沉积学报,2015,33(2):275-284.

    Chen Jian, Cui Zhijiu. Discovery of outburst deposits induced by the Xuelongnang paleolandslide-dammed lake in the upper Jinsha River, China and its environmental and hazard significance[J]. Acta Sedimentologica Sinica, 2015, 33(2): 275-284.
    [20] 马俊学,陈剑,崔之久. 岷江上游叠溪混杂堆积体的沉积特征及其成因分析[J]. 沉积学报,2019,37(1):72-85.

    Ma Junxue, Chen Jian, Cui Zhijiu. Sedimentary characteristics and causes of formation of diamicts in Diexi, upper Minjiang River, China[J]. Acta Sedimentologica Sinica, 2019, 37(1): 72-85.
    [21] 卢连战,史正涛. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理,2010,35(6):54-60.

    Lu Lianzhan, Shi Zhengtao. Analysis for sediment grain size parameters of connotations and calculation method[J]. Environmental Science and Management, 2010, 35(6): 54-60.
    [22] 刘红. 长江口表层沉积物分布特性研究[D]. 上海:华东师范大学,2006.

    Liu Hong. Study on the characteristics of surface sediment distribution in Changjiang estuary[D]. Shanghai: East China Normal University, 2006.
    [23] 谢悦波,王文辉,王平. 古洪水平流沉积粒度特征[J]. 水文,2000,20(4):18-20.

    Xie Yuebo, Wang Wenhui, Wang Ping. Characteristics of grain size for palaeoflood slackwater deposits[J]. Journal of China Hydrology, 2000, 20(4): 18-20.
    [24] Liu D Q, Bertrand S, Weltje G J. An empirical method to predict sediment grain size from inorganic geochemical measurements[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(7): 3690-3704.
    [25] 朱玲玲,李圣伟,董炳江,等. 白格堰塞湖对金沙江水沙及梯级水库运行的影响[J]. 湖泊科学,2020,32(4):1165-1176.

    Zhu Lingling, Li Shengwei, Dong Bingjiang, et al. Effect of Baige landslide-dammed lake on runoff and sediment of the Jinsha River and operation of cascade reservoirs[J]. Journal of Lake Sciences, 2020, 32(4): 1165-1176.
    [26] 邓建辉,高云建,余志球,等. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术,2019,51(1):9-16.

    Deng Jianhui, Gao Yunjian, Yu Zhiqiu, et al. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Advanced Engineering Sciences, 2019, 51(1): 9-16.
    [27] 蔡耀军,杨兴国,张利民,等. 堰塞湖风险评估快速检测与应急抢险技术和装备研发研究构想与成果展望[J]. 工程科学与技术,2020,52(2):10-18.

    Cai Yaojun, Yang Xingguo, Zhang Limin, et al. Research framework and anticipated results of the rapid detection of risk assessment, research and development of emergency disposal technology and equipment of dammed lakes[J]. Advanced Engineering Sciences, 2020, 52(2): 10-18.
    [28] 冯文凯,张国强,白慧林,等. 金沙江“10·11”白格特大型滑坡形成机制及发展趋势初步分析[J]. 工程地质学报,2019,27(2):415-425.

    Feng Wenkai, Zhang Guoqiang, Bai Huilin, et al. A preliminary analysis of the formation mechanism and development tendency of the huge Baige landslide in Jinsha River on October 11, 2018[J]. Journal of Engineering Geology, 2019, 27(2): 415-425.
    [29] 陈祖煜,胡贵良,张强,等. 金沙江梯级水电站在“11.03”白格堰塞湖应急处置中的减灾分析[J]. 水力发电,2020,46(8):59-63.

    Chen Zuyu, Hu Guiliang, Zhang Qiang, et al. Analysis on disaster reduction of cascade hydropower stations of Jinsha River in emergency response of "11.03" Baige barrier lake[J]. Water Power, 2020, 46(8): 59-63.
    [30] 蔡耀军,栾约生,杨启贵,等. 金沙江白格堰塞体结构形态与溃决特征研究[J]. 人民长江,2019,50(3):15-22.

    Cai Yaojun, Luan Yuesheng, Yang Qigui, et al. Study on structural morphology and dam-break characteristics of Baige barrier dam on Jinsha River[J]. Yangtze River, 2019, 50(3): 15-22.
    [31] 周兴波,周建平,杜效鹄,等. 金沙江白格堰塞湖应急抢险与处置技术[J]. 中国科学:技术科学,2022,52(2):343-356.

