Advanced Search
Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents

HE WenYuan, MENG QiAn, FU XiuLi, ZHENG Qiang, SU YangXin, CUI KunNing. Geochemical Study of the Sedimentary Environment and Its Organic Matter Enrichment Mechanism in Qingshankou Formation Shale, Gulong Sag, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1799-1816. doi: 10.14027/j.issn.1000-0550.2022.128
Citation: HE WenYuan, MENG QiAn, FU XiuLi, ZHENG Qiang, SU YangXin, CUI KunNing. Geochemical Study of the Sedimentary Environment and Its Organic Matter Enrichment Mechanism in Qingshankou Formation Shale, Gulong Sag, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1799-1816. doi: 10.14027/j.issn.1000-0550.2022.128

Geochemical Study of the Sedimentary Environment and Its Organic Matter Enrichment Mechanism in Qingshankou Formation Shale, Gulong Sag, Songliao Basin

doi: 10.14027/j.issn.1000-0550.2022.128
Funds:

Major Science and Technology Projects of CNPC 2021ZZ10

  • Received Date: 2022-06-08
  • Accepted Date: 2022-11-10
  • Rev Recd Date: 2022-10-23
  • Available Online: 2022-11-10
  • Publish Date: 2024-10-10
  • Objective The paleosedimentary environment of the Gulong shale is the basis for the prediction of shale oil desserts. Methods Based on the salinity of modern lakes in Songliao Basin, the common and trace elements, rare earth elements, and biomarkers of the Gulong shale, the geochemical characteristics of the sedimentary environment and the enrichment mechanism of the organic matter were studied. Results The results show that during the formation of the Gulong shale, the climate was warm and humid, a freshwater brackish water reduction environment was developed, paleoproductivity was high, the sedimentational rate was low, and the water body was deep, which provided a geological basis for the formation, preservation, and enrichment of organic matter. The paleoclimate index, chemical index of alteration (CIA) during the shale deposition period was 63-74 and was dominated by a warm and humid climate. During the shale deposition period, the paleosalinity w(Sr)/w(Ba) was between 0.23-1.00, which was a fresh - brackish water environment, and w(V)/ w(V+Ni) was between 0.6-0.9, a dysoxic-anoxic environment. The paleowater depth was 25-117 m, indicating a semi deep-to-deep lake deposition. The (La/Yb)N value fluctuated between 0.90-1.41, representing a low sedimentational rate. Conclusions The enrichment of organic matter in the Gulong shale was caused by the favorable coupling of paleoclimate, paleosalinity, paleowater depth, sedimentation rate, and paleoproductivity. The research results can effectively guide the prediction, exploration, and development of Gulong shale oil desserts in Songliao Basin.
  • [1] 范萌萌,卜军,赵筱艳,等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义[J]. 西北大学学报(自然科学版),2019,49(4):633-642.

    Fan Mengmeng, Bu Jun, Zhao Xiaoyan, et al. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(4): 633-642.
    [2] 王峰,刘玄春,邓秀芹,等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报,2017,35(6):1265-1273.

    Wang Feng, Liu Xuanchun, Deng Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273.
    [3] 万晓樵,吴怀春,席党鹏,等. 中国东北地区白垩纪温室时期陆相生物群与气候环境演化[J]. 地学前缘,2017,24(1):18-31.

    Wan Xiaoqiao, Wu Huaichun, Xi Dangpeng, et al. Terrestrial biota and climate during Cretaceous greenhouse in NE China[J]. Earth Science Frontiers, 2017, 24(1): 18-31.
    [4] 杜庆祥,郭少斌,沈晓丽,等. 渤海湾盆地南堡凹陷南部古近系沙河街组一段古水体特征[J]. 古地理学报,2016,18(2):173-183.

    Du Qingxiang, Guo Shaobin, Shen Xiaoli, et al. Palaeo-water characteristics of the member 1 of Paleogene Shahejie Formation in southern Nanpu Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2016, 18(2): 173-183.
    [5] 彭雪峰,汪立今,姜丽萍. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义[J]. 矿物岩石地球化学通报,2012,31(2):121-127,151.

    Peng Xuefeng, Wang Lijin, Jiang Liping. Geochemical characteristics of the Lucaogou Formation oil shale in the southeastern margin of the Junggar Basin and its environmental implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(2): 121-127, 151.
    [6] Jiang Y H, Hou D J, Li H, et al. Impact of the paleoclimate, paleoenvironment, and algae bloom: Organic matter accumulation in the lacustrine Lucaogou Formation of Jimsar Sag, Junggar Basin, NW China[J]. Energies, 2020, 13(6): 1488.
    [7] Zhang W Z, Yang W W, Xie L Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China[J]. International Journal of Coal Geology, 2017, 183: 38-51.
    [8] Liang C, Cao Y C, Jiang Z X, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: Implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858.
    [9] Liang C, Jiang Z X, Cao Y C, et al. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression[J]. GSA Bulletin, 2018, 130(1/2): 154-174.
    [10] Wang Y X, Xu S, Hao F, et al. Geochemical and petrographic characteristics of Wufeng-Longmaxi shales, Jiaoshiba area, southwest China: Implications for organic matter differential accumulation[J]. Marine and Petroleum Geology, 2019, 102: 138-154.
    [11] Zhang T S, Hu S Y, Bu Q Y, et al. Effects of lacustrine depo-sitional sequences on organic matter enrichment in the Chang 7 shale, Ordos Basin, China[J]. Marine and Petroleum Geology, 2021, 124: 104778.
    [12] 高有峰,王璞珺,程日辉,等. 松科1井南孔白垩系青山口组一段沉积序列精细描述:岩石地层、沉积相与旋回地层[J]. 地学前缘,2009,16(2):314-323.