    Zhou Xingbo, Zhou Jianping, Du Xiaohu, et al. Emergency rescue and disposal technology for Baige barrier lake on the Jinsha River, China[J]. Scientia Sinica Technologica2022, 52(2): 343-356.
    [32] 蔡耀军,金兴平,杨启贵,等. 金沙江白格堰塞湖风险统合管理与应急处置[M]. 武汉:长江出版社,2020:1-252.

    Cai Yaojun, Jin Xingping, Yang Qigui, et al. Integrated risk management and emergency disposal of Baige barrier lake in Jinsha River[M]. Wuhan: Changjiang Press, 2020: 1-252.
    [33] 蔡耀军,栾约生,彭文祥,等. 堰塞湖典型案例分析:成因、致灾、应急处置[M]. 武汉:长江出版社,2021:1-262.

    Cai Yaojun, Luan Yuesheng, Peng Wenxiang, et al. Analysis on typical cases of barrier lake: Cause, disaster and emergency response[M]. Wuhan: Changjiang Press, 2021: 1-262.
    [34] 叶蕾. 金沙江“11.13”白格堰塞湖洪水沉积物特征及其形成机制研究[D]. 昆明:云南师范大学,2021.

    Ye Lei. Jinsha River "11.13" Baige barrier lake flood sediment characteristics and formation mechanism research[D]. Kunming: Yunnan Normal University, 2021.
    [35] 王剑涛,薛宝臣,赵万青,等. 苏洼龙水电站遭遇白格堰塞湖灾害应对措施[J]. 水电与抽水蓄能,2020,6(2):20-25.

    Wang Jiantao, Xue Baochen, Zhao Wanqing, et al. Emergency measures in Suwalong hydropower station for dealing with the barrier lakes formed in Baige[J]. Hydropower and Pumped Storage, 2020, 6(2): 20-25.
    [36] 余志球,邓建辉,高云建,等. 金沙江白格滑坡及堰塞湖洪水灾害分析[J]. 防灾减灾工程学报,2020,40(2):286-292.

    Yu Zhiqiu, Deng Jianhui, Gao Yunjian, et al. Analysis on Baige landslide and barrier lake flood disasters in Jinsha River[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(2): 286-292.
    [37] 陈祖煜,陈生水,王琳,等. 金沙江上游“11.03”白格堰塞湖溃决洪水反演分析[J]. 中国科学:技术科学,2020,50(6):763-774.

    Chen Zuyu, Chen Shengshui, Wang Lin, et al. Back analysis of the breach flood of the "11.03" Baige barrier lake at the upper Jinsha River[J]. Scientia Sinica Technologica, 2020, 50(6): 763-774.
    [38] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
    [39] Link A G. Textural classification of sediments[J].Sedimentology, 1966, 7(3): 249-254.
    [40] 王东辉,陈建强,李明辉. 昆明盆地第四纪沉积物粒度特征及沉积环境分析[J]. 资源与产业,2009,11(5):126-130.

    Wang Donghui, Chen Jianqiang, Li Minghui. Grain size and sedimentary environment of the Quaternary sediments in Kunming Basin[J]. Resources & Industries, 2009, 11(5): 126-130.
    [41] 郭永强,黄春长,庞奖励,等. 汉江上游现代大洪水滞流沉积物的粒度分布特征研究[J]. 地理科学,2014,34(11):1369-1376.

    Guo Yongqiang, Huang Chunchang, Pang Jiangli, et al. Grain size characteristics of modern flood slackwater deposits along the upper Hanjiang River[J]. Scientia Geographica Sinica, 2014, 34(11): 1369-1376.
    [42] 周慧,吴立,朱诚,等. 长江中游荆州―公安段洪水滞流沉积物特征分析[J]. 地层学杂志,2020,44(1):56-63.

    Zhou Hui, Wu Li, Zhu Cheng, et al. Feature of the great flood slackwater deposits in the Jingzhou-Gong’an section of middle reaches of the Yangtze River[J]. Journal of Stratigraphy, 2020, 44(1): 56-63.
    [43] 吴紫阳,戴雪荣,师育新,等. 姚江流域现代特大洪水沉积物粒度及磁性参数特征[J]. 湖北农业科学,2017,56(2):225-234.

    Wu Ziyang, Dai Xuerong, Shi Yuxin, et al. Grain-size characteristics and magnetic properties of flood deposits from the lower Yaojiang River[J]. Hubei Agricultural Sciences, 2017, 56(2): 225-234.
    [44] 张天文,王建力,强杨,等. 渝西北小流域平原洪水沉积物粒度特征及环境意义[J]. 西南大学学报(自然科学版),2010,32(11):111-117.