    Gao Youfeng, Wang Pujun, Cheng Rihui, et al. Description of Cretaceous sedimentary sequence of the First member of the Qingshankou Formation recovered by CCSD-SK-Is borehole in Songliao Basin: Lithostratigraphy, sedimentary facies and cyclic stratigraphy[J]. Lithostratigraphy, sedimentary facies and cyclic stratigraphy[J]. Earth Science Frontiers, 2009, 16(2): 314-323.
    [13] 霍秋立,李振广,曾花森,等. 松辽盆地北部晚白垩系青一段源岩中芳基类异戊二烯烃的检出及意义[J]. 沉积学报,2010,28(4):815-820.

    Huo Qiuli, Li Zhenguang, Zeng Huasen, et al. Aryl isoprenoids found in Late Cretaceous Qn1 source rocks in Songliao Basin and its significance[J]. Acta Sedimentologica Sinica, 2010, 28(4): 815-820.
    [14] 李顺,席党鹏,荆夏,等. 松辽盆地松科1井南孔晚白垩世介形类生物地层[J]. 古生物学报,2011,50(3):330-343.

    Li Shun, Xi Dangpeng, Jing Xia, et al. Upper Cretaceous ostracod biostratigraphy of the CCSD-SK-I (south) borehole, Songliao Basin[J]. Acta Palaeontologica Sinica, 2011, 50(3): 330-343.
    [15] 高瑞祺,乔秀云,何承全. 松辽盆地白垩纪微体浮游植物群及其环境讨论[J]. 微体古生物学报,1992,9(2):111-126.

    Gao Ruiqi, Qiao Xiuyun, He Chengquan. Cretaceous microphytoplankton from the Songliao Basin and its depositional environment[J]. Acta Micropalaeontologica Sinica, 1992, 9(2): 111-126.
    [16] Feng Z Q, Jia C Z, Xie X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China[J]. Basin Research, 2010, 22(1): 79-95.
    [17] Feng Y L, Yang Z, Zhu J C, et al. Sequence stratigraphy in post-rift river-dominated lacustrine delta deposits: A case study from the Upper Cretaceous Qingshankou Formation, northern Songliao Basin, northeastern China[J]. Geological Journal, 2021, 56(1): 316-336.
    [18] 丁江辉,张金川,石刚,等. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J]. 石油与天然气地质,2021,42(1):158-172.

    Ding Jianghui, Zhang Jinchuan, Shi Gang, et al. Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale, southern Anhui province, China[J]. Oil & Gas Geology, 2021, 42(1): 158-172.
    [19] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemi-cal Geology, 2006, 232(1/2): 12-32.
    [20] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
    [21] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
    [22] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
    [23] Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.
    [24] 西北大学地质系石油地质教研室. 石油地质学[M]. 北京:地质出版社,1979.

    Department of Geology, Northwestern University. Petroleum geology[M]. Beijing: Geological Publishing House, 1979.
    [25] 上海化工学院修订. 辞海-修订稿-理科分册-上[M]. 上海:上海人民出版社,1977:281.

    Revised by Shanghai Institute of Chemical Technology. Cihai revised draft science volume 1[M]. Shanghai: Shanghai People's Publishing House, 1977: 281.
    [26] 河海大学《水利大辞典》编辑修订委员会. 水利大辞典[M]. 上海:上海辞书出版社,2015.

    Editorial and Revised Committee of Water Conservancy Dictionary of Hehai University. Water conservancy dictionary[M]. Shanghai: Shanghai Lexicographical Publishing House, 2015.
    [27] 霍秋立,曾花森,张晓畅,等. 松辽盆地古龙页岩有机质特征与页岩油形成演化[J]. 大庆石油地质与开发,2020,39(3):86-96.

    Huo Qiuli, Zeng Huasen, Zhang Xiaochang, et al. Organic matter characteristics and shale oil formation of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 86-96.
    [28] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39-48.

    Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.
    [29] 陈代钊,汪建国,严德天,等. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学,2011,46(1):5-26.

    Chen Daizhao, Wang Jianguo, Yan Detian, et al. Environmental dynamics of organic accumulation for the principal Paleozoic source rocks on Yangtze Block[J]. Chinese Journal of Geology, 2011, 46(1): 5-26.
    [30] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [31] Bai Y Y, Liu Z J, Sun P C, et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin, northeast China[J]. Journal of Asian Earth Sciences, 2015, 97: 89-101.
    [32] Walker C T, Price N P. Departure curves for computing paleosalinity from boron in illites and shales[J]. AAPG Bulletin, 1963, 47(5): 833-841.
    [33] 鹿坤,左银辉,梅冰,等. 东濮凹陷古沉积环境及其对有机质丰度的影响[J]. 地质与勘探,2013,49(3):589-594.

    Lu Kun, Zuo Yinhui, Mei Bing, et al. Paleo-sedimentary environments in the Dongpu Depression and their impact on organic matter abundance[J]. Geology and Exploration, 2013, 49(3): 589-594.
    [34] 白静,徐兴友,陈珊,等. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复:以吉页油1井为例[J]. 中国地质,2020,47(1):220-235.

    Bai Jing, Xu Xingyou, Chen Shan, et al. Sedimentary characteristics and paleo-environment restoration of the First member of Qingshankou Formation in Qian'an area, Changling Sag, Songliao Basin: A case study of Jiyeyou 1 well[J]. Geology in China, 2020, 47(1): 220-235.
    [35] 冯子辉,方伟,李振广,等. 松辽盆地陆相大规模优质烃源岩沉积环境的地球化学标志[J]. 中国科学(D辑):地球科学,2011,41(9):1253-1267.

    Feng Zihui, Fang Wei, Li Zhenguang, et al. Depositional environment of terrestrial petroleum source rocks and geochemical indicators in the Songliao Basin[J]. Science China (Seri. D): Earth Sciences, 2011, 41(9): 1253-1267.
    [36] 冯子辉,霍秋立,王雪,等. 青山口组一段烃源岩有机地球化学特征及古沉积环境[J]. 大庆石油地质与开发,2015,34(4):1-7.

    Feng Zihui, Huo Qiuli, Wang Xue, et al. Organic geochemical characteristics and paleosedimentary environments of the source rocks in member 1 of Qingshankou Formation[J]. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(4): 1-7.
    [37] Chen C, Mu C L, Zhou K K, et al. The geochemical characte-ristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Ge-ology, 2016, 76: 159-175.
    [38] Ding J H, Zhang J C, Tang X, et al. Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: The Lower Carboniferous Datang Formation, southern Guizhou, southwest China[J]. Minerals, 2018, 8(11): 509.
    [39] Ibach L E J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. AAPG Bulletin, 1982, 66(2): 170-188.
    [40] Cao J, Yang R F, Yin W, et al. Mechanism of organic matter accumulation in residual bay environments: The Early Cretaceous Qiangtang Basin, Tibet[J]. Energy & Fuels, 2018, 32(2): 1024-1037.
    [41] Murray R W, Brink M R B T, Gerlach D C. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1875-1895.
    [42] 吴智平,周瑶琪. 一种计算沉积速率的新方法:宇宙尘埃特征元素法[J]. 沉积学报,2000,18 (3):395-399.

    Wu Zhiping, Zhou Yaoqi. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 2000, 18(3): 395-399.
    [43] 黄华,彭伟,杜学斌,等. 一种定量恢复湖盆古水深的方法:中国,201611055810.2[P]. 2017-03-22.

    Huang Hua, Peng Wei, Du Xuebin, et al. A quantitative method for restoration of ancient deep water in lake basin:China,201611055810.2[P]. 2017-03-22.
    [44] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 312.
    [45] Haskin L A, Wildeman T R, Haskin M A. An accurate procedure for the determination of the rare earths by neutron activation[J]. Journal of Radioanalytical Chemistry, 1968, 1(4): 337-348.
    [46] Johannesson K H, Hendry M J. Rare earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1493-1509.
    [47] 同济大学海洋地质系. 古海洋学概论[M]. 上海:同济大学出版社,1989:1-20.

    Marine Geology Department of Tongji University. Introduction to paleoceanography[M]. Shanghai: Tongji University Press, 1989: 1-20.
    [48] 刘惠民,李守军,郑德顺,等. 东营凹陷沙三段沉积期湖泊古生产力研究[J]. 石油勘探与开发,2003,30(3):65-67.

    Liu Huimin, Li Shoujun, Zheng Deshun, et al. Lacustrine palaeo-productivity in the Third member of the Shahejie Formation in Dongying Sag[J]. Petroleum Exploration and Development, 2003, 30(3): 65-67.
    [49] 刘传联. 稳定同位素地球化学方法在古湖泊学研究中的应用[M]//汪品先,刘传联. 含油盆地古湖泊学研究方法. 北京:海洋出版社,1993:96-123.

    Liu Chuanlian. Application of steady isotope geochemistry method in palaeolimnology[M]//Wang Pinxian, Liu Chuanlian. Research method of palaeolimnology in oil-bearing basin. Beijing: Ocean Press, 1993: 96-123.
    [50] Myrbo A, Shapley M D. Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions (δ13CDIC) in small hardwater lakes in Minnesota and Montana[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2699-2714.
    [51] Müller P J, Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I: Organic carbon preservation[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1979, 26(12): 1347-1362.
    [52] 宁维坤,付丽,霍秋立. 松辽盆地松科1井晚白垩世沉积时期古湖泊生产力[J].吉林大学学报(地球科学版),2010,40(5):1020-1026,1034.

    Ning Weikun, Fu Li, Huo Qiuli. Productivity of paleo-Songliao lake during the Late Cretaceous in well Songke-1, Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5): 1020-1026, 1034.
    [53] Mix A C. Pleistocene paleoproductivity: Evidence from organic carbon and foraminiferal species[M]//Berger W H, Smetacek V S, Wefer G. Productivity of the ocean: Present and past. New York: Wiley-Interscience, 1989: 313-340.
    [54] 何文渊,崔宝文,王凤兰,等. 松辽盆地古龙凹陷白垩系青山口组储集空间与油态研究[J]. 地质论评,2022,68(2):693-741.

    He Wenyuan, Cui Baowen, Wang Fenglan, et al. Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin[J]. Geological Review, 2022, 68(2): 693-741.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(4)

Article Metrics

Article views(82) PDF downloads(22) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-06-08
  • Revised:  2022-10-23
  • Accepted:  2022-11-10
  • Published:  2024-10-10

Geochemical Study of the Sedimentary Environment and Its Organic Matter Enrichment Mechanism in Qingshankou Formation Shale, Gulong Sag, Songliao Basin

doi: 10.14027/j.issn.1000-0550.2022.128
Funds:

Major Science and Technology Projects of CNPC 2021ZZ10

Abstract: Objective The paleosedimentary environment of the Gulong shale is the basis for the prediction of shale oil desserts. Methods Based on the salinity of modern lakes in Songliao Basin, the common and trace elements, rare earth elements, and biomarkers of the Gulong shale, the geochemical characteristics of the sedimentary environment and the enrichment mechanism of the organic matter were studied. Results The results show that during the formation of the Gulong shale, the climate was warm and humid, a freshwater brackish water reduction environment was developed, paleoproductivity was high, the sedimentational rate was low, and the water body was deep, which provided a geological basis for the formation, preservation, and enrichment of organic matter. The paleoclimate index, chemical index of alteration (CIA) during the shale deposition period was 63-74 and was dominated by a warm and humid climate. During the shale deposition period, the paleosalinity w(Sr)/w(Ba) was between 0.23-1.00, which was a fresh - brackish water environment, and w(V)/ w(V+Ni) was between 0.6-0.9, a dysoxic-anoxic environment. The paleowater depth was 25-117 m, indicating a semi deep-to-deep lake deposition. The (La/Yb)N value fluctuated between 0.90-1.41, representing a low sedimentational rate. Conclusions The enrichment of organic matter in the Gulong shale was caused by the favorable coupling of paleoclimate, paleosalinity, paleowater depth, sedimentation rate, and paleoproductivity. The research results can effectively guide the prediction, exploration, and development of Gulong shale oil desserts in Songliao Basin.