    Zhang Tianwen, Wang Jianli, Qiang Yang, et al. Grain size characteristics of flood sediments of small alluvial plains in northwestern Chongqing and their environmental significance[J]. Journal of Southwest University (Natural Science Edition), 2010, 32(11): 111-117.
    [45] 史兴民,师静,万正耀. 泾河近代洪水沉积物粒度特征分析[J]. 中国沙漠,2009,29(2):359-364.

    Shi Xingmin, Shi Jing, Wan Zhengyao. Analysis on the grain-size characteristics of recent floor sediments of Jinghe River[J]. Journal of Desert Research, 2009, 29(2): 359-364.
    [46] 史兴民,万正耀,师静. 渭河咸阳段近代洪水沉积物粒度特征分析[J]. 水土保持通报,2008,28(3):71-76.

    Shi Xingmin, Wan Zhengyao, Shi Jing. Grain-size characteristics of recent flood sediment of Weihe River in Xianyang section[J]. Bulletin of Soil and Water Conservation, 2008, 28(3): 71-76.
    [47] 郑树伟,庞奖励,黄春长,等. 汉江上游晏家棚段古洪水沉积物粒度空间分布特征[J]. 地理科学进展,2014,33(6):799-806.

    Zheng Shuwei, Pang Jiangli, Huang Chunchang, et al. Spatial variation of palaeoflood deposits at Yanjiapeng site in the upper reach of the Han River[J]. Progress in Geography, 2014, 33(6): 799-806.
    [48] 周森,周银军,闫霞,等. 澜沧江源河床沉积物分布特征:以扎曲囊谦河段为例[J]. 泥沙研究,2019,44(6):46-52.

    Zhou Sen, Zhou Yinjun, Yan Xia, et al. Sediment distribution on Nangqian reach in the source area of Lancang River: A case study of Nangqian reach[J]. Journal of Sediment Research, 2019, 44(6): 46-52.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(4)

Article Metrics

Article views(72) PDF downloads(19) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-07-08
  • Revised:  2022-11-16
  • Accepted:  2022-11-23
  • Published:  2024-10-10

Grain Size Characteristics of Flood Sediment from the “11·03” Jinsha River Baige Barrier Lake Outburst

doi: 10.14027/j.issn.1000-0550.2022.145
Funds:

National Natural Science Foundation of China 41762014

Abstract: Objective To study particle size characteristics of the burst flood sediment in barrier. Methods Composition of flood sediment particle samples from the “11· 03” Baige dammed lake outburst flood on the Jinsha River were analyzed, and size parameters of sediment were calculated. Changes in sediment characteristics from upstream to downstream and its causes were analyzed. Then, the granularity characteristics of this flood sediment were compared with those of other primary river basins in China, while sand particle size characteristics of ancient flood sediment were discussed. Results and Discussions The sediment types of the Baige barrier lake outburst flood were silt, sandy silt, and silty sand, with 23.65%, 64.19% and 12.16%, respectively. All particle sizes of sediment in barrier lake were less than 2.0 mm. The proportion of silt was 55.18%, sand of 32.86%, and clay of 11.97%. The silt content gradually increased, while the sand content gradually decreased from the upstream Maoding village to the downstream Shigu town. Moreover, the clay content always fluctuated around 12%. As the flow rate of the flood was reduced gradually, the ability of hydrodynamic to carry particulate matter was weakened by degrees. The clay was less affected by the hydrodynamic conditions as a result of the small particles and the electric charge, that’s why the clay had a relatively stable proportion during the flood peak process. The median particle size was 41.34 μm, and the average particle size was 31.73 μm. Both of the value decreased gradually in pace with the increasing distance from the White River barrier lake. The skewness value was 0.27, which is a positive deviation. The peak value was 0.94 and was moderately sharp. The sorting coefficient was 0.57, indicating good sorting performance. Bimodal distribution accounted for 52% of the grain size distribution curve of sediment. The main peak was high and narrow, located at 100 μm. And the secondary peak is low and wide, the peak value located at 10 μm. The single peak accounted for 48%, with a narrow peak at 50 μm. All sediment sizes in the profile were less than 2.0 mm. There were very small differences in composition. The predominant component was the sand. The silty content was slightly less than the fine sand, and the proportion of clay content was approximately 11.0%. The median value of particle size was larger than the average, both have a tendency to increase from the surface layer to the bottom. The sorting coefficient was less than 0.6, with the extremely positive deviation and the moderate peak state. Compared with other floods, the "11·03" outburst flood had a finer sediment particle size of mainly silt, followed by a smaller median and average value of particle size, with wider peak state and positive skewness, indicating better sorting performance by this flood. Conclusions The research results have important reference value for understanding the sediment characteristics in barrier lake outburst floods, burst flood hydrodynamic transport process and mechanism in the future. It will promote the development of water conservancy and hydropower projects and ecological civilization construction in river basins.