HE WenYuan, MENG QiAn, FU XiuLi, ZHENG Qiang, SU YangXin, CUI KunNing. Geochemical Study of the Sedimentary Environment and Its Organic Matter Enrichment Mechanism in Qingshankou Formation Shale, Gulong Sag, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1799-1816. doi: 10.14027/j.issn.1000-0550.2022.128
Citation: HE WenYuan, MENG QiAn, FU XiuLi, ZHENG Qiang, SU YangXin, CUI KunNing. Geochemical Study of the Sedimentary Environment and Its Organic Matter Enrichment Mechanism in Qingshankou Formation Shale, Gulong Sag, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1799-1816. doi: 10.14027/j.issn.1000-0550.2022.128
  • 近年来,页岩形成的古沉积环境研究成果国内外颇多也较丰富,环境参数多以古气候、古盐度、古氧化还原及古物源为主[15],其中多以微量元素定性和定量分析、生物群定性判断沉积环境。前人研究页岩的沉积环境主要作用在于分析页岩中有机质富集程度的控制作用,集中在古生产力、氧化还原条件、陆源碎屑对有机质的影响分析。随着国内外页岩油勘探的深入,越来越多的学者关注沉积环境或者突发地质事件对页岩中有机质富集程度的控制作用。例如,三塘湖盆地芦草沟组和鄂尔多斯长7段页岩不仅发育有机质纹层,还发育火山灰,火山灰或热液流体提供的营养元素促进藻类繁盛,进而使有机质富集[67]。渤海湾盆地沙河街组页岩沉积环境参数分析表明盐度、陆源碎屑输入量和气候变化综合控制了有机质的富集[89]。四川盆地五峰组—龙马溪组海侵体系域中发育的硅质页岩更加富集有机质[10]。部分学者认为湖侵体系域晚期和湖退体系域早期发育的页岩最富有机质[11]。由此可见,不同地质背景下有机质富集的主控因素差异极大。

    松辽盆地古龙页岩油资源潜力巨大,页岩油勘探的重点层位是青山口组。前人对于沉积环境的研究,以利用生物标志物、微量元素、同位素等某一个单项指标开展单井沉积环境的研究和分析[1215],沉积相分析和研究也以盆地级及区带级大尺度为主。但受岩心取样的限制,目前对页岩发育关键层位古沉积环境系统分析及有机质富集主控因素及富集机理认识不清。近几年,古龙页岩油勘探程度的加大及取心资料的日益丰富,为全面分析页岩沉积环境奠定了基础。本文利用古龙页岩丰富的岩心钻井资料,通过常微量元素、稀土元素及生物标志化合物等系统分析,结合现代湖泊水体环境分析将今论古类比分析古龙页岩沉积环境,分析古龙页岩有机质富集机理,建立页岩油形成富集模式,为预测页岩油甜点区及生产井位部署提供重要理论依据。

  • 松辽盆地位于中国东北部,长750 km,宽330~370 km,总面积26×104 km2。该盆地构造单位共分为六个:北部倾没区、中央坳陷区、东北隆起区、东南隆起区、西南隆起区和西部斜坡区(图1)。中央坳陷区是松辽盆地主要产油气构造单元,包括大庆长垣、齐家—古龙凹陷、三肇凹陷、长岭凹陷和朝阳沟阶地[1617]

    Figure 1.  Tectonic location of Songliao Basin[16]

    松辽盆地的形成和发展经历了同裂陷阶段和裂后阶段两大构造阶段,形成了断陷期地层、断坳转化期地层、坳陷期地层及反转期地层(图2a)。火石岭组、沙河子组和营城组组成了松辽盆地的断陷期地层;登娄库组时期地层超覆于断陷期地层之上,且沉积地层盆地内大范围分布,为断坳转换期地层;泉头组—嫩江组属于松辽盆地稳定热沉降阶段,形成了厚度大分布稳定的坳陷期地层,四方台组到第四系为松辽盆地收缩反转时期形成的地层。

    Figure 2.  Cretaceous evolution of Songliao Basin[16](a) and composite columnar section of the Qingshankou Formation (b)

    松辽盆地青山口组为坳陷期沉积地层,青山口组一段沉积时期属于盆地第一次湖泛期,湖盆面积最大,沉积了以灰色、灰黑色泥岩和黑色页岩为主的岩性,中间夹有薄层白云岩、灰岩或泥质粉砂岩,泥岩累计沉积厚度60~120 m;青山口组一段和青山口组二段下部湖相区沉积是页岩油发育的有利层位,其中青一段(K2qn1)从下到上依次发育Q1~Q6油层组;青二段(K2qn2)下部从下到上依次发育Q7~Q9油层组(图2b)。青山口组一段沉积时期,古地貌具有两凹一隆的古构造格局(图3),东部凹陷和西部凹陷沉降中心为深湖—半深湖相页岩的形成发育提供了良好的构造背景。

    Figure 3.  Paleotectonic geomorphology of member⁃1 of Qingshankou Formation(K2qn1) during the sedimentary period in northern Songliao Basin