ZHAO Lei, SHI ZhengTao, YE Lei, XI WenFei, SU Huai. Grain Size Characteristics of Flood Sediment from the “11·03” Jinsha River Baige Barrier Lake Outburst[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1530-1540. doi: 10.14027/j.issn.1000-0550.2022.145
Citation: ZHAO Lei, SHI ZhengTao, YE Lei, XI WenFei, SU Huai. Grain Size Characteristics of Flood Sediment from the “11·03” Jinsha River Baige Barrier Lake Outburst[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1530-1540. doi: 10.14027/j.issn.1000-0550.2022.145
  • 近年来,堰塞湖溃决洪水事件及其灾害效应引起了学术界的广泛关注[16],堰塞湖溃决洪水的研究主要集中在应急监测[79]、应急工程防治[1013]、洪水过程反演[1416]、风险评估等方面。但有关堰塞湖洪水泥沙沉积物特征主要集中于研究古堰塞湖的沉积特征,如:张永双等[17]、蒙丽等[18]、陈剑等[19]及马俊学等[20]分别对金沙江奔子栏古堰塞湖、汉源大树摆鱼古堰塞湖、金沙江上游雪隆囊古堰塞湖和岷江上游叠溪古堰塞湖的沉积物进行了沉积学特征研究,并且分析了相关的沉积环境,但对现代堰塞湖洪水沉积物粒度特征的研究较少。洪水沉积物的粒度特征对研究溃决洪水水动力搬运过程[21]、搬运机制、水利水电工程及流域生态文明建设都具有重要的应用价值[2224]

    2018年10月10日和11月3日,西藏昌都市江达县波罗乡白格村滑坡堰塞湖及其溃决洪水灾害事件发生后,关于白格堰塞湖滑坡及其洪水灾害的应急处置和减灾等已开展了大量研究工作[2533],对堰塞湖泥沙运动、输移及沉积特征方面仅有零星研究[1,34]。由于本次堰塞湖洪水发生在干季,其规模超万年一遇,洪水泥沙均来自干流,与雨季来自干支流的洪水泥沙有很大的不同,与其他堰塞湖洪水泥沙相比具有十分显著的特征。因此,系统研究溃决洪水泥沙粒度组成特征,对于认识和理解金沙江溃决洪水水动力、水文过程、场次洪水输沙量、泥沙沿程变化及正常年份河流输沙量等都具有十分重要的参考价值和科学意义。

  • 2018年10月10日,西藏自治区昌都市达县波罗乡白格村发生山体滑坡,堵塞金沙江,形成“10·10”白格堰塞湖[35]。12日17时15分开始自然过流,13日0时45分堰塞体上游水位达到最高值2 932.69 m,对应蓄水量2.9×108 m3。13日1时过流增加,6时过流流量达到最大值10 000 m3/s,此后开始消退,13日14时30分基本退至基流[34]。2018年11月3日该处再次发生滑坡,约200×104 m3失稳岩体堵塞了“10·10”堰塞湖形成的排泄流道,再次堵江形成“11·03”堰塞湖[36] 图1a),新形成的堰塞体体积为(260~300)×104 m3[37]。按照堰塞湖坝高估算,其蓄水量将达到7.9×108 m3[37]。如果自然溃决,最大洪峰流量将达5×104 m3/s,会对下游造成巨大的生命财产损失和风险。经过专家研判,采用人工开挖,降低湖水位。11月11日堰塞湖引流槽完工,12日堰塞湖底板开始过水,12日18时堰塞湖决口,至13日16时泄洪洪峰流量达最大3.1×104 m3/s,实际库容下降至5 790×104 m3[1]。堰塞湖溃决洪水洪峰流量和涨幅如图2a,溃决洪水于14日5时左右进入云南境内,于9时20分到达奔子栏水文站,13时出现1.57×104 m3/s洪峰流量,属超万年一遇洪水,水位累积涨幅超过20 m。14日15时洪水到达塔城站,20时10分洪峰流量为1.22×104 m3/s,水位累积上涨12.7 m,规模减小为千年一遇洪水。14日21时洪水到达石鼓水文站,直到15日8时40分石鼓水文站才出现洪峰流量7.17×103 m3/s,水位累积涨幅8.3 m,已属常遇洪水。15日3时洪水到达梨园水库洪水过程结束。“11·03”洪水流量沿程变化很大(图2a)。将洪水区间实测洪峰流量和距离作相关分析,得到洪峰流量和距离呈线性相关,不到600 km距离洪峰流量减少了约70%,即洪水沿江运动100 km流量减少约4 500 m3/s。不同河段有差别,巴塘站到奔子栏流量每百千米仅减少2 700 m3/s;奔子栏至塔城流量每百千米减少3 500 m3/s,塔城至石鼓流量每百千米减少约6 000 m3/s。堰塞湖溃决洪水平均流速如图2b,其中茂顶村—奔子栏段为4.60 m/s,奔子栏—马厂村段为4.16 m/s,马厂村—石鼓渡口段为1.57 m/s。

    Figure 1.  Overview of the study area

    Figure 2.  Chart of peak discharge water level and mean velocity of the outburst flood

    “11·03”堰塞湖洪水发生后,对云南境内的羊拉乡至石鼓段堰塞湖决洪水泥沙沉积物进行了详细调查和样品采集(图1b)。此段金沙江河谷根据地形特征以塔城为界分为明显两部分,塔城以上河段是以“V”型河谷为主的峡谷段,河流宽度大多不超过200 m;塔城以下为宽谷段,由串珠状盆地组成,以巨甸盆地最大,其面积达6 km2,河流宽400~600 m[1]。洪水泥沙分布与地形密切相关,塔城以上泥沙零星分布在金沙江沿岸残存阶地和边滩上,为点状洪水泥沙沉积段。泥沙沉积厚度大多介于10~20 cm,仅在奔子栏水文站泥沙厚度达到近1.0 m,是本段最厚的泥沙沉积。塔城以下至石鼓段泥沙沉积在金沙江沿岸的低阶地上,呈连片分布,泥沙厚度大多介于20~40 cm,个别达到80 cm。

  • 2019年1月和2月对金沙江云南段的羊拉乡茂顶村至石鼓镇段洪水沉积物进行了详细调查和系统采样(图1b),共采集洪水泥沙样品148个。塔城以上的金沙江沿岸点状洪水泥沙沉积段,每处采集5个不同位置表面的泥沙样品;塔城至石鼓段连片泥沙分布区,根据泥沙分布的厚度和道路通达情况,兼顾洪水断面测量,随机采集泥沙沉积表面样品;在奔子栏水文站观测楼(高于金沙江正常水位13.0 m)旁边对厚度近1.0 m的泥沙沉积剖面进行了系统采集。

    泥沙沉积物样品粒量测使用英国Malvern公司生产的Malvern Mastersizer 2000激光粒度仪,该粒度仪粒度测量范围为0.02~2 000 μm,粒度测试的具体流程参考文献[37]。

  • 根据Folk et al.[38]粒度参数计算方法,计算出泥沙的平均粒度、偏度、峰度和分选系数。计算公式如下:

    MZ=Φ16+Φ50+Φ843 (1)
    Sk=Φ16+Φ84-2Φ502(Φ84-Φ16)+Φ5+Φ95-2Φ502(Φ95-Φ5) (2)
    Kg=Φ95-Φ52.44(Φ75-Φ25) (3)
    δ= Φ84-Φ164+Φ95-Φ56.6 (4)

    式中:MzSkKgδ分别为粒度平均粒径、偏度、峰度及分选系数;Φa为泥沙沉积物累计粒径组成所对应的粒径。

  • 为了分析洪水的沉积物粒度整体特征,使用Link[39]制定的沉积物分类图对研究区采集的148个样品进行投点分析(图3)。由图3可知,溃决洪水沉积物是由粉砂质砂、粉砂和砂质粉砂组成,其中砂质粉砂含量最多,占64.19%;粉砂次之,占23.65%;粉砂质砂最少,占12.16%。

    Figure 3.  “11·03” barrier lake outburst flood sediment link classification

  • 粒级划分使用尤登—温德华氏(Udden-Wentworth)标准[30]进行:黏土(<0.004 mm)、粉砂(0.004~0.063 mm)、砂(0.063~2.000 mm)。采用Folk et al.[38]的方法进行粒度参数分析并采用相应的分级标准(表1)。