  • 现代湖盆水体沉积环境主要通过测试松辽盆地两个现代湖泊水体总矿化度来分析现代湖盆水体盐度及有机质类型,检测依据为SY/T5523—2016《油田水分析方法》。古龙页岩形成的沉积环境分析主要利用35口取心井1 965个测试数据通过无机元素及其组合参数、生物标志物鉴定等方法,采样间隔为1~2 m,无机元素分析利用X射线荧光光谱仪,采用的国家标准GB/T 14506.30—2010《硅酸盐岩化学分析方法第30部分:44个元素量测定》,测试精度小于3%。生物标志化合物是利用Agilent7890A色谱仪开展分析,采用SY/T 5779—2008行业标准《石油和沉积有机质烃类气相色谱分析方法》。古生物化石分析鉴定:古生物鉴定主要通过光学显微镜C2000和扫描电镜拍照,采用的标准为《国家古生物化石分级标准(试行)》。

  • 页岩的微量元素一般由碎屑组分和自生组分构成,自生组分能反映成岩环境的变化[18];此外,当岩石矿物成分发生较大变化时,仅凭借微量元素含量与标准页岩含量标准对比来判定某种元素富集或亏损难免会产生偏差。由于铝元素(Al)在成岩过程中比较稳定,不易发生变化,为排除自生组分中来自陆源碎屑组分的影响,一般用铝元素(Al)对微量元素进行标准化。同时为了更便于解释,一般再将与铝元素标准化后的微量元素与平均页岩值进行比较[19],用富集系数EF表示,计算公式如下:

    EFx=(X/Al)样品/(X/Al)平均页岩 (1)

    式中:EFx 代表某种微量元素X或其氧化物的富集系数,无量纲;EFx 小于1时则表明微量元素x或其氧化物相对于平均页岩亏损;EFx 大于1时,说明元素X或其氧化物相对于平均页岩富集。

  • 化学风化指数CIA=[Al2O3/(Al2O3+CaO+Na2O+K2O)]×100[2021]。在计算中主要氧化物均以摩尔比表示,CaO代表硅酸盐矿物中CaO的摩尔百分含量,值得注意的是,使用此公式过程中需要校正碳酸盐矿物和磷酸盐矿物中的Ca。一般使用McLennan et al.[22]和Nesbitt et al.[23]提出的一种间接定量计算硅酸盐组分中CaO含量的方法,该方法假定硅酸盐材料的Ca/Na比值为合理值。硅酸盐馏分中CaO含量(CaO*)的定量方法为总CaO的摩尔比例减去P2O5的摩尔比例。相减后,若发现“剩余摩尔数”小于Na2O的摩尔比例,则认为“剩余摩尔数”为硅酸盐馏分中CaO的摩尔比例。若“剩余摩尔数”大于Na2O的摩尔比例,则认为Na2O的摩尔比例为硅酸盐馏分中CaO的摩尔比例(CaO*[2223]

  • 采用“将今论古”思路,研究青山口组湖相页岩的沉积环境,选取了大庆周缘中内泡和红旗泡两个现代湖泊(图1)做类比分析,通过水体矿化度和生物鉴定分析来研究现代湖盆沉积环境。根据水体矿化度测试数据按照苏林分类法来划分大陆水和海水[24]。中内泡为大陆环境的重碳酸钠(NaHCO3)型水,总矿化度平均为1.25×10³ mg/L,水体pH值为6.2。红旗泡湖泊水型为大陆环境的重碳酸钠(NaHCO3)型水,总矿化度为4.76×10² mg/L;pH值为5.7。松辽盆地内部的两个湖泊苏林分类水型均为大陆环境的重碳酸钠(NaHCO3)型水。

    根据水体酸碱度pH值的定义可知[25],红旗泡等pH值介于5~6,水体环境偏酸性;中内泡pH值为6.2,水体环境为弱酸性。

    根据前人对水体总矿化度的划分原则[26],按矿化度的大小可把地下水分为五类(表1):松辽盆地中内泡总矿化度介于1~3 g/L,属于微咸水,红旗泡为淡水。中内泡位于现今松辽盆地的腹地,雨水大、物源充足时,北部有三角洲沉积,属于半封闭湖泊;雨水小、物源不充足季节,属于封闭型湖泊。这与松辽盆地青山口组沉积时期很相似,物源充足时松辽盆地为半封闭型湖泊,会受到西部和北部物源的影响,盆地东部则属于相对封闭型湖泊;物源不充足时,整个湖盆为封闭型湖盆。类比分析表明,松辽盆地青山口组一段、二段沉积时期的湖盆可能存在微咸水水体环境。

    水体盐度分类矿化度/g·L-1
    淡水<1
    微咸水1~3
    咸水3~10
    盐水10~50
    卤水>50

    Table 1.  Classification standard of groundwater mineralization[27]

    选取了中内泡和红旗泡两个湖泊中的淤泥沉积物进行鉴定,结果表明藻类群落中硅藻、绿藻在两个湖泊中均比较繁盛,蓝藻含量很大,见枝角类、轮虫类和介形类等生物(图版Ⅰ,Ⅱ),沟鞭藻也有发现,但含量介于0.53%~4.59%。可能受到水体盐度和较封闭的水体环境影响,中内泡生物尤为发育,主要为藻类植物和枝角类浮游生物等中低等生物,其中蓝藻以聚球藻属为优势属,占中内泡蓝藻数量的63.7%;硅藻中小环藻属为优势属,占中内泡蓝藻数量的25.0%,其次为双菱藻属和舟形藻属,分别占19.6%和14.5%;绿藻以小球藻属和纤维藻属为优势属,分别占比24.0%和19.2%,其次为新月藻属,占比9.6%,红旗泡湖泊的藻类占比见图4

    Figure 4.  Organic matter composition of modern lakes in Songliao Basin

  • 松辽盆地古龙页岩有机质组成主要为层状藻,陆源高等植物来源的有机质相对较少,同松辽盆地现代湖盆相似,都来源于低等浮游藻类及低等微生物。古龙页岩具典型的陆相Ⅰ型有机质的特征,以腐泥质为主[27]。青一段页岩有机碳含量TOC介于1.00%~5.98%,平均为2.36%;岩石热解参数S1含量介于2.30~12.18 mg/g,平均为4.96 mg/g;氢指数HI介于600~800 mg/g;Tmax介于320 ℃~554 ℃,平均为414 ℃。青二段下部Q7~Q9油层页岩有机质碳含量介于1.01%~2.29%,平均为1.47%;岩石热解参数S1含量介于0.60~4.55 mg/g,平均为2.68 mg/g;HI指数介于540~760 mg/g;Tmax介于317 ℃~477 ℃,平均为414 ℃。对比青一段和青二段页岩样品可发现青一段页岩油样品的TOC、S1和氢指数HI稍高于青二段下部,相比较青一段页岩具有更高的生烃潜力,推测可能与二者不同的沉积环境有关。青一段Tmax介于320 ℃~477 ℃,平均为414 ℃,青二段Tmax介于317 ℃~477 ℃,平均亦为414 ℃,Ro介于1.0%~1.6%,整体反应古龙页岩处于中成熟—高成熟的生油气阶段,且生烃潜力大。

  • 古气候不仅影响母岩风化、沉积物侵蚀和搬运程度,还影响地表径流的变化,对于湖泊内部生物类型及繁殖程度有着重要影响[28]。气候温湿利于大气水循环,并会加速物源区母岩的化学风化,利于营养物质向湖泊内输送,促进湖泊水体表层生物繁殖,生物繁殖促使有机质得到充分的埋藏,在半深湖—深湖底部的水体缺氧环境背景下,有机质得到很好的富集和保存[29]。由于古气候的变化会影响岩石的矿物成分和化学成分,因此通过岩石化学成分的变化可以反映沉积物沉积时期的古气候,化学蚀变指数CIA(Chemical Index of Alteration)和古气候指数C值常被用于表征古气候条件。本次研究采用CIA和C值来研究页岩沉积时期的古气候[3031]

    一般情况下,化学蚀变指数CIA高值指示古气候温热湿润,CIA低值指示古气候干燥寒冷。前人研究认为CIA值介于50~65时,指示低化学风化条件下的干冷型气候;CIA值介于65~85时,指示中等化学风化条件下的暖湿型气候;当CIA值大于85时,代表强化学风化条件下的热湿型气候。古气候指数C值越大,气候越潮湿温暖,反之则越干燥寒冷,C值小于0.1时为干燥型气候,C值介于0.1~0.2为半干燥型气候,C值介于0.2~0.4为半潮湿型气候,C值大于0.4为潮湿型气候。

    化学蚀变指数CIA与主量元素含量相关,古龙页岩主量元素氧化物以SiO2最为丰富,含量介于52.12%~59.83%,平均为57.18%;其次为Al2O3,含量介于13.72%~18.89%,平均为17.50%,CaO含量介于4.10%~6.96%,平均为5.71%,其余主量氧化物平均含量之和为13.10%(表2)。古龙页岩样品的CIA值介于63~74,平均为70,反映古龙页岩沉积时期为中等化学风化背景下的暖湿型气候,这与丁江辉等[18]基于皖南地区二叠统大隆组页岩沉积环境参数判别结果一致。古龙页岩样品的C值介于0.10~0.40,平均为0.30,反映古龙页岩沉积时期为半潮湿型气候,两个参数的判别结果基本一致,表明古龙页岩很可能形成于暖湿—半潮湿型气候。

    样品 编号深度/mTOC/%S1/(mg/g)SiO2/%Al2O3/%Fe2O3/%CaO/%MgO/%K2O/%Na2O/%TiO2/%P2O5/%MnO/%CIAP/TiFe/Ti(Fe+Mn)/Ti
    A1-2792 454.102.586.6857.8718.136.411.171.923.532.010.600.280.0773.000.3412.4612.61
    A1-2852 457.102.303.6358.0718.455.221.141.773.871.920.630.220.0572.700.269.699.79
    A1-2872 458.102.975.7956.9517.885.340.921.783.661.970.590.270.0573.180.3310.5710.67
    A1-2892 459.102.396.1059.7317.925.740.691.643.482.220.660.200.0573.710.2210.1310.23
    A1-2912 460.102.395.3355.9818.366.202.462.113.721.870.660.230.0769.540.2510.9011.03
    A1-2992 464.101.701.6058.3318.475.750.961.993.941.840.640.160.0673.270.1810.4210.53
    A1-3012 465.103.142.8957.2817.895.301.311.953.642.020.590.220.0771.970.2710.4610.61
    A1-3032 466.102.265.9358.2416.116.612.911.942.612.590.650.260.0966.530.2911.9412.13
    A1-3112 470.102.853.3557.5918.125.841.271.853.632.130.680.140.0772.040.1510.0910.23
    A1-3152 472.102.997.5458.0518.244.941.021.773.772.110.660.180.0572.570.208.808.91
    A1-3172 473.231.885.5157.9216.156.083.531.803.052.150.580.210.0864.900.2612.1512.33
    A1-3252 477.102.263.8257.5518.695.631.032.053.851.970.670.150.0673.160.169.779.88
    A1-3392 484.102.955.6756.3617.646.091.532.163.391.790.590.090.0572.450.1211.9712.07
    A1-3612 495.102.686.7557.5617.536.171.542.103.581.580.600.140.0572.350.1711.9512.05
    A1-3652 497.103.167.3557.2117.676.441.452.613.561.470.640.120.0573.190.1411.8211.92
    A1-3852 507.103.877.6756.0517.026.541.622.603.221.400.560.240.0473.170.3113.6713.77
    A1-3932 511.103.446.4154.7017.136.303.352.443.581.210.560.430.0667.790.5713.1713.30
    A1-3972 513.102.305.3657.3217.475.662.112.613.371.690.660.180.0870.890.2010.0710.24
    A1-4092 519.105.107.2852.5116.435.963.982.503.401.220.570.380.0865.630.4812.2412.42
    A1-4132 521.102.506.1855.3117.026.182.822.663.611.150.570.280.0669.170.3612.6512.78
    A1-4312 530.113.383.8756.5817.805.322.901.614.360.750.590.380.0868.960.4710.4510.63
    平均值2.605.4657.0117.625.891.892.093.561.760.620.230.0670.960.2711.2111.34