    分选程度δ偏度等级Sk峰态等级Kg
    很好<0.35极负偏-1.00~0.30很平坦<0.67
    0.35~0.50负偏-0.30~0.10平坦0.67~0.90
    较好0.50~0.71近对称-0.10~0.10中等尖锐0.90~1.11
    中等0.71~1.00正偏0.10~0.30尖锐1.11~1.56
    较差1.00~2.00极正偏0.30~1.00很尖锐1.56~3.00
    2.00~4.00非常尖锐>3.00
    极差>4.00

    Table 1.  Grain size grade parameters

    洪水沉积物组成及粒度参数结果见表2,图4为洪水泥沙粒度频率分布曲线和累积频率曲线。中值粒径(Md)是泥沙含量累积50%所对应的粒径值,能够反映泥沙粗细的重要指标。平均粒径(Mz)反映了粒径分布的集中和总体趋势,也是衡量沉积物总体粗细的重要指标。总体来看,所有泥沙粒径均小于2.0 mm,0.5 mm以下粒径占95%以上,其中黏土含量在15%以下,粉砂含量最多为55.18%,砂含量小于35%。粒度频率分布曲线形态呈现双峰和单峰,正偏态,双峰在10 μm处出现一个小峰,在100 μm处出现主峰;单峰峰值为50 μm。泥沙中值粒径均值为41.34 μm,平均粒径为31.73 μm;峰态均值为0.94,为中等尖锐;分选系数均值为0.57,分选性较好。

    采样点黏土粉砂平均粒径中值粒径偏度峰态分选系数
    <0.004 mm0.004~0.063 mm0.0063~2.000 mmMz/μmMd/μmSkKgδ
    茂顶村11.7642.5245.7237.5853.910.350.830.49
    取知通北10.7746.0443.1937.7949.920.280.960.53
    奔子栏北10.8044.1945.0138.6453.230.310.850.51
    奔子栏10.0244.8545.1439.6154.210.290.860.55
    夺通村12.9647.5739.4731.9841.000.250.830.50
    江东村13.0952.3934.5235.3252.470.430.880.59
    巴东公路8.3257.9633.7234.6041.300.260.980.61
    模下爬村12.7754.0433.1935.3048.270.290.910.55
    金核村15.0155.8129.1733.3443.970.240.890.54
    德良大村13.6857.1029.2333.4742.830.270.880.55
    塔城10.1960.7529.0629.9435.510.251.030.62
    马厂村11.9559.2028.8528.8734.040.231.020.58
    马厂对面14.1256.8629.0225.6430.920.220.880.58
    巨甸江边10.9961.9327.0826.0430.640.221.030.62
    木司扎10.2565.6824.0724.8029.590.251.100.62
    塘上村14.4163.3022.2923.2733.950.230.980.59
    石鼓镇12.3767.8019.8323.1927.050.221.030.65
    平均值11.9755.1832.8631.7341.340.270.940.57
    最大值15.0167.8045.7239.6154.210.431.100.65
    最小值8.3242.5219.8323.1927.050.220.830.49

    Table 2.  Sediment composition and grain size parameters of barrier lake outburst flood

    Figure 4.  Grain size frequency distribution curve (a) and cumulative frequency curve (b) of the sediment in “11·03” barrier lake outburst flood

  • 图5可知,洪水沉积物颗粒主要由粉砂、砂组成。粉砂占比最大,平均值为55.18%,最大值位于石鼓镇,为67.80%,最小值位于茂顶村,为42.52%;砂所占比例从上游至下游逐渐减少,平均值为28.58%,最大值位于茂顶村,为45.72%,最小值位于石鼓镇,为19.83%;黏土含量最少,平均值为11.97%,最大值位于金核村,为15.01%,最小值位于巴东公路,为8.32%。

    Figure 5.  “11·03” barrier lake outburst flood sediment composition along the river

    白格堰塞湖从上游茂顶村至下游石鼓镇,粉砂含量逐渐增多,砂的含量逐渐变少,而黏土含量在12%上下波动,其主要原因是洪水的流速逐渐减小,水动力搬运颗粒物的能力逐渐变弱;而黏土由于颗粒细小,且带有电荷,受水动力条件影响较小,因此在洪峰过程中保持相对稳定的比例。

  • 洪水泥沙粒度参数沿江变化如表2图6所示。沿江沉积物的中值粒径介于27.05~54.21 μm,平均值为41.34 μm(图6a),最高值在上游茂顶村,最低点在石鼓镇。中值粒径从茂顶村沿江而下整体呈现逐渐变细的趋势。

    Figure 6.  Variation of sediment particle size parameters from "11·03" outburst flood along the river

    本次洪水的平均粒径整体介于23.19~39.61 μm,平均值为31.73 μm(图6b),其中最高值在上游茂顶村,最低值在下游石鼓镇,平均粒径与中值粒径的变化趋势一致。

    图6c所示,偏度、峰度、分选系数处于波动变化。偏度(Sk)表示沉积物粒度频率分布的不对称性,并表明中位数与平均值的相对位置,用这一参数能够反映介质类型及搬运能力的强弱[21]。样品的偏度介于0.22~0.43,平均值为0.27,属于正偏、极正偏。

    峰态(Kg)用于测量泥沙频率分布曲线峰形的宽度和陡度[21] 。洪水泥沙峰度值介于0.83~1.10,平均值为0.94,峰度以中峰度为主。金沙江粒度频率分布曲线(图4)双峰型,占52%,主要分布在塔城以上的峡谷区,主峰较高,峰值约为100 μm,次峰值约为10 μm,属于典型的河流型洪水沉积模式[34]。单峰出现在宽谷区,占48%,峰态较窄,峰值在50 μm左右,说明宽谷区水动力相对较弱,并且经过较长距离的搬运沉积[40]

    分选系数(δ)以标准偏差或二阶矩表示,用于区分沉积物粒度均匀性[22]。洪水泥沙分选系数介于0.49~0.65,平均值为0.57,属分选好、较好级别。分选系数的计算结果与偏度反映的情况一致。

  • 以奔子栏水文站剖面为例,分析泥沙沉积物的剖面特征(表3)。泥沙沉积剖面的所有泥沙粒径均小于2.0 mm,颗粒大小从底到顶差别很小,以砂占优,粉砂含量略小于砂,黏土含量大多在11.0%左右,中值粒径和平均粒径由表层向底部有增大的趋势,中值粒径值大于其平均粒径值,分选系数均小于0.6。以上剖面泥沙组成和粒度参数变化无规律性,说明沉积物泥沙是在较短时间内形成,且处于同一种水动力条件下。

    剖面采样深度/cm粒级粒度参数
    黏土粉砂中值粒径平均粒径偏度峰度分选系数
    <0.004 mm0.004~0.063 mm0.063~2.000 mmMd/μmΜz/μmSkKgδ
    0~1010.1347.3242.5575.3253.220.420.970.52
    10~209.5538.2152.2458.7141.720.330.860.49
    20~3012.6643.1044.2472.0548.660.420.900.50
    30~4010.7338.7350.5463.2344.140.380.910.52
    40~5011.1443.0345.8473.4948.280.420.850.47
    50~6011.9536.9751.0825.8725.830.300.820.53
    60~7016.6855.6227.7031.9129.040.130.780.60

    Table 3.  Sediment profile composition and grain size parameters of the Benzilan hydrological station

  • “11·03”溃决洪水与近现代洪水及古洪水沉积物粒度参数特征对比显示(表4):黏土含量最大值在汉江上游涝季古洪水,为25.57%,最小值在汉江上游现代洪水,为6.60%;粉砂含量最大值在渭河咸阳段近代洪水,为82%,最小值在嘉陵江龙凤溪,为46%;砂含量最大值在嘉陵江龙凤溪,为42.98%,最小值在长江荆州—公安段,为10.49%;中值粒径最大值在长江荆州—公安段,为60.72 μm,最小值在渭河咸阳段近代洪水,为20.09 μm;平均粒径最大值在汉江上游现代洪水,为51.25 μm,最小值在“11·03”洪水宽谷段,为15.6 μm;偏度最大值在汉江上游现代洪水,为0.52,最小值在泾河近代洪水,为-0.22;峰态最大值在泾河近代洪水,为5.01,最小值在“11·03”洪水峡谷段,为0.89;分选系数最大值在甬江支流姚江现代洪水,为2.13,最小值在“11·03”洪水峡谷段,为0.54。以上分析表明,黏土含量最大值不是洪峰流量最小的洪水,最小值也不是洪峰流量最大的洪水,砂含量和平均粒径最大值不是洪峰流量最大的洪水,最小值也不是洪峰流量最小的洪水,中值粒径的最大值和最小值均是洪峰流量最大和最小的洪水,偏度值也不是都大于0,峰度值和分选系数也不与洪峰流量相对应。综上所述,洪峰流量与沉积物粒度组分及粒度参数并没有十分必然的联系。