    Table 2.  TOC, major element oxides and their ratio of Gulong shales

  • 1) 微量元素特征

    Sr、Ba的化学性质较为相似,但对古盐度变化的敏感程度差异巨大。在酸性很低的淡水湖泊中均以重碳酸盐或硫酸盐的形式存在,当水体盐度增大,酸碱度逐渐向中性偏移时,Ba优先以BaSO4沉淀的形式出现,水体中的Sr相对于Ba趋于富集[32],微量元素组合w(Sr)/w(Ba)、w(B)/w(Ga)及w(Sr)/w(Ca)等参数常被用来指示古盐度[1,3334]。一般而言,微量元素组合参数的值越大,反应页岩沉积时水体环境的古盐度越高。海相环境或者咸水环境的w(Sr)/w(Ba)值大于1,而淡水—微咸水环境w(Sr)/w(Ba)值多小于1。海相环境或者咸水环境的B/Ga值大于4.5,而淡水环境的w(B)/w(Ga)值多小于3,介于二者之间为淡水—微咸水水体环境。w(Sr)/w(Ga)值可以定性判断古盐度,一般认为海相环境或者咸水环境的w(Sr)/w(Ga)值较大,而淡水环境的w(Sr)/w(Ca)值较小[33]

    松辽盆地古龙页岩的w(Sr)/w(Ba)值介于0.4~2.0,w(B)/w(Ga)值介于3~5,多参数表明整体上古龙页岩形成于淡水—微咸水环境,局部咸水环境。

    根据A1井219.75 m全井段取心资料,Q1~Q9井段按照1 m间隔的地化参数分析(如TOC、S1等)和常微量元素的配套分析(TOC和S1共取样208个样点,常微量元素共取样192个样点,部分样品分析结果见表3),恢复了A1井单井沉积环境纵向演化规律(图5),研究表明青一段沉积时期,古气候整体为温湿环境,古盐度为淡水—微咸水—咸水—淡水—微咸水—淡水的旋回过程,具有向上古盐度变小趋势,其中Q1~Q2盐度快速增加,Q3~Q4盐度较平稳,Q5盐度从下到上先增加后逐渐降低,Q6盐度继续降低。水体环境以还原环境为主,局部强还原环境(图5)。青二段页岩沉积时期气候不如青一段温暖潮湿,湖水盐度变小,以淡水为主,水体为还原环境。纵向上,青一段、青二段气候整体为温湿气候,湖水盐度经历了增加—降低—增加—降低的旋回变化,整体从青一段到青二段古盐度具有变小的趋势。

    样品编号深度/mTOC/%S1/(mg/g)SrBaVCrNiMoThUw(Sr)/w(Ba)w(V)/w((V+Ni))EFuEFMoΣREE(La/Yb)NδCeC值
    A1-2792 454.102.586.68239.70428.80134.9046.9026.807.212.701.100.560.831.044.00140.551.010.730.33
    A1-2852 457.102.303.63307.10591.30130.4055.9027.504.608.203.000.520.832.792.53205.301.100.930.25
    A1-2872 458.102.975.79245.40479.60117.2050.3029.809.816.102.200.510.802.155.53133.880.900.810.30
    A1-2892 459.102.396.10271.70560.40108.3052.2022.305.127.102.100.480.832.022.89158.090.950.870.24
    A1-2912 460.102.395.33435.40602.20131.3059.3025.206.217.503.400.720.843.173.41219.610.970.920.22
    A1-2992 464.101.701.60287.90597.30115.9052.4026.408.416.702.700.480.812.564.62173.641.050.820.24
    A1-3012 465.103.142.89260.50513.30112.1059.8029.9010.315.902.300.510.792.265.82142.940.890.810.28
    A1-3032 466.102.265.93382.00481.9083.1045.3024.305.626.101.900.790.772.003.49178.491.010.850.19
    A1-3112 470.102.853.35288.30526.50104.9063.6032.906.225.701.700.550.761.633.47165.931.050.870.27
    A1-3152 472.102.997.54270.50521.30116.9048.6027.706.415.201.400.520.811.293.55150.100.940.800.27
    A1-3172 473.231.885.51446.30684.3088.1060.8029.307.126.901.900.650.752.004.45217.421.120.920.17
    A1-3252 477.102.263.82257.80458.20144.2060.1026.806.302.600.800.560.840.703.40129.861.220.770.34
    A1-3392 484.102.955.67207.30310.30118.9046.6023.806.012.500.600.670.830.623.42120.461.030.740.39
    A1-3612 495.102.686.75300.00396.60134.3054.6028.309.323.301.100.760.831.055.36170.241.200.830.34
    A1-3652 497.103.167.35272.80355.90128.3053.6027.405.112.600.700.770.820.662.90146.941.230.860.36
    A1-3852 507.103.877.67295.20364.40130.1054.2031.106.313.100.800.810.810.803.75159.611.340.900.35
    A1-3932 511.103.446.41358.70361.70125.7052.1029.608.513.401.100.990.811.085.05193.631.170.870.32
    A1-3972 513.102.305.36248.30303.00120.1046.5024.407.322.500.600.820.830.604.26123.750.990.710.37
    A1-4092 519.105.107.28338.70369.30149.4048.6032.5011.113.901.600.920.821.636.82226.141.260.930.35
    A1-4132 521.102.506.18313.00381.60121.9056.1033.907.522.700.900.820.780.874.45158.411.360.870.33
    A1-4312 530.113.383.87272.10337.00122.7058.3027.106.713.201.100.810.821.033.80167.321.130.940.36
    平均值2.605.462299.94458.33120.8953.6127.957.204.661.570.680.811.524.14165.821.090.850.30
    注:δCe =Ce/(LaN×PrN)1/2,下标N代表北美页岩NASC标准化;微量元素含量单位:10-6