    洪水沉积物洪峰流量/(m3/s)粒级粒度参数
    黏土粉砂中值粒径平均粒径偏度峰度分选系数
    <0.004 mm0.004~0.063 mm0.063~2.000 mmMd/μmΜz/μmSkKgδ
    “11·03”洪水峡谷段(超万年一遇)15 70011.9250.2537.8448.1137.560.300.890.54
    “11·03”洪水宽谷段(千年一遇)12 20012.0462.2225.7431.6725.960.231.010.61
    汉江上游现代洪水[41]21 0006.6060.1033.3038.5051.200.521.071.15
    长江荆州—公安段[42]50 0009.2780.2410.4960.7245.070.331.470.64
    甬江支流姚江现代洪水[43]23.2758.7218.0135.2529.190.131.022.13
    嘉陵江龙凤溪[44]11.0246.0042.9848.0351.250.351.221.35
    泾河近代洪水[45]19 6009.3065.2025.5043.00-0.225.011.80
    渭河咸阳段近代洪水[46]6 0506.7882.0011.2229.0930.30-0.172.451.47
    汉江上游河流涝季古洪水[47]31 00025.5746.8227.6144.100.291.081.06
    最大值50 00025.5782.0042.9860.7251.250.525.012.13
    最小值6 0506.6046.0010.4929.0925.96-0.220.890.54

    Table 4.  Comparison of sediment from “11·03”outburst lake with modern flood and palaeoflood sediment

    “11·03”溃决洪水沉积物与近现代洪水及古洪水沉积物[4147]特征差异不大,但也有其显著特点。“11·03”溃决洪水沉积物粒级主要由粉砂组成,含量大于50%,中值粒径和平均粒径较小,分选性较好,峰度值更小,峰态更宽,偏度为正偏和极正偏。而在其他洪水沉积物粒级也主要由粉砂组成,含量多大于60%,中值粒径和平均粒径较大,分选性基本大于1,分选性较差和差,峰度值更大,峰态更窄,偏度为正偏和负偏。

    将两段堰塞湖洪水沉积物特征和其他洪水沉积特征对比,现代洪水粒度特征与峡谷段洪水相似,泥沙粒度组分砂含量更多,中值粒径和平均粒径较大,峰态较窄,偏度为正偏,分选性较好;古洪水粒度特征与宽谷段洪水相似,泥沙粒度组分粉砂含量更多,中值粒径和平均粒径较小,峰态较宽,偏度为正偏,分选性较差。

    从粒径参数沿河道的变化来看,沉积物整体中值粒径和平均粒径呈逐渐减小的趋势;偏度系数逐渐由粗颗粒一端偏向细颗粒一端,说明此次白格堰塞湖溃决洪水沉积物总体上以粗颗粒为主,洪水泥沙来源一致,且沿江而下颗粒物逐渐变细;峰度多为单峰和双峰,符合河流洪水沉积物特征;且分选系数均值为0.57。该现象与澜沧江源扎曲囊谦河段河床沉积物分布特征[48]的研究结果一致,说明随着距洪水起始点距离的增加,泥沙粒度也会逐渐变小,颗粒越来越细。这是河流沉积物沉积过程中的“选择性沉积”现象,即在沉积物随着流水向下搬运的过程中,较粗的颗粒由于所需要的搬运动力大于细颗粒,因此粗颗粒物质先于细颗粒物质沉积[38]

  • (1) 此次堰塞湖溃决洪水沉积物粉砂含量逐渐增多,砂的含量、中值粒径和平均粒径由于洪水流速降低而逐渐变小,而黏土由于颗粒细小受水动力条件影响较小,含量在12%上下波动;粒度参数和频率分布曲线变化较小。

    (2) 堰塞湖溃决洪水沉积物剖面泥沙粒径剖面粒级和粒度参数变化无规律性,说明剖面沉积物是在较短时间内形成,且处于同一种水动力条件下。

    (3) “11·03”溃决洪水沉积物与近现代洪水及古洪水沉积物粒度特征相差不大,且洪峰流量与沉积物粒度组分及粒度参数并没有十分必然的联系,现代洪水沉积物粒度特征与峡谷段洪水相似,古洪水沉积物粒度特征与宽谷段洪水相似。

Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return