    Table 3.  TOC and trace element content and related parameters of Gulong shales

    Figure 5.  Comprehensive analysis of the sedimentary environment from well A1

    不同岩相的环境参数指标和单井纵向沉积环境变化规律揭示,青山口组页岩沉积时期气候温暖湿润,发育在半深湖—深湖还原环境的沉积背景下,纵向上古气候和古氧化还原指标变化不大。只有古盐度呈旋回性变化,故以古盐度w(Sr)/w(Ba)值平面变化特征进行研究。

    通过37口井2 035个微量元素测试点(部分数据见表3)古盐度w(Sr)/w(Ba)值恢复结果表明(图6),青一段Q1~Q6沉积时期,松辽盆地北部三肇凹陷以东以南地区和古龙—大庆长垣南部部分地区盐度较高,w(Sr)/w(Ba)值介于1~2,为咸水沉积环境,面积为0.92×104 km2,古龙凹陷中部和安达地区局部也发育小规模咸水沉积,面积分别为263 km2和432 km2,盆地西部和北部地区水体古盐度较低,w(Sr)/w(Ba)值小于1,为淡水—微咸水环境。青二段Q7~Q9沉积时期,水体盐度继续降低,淡水—微咸水环境地区明显增加,仅在三肇西部和南部地区及长垣中部地区为咸水环境,面积0.4×104 km2,w(Sr)/w(Ba)值最大(1.8),其他地区都为淡水—微咸水环境。盆地东南部和北东部古盐度w(Sr)/w(Ba)值相对较大,推测可能与该地区长期处于封闭的蒸发环境有关,或与盆地发生过海侵作用造成盐度升高有关[13]

    Figure 6.  Paleosalinity parameter w(Sr)/w(Ba) planar map in Songliao Basin

    2) 生物标志化合物特征

    前人研究认为,饱和烃的生标化合物参数可以表征页岩沉积的地球化学环境[13,3536],并用姥姣烷和植烷的比值,即姥植比w(Pr)/w(Ph)可以代表沉积环境。该值介于0.8~2.8属于淡水—微咸水沉积环境,介于2.8~4.0为淡水还原环境,小于0.8为咸水沉积环境。

    通过松辽盆地214口井青山口组1 164个实测数据点(表4)泥页岩饱和烃气相色谱分析分析可知,Q1~Q3时期,w(Pr)/w(Ph)比值大多介于0.8~2.8,整体属于淡水—微咸水沉积环境,在中央坳陷区的局部及盆地东北地区w(Pr)/w(Ph)比值小于0.8,存在局部咸水环境(图7a)。Q4~Q6时期,w(Pr)/w(Ph)比值大多介于0.8~2.8,整体属于淡水—微咸水沉积环境,在三肇凹陷的局部w(Pr)/w(Ph)比值小于0.8,存在局部咸水环境(图7b)。Q7~Q9时期,w(Pr)/w(Ph)比值大多介于0.8~2.8,整体属于淡水—微咸水深湖相沉积环境,在齐家—古龙南部泰康湖湾及三肇凹陷的局部地区w(Pr)/w(Ph)比值小于0.8,存在局部咸水环境(图7c)。由于盐水范围平面上主要分布在盆地东部地区,考虑到三肇凹陷远离北部和西部物源,受到淡水影响较小,且都是小范围局部分布,没有大面积与盆地边界相连的范围分布,其原因很可能是局部封闭的蒸发环境造成水体咸度偏大,进一步证实了松辽盆地可能不存在海侵。

    井号构造单元w(Pr)/w(Ph)
    GY1齐家—古龙凹陷0.73
    G14齐家—古龙凹陷0.84
    J62齐家—古龙凹陷0.85
    G608齐家—古龙凹陷0.87
    J81齐家—古龙凹陷0.94
    J82齐家—古龙凹陷1.12
    J8齐家—古龙凹陷1.14
    G52齐家—古龙凹陷1.19
    J9齐家—古龙凹陷1.45
    D38齐家—古龙凹陷1.45
    S59三肇凹陷0.91
    D22三肇凹陷0.95
    Z17三肇凹陷0.96
    Z20三肇凹陷0.98
    D34三肇凹陷1.00
    D28三肇凹陷1.04
    Z15三肇凹陷1.09
    Z19三肇凹陷1.10
    F16三肇凹陷1.10
    D32三肇凹陷1.12
    S118三肇凹陷1.25
    Z12三肇凹陷1.31
    Z11三肇凹陷1.42
    S1三肇凹陷1.59
    X71大庆长垣0.70
    X70大庆长垣0.83
    P53大庆长垣0.86
    T11大庆长垣0.97
    P31大庆长垣1.10
    S53大庆长垣1.11
    S373大庆长垣1.12
    X4大庆长垣1.23
    P316大庆长垣1.29

    Table 4.  w(Pr)/w(Ph) values of some wells in different structural units of Qingshankou Formation in Songliao Basin

    Figure 7.  Paleosalinity parameter w(Pr)/w(Ph) planar map of Qingshankou Formation in Songliao Basin

  • 元素V和Ni都趋于在还原环境的黑色岩石中聚集,但它们的聚集系数却不相同。V在强烈还原的富硫化氢环境中富集系数大于Ni[37]。在还原性相对低的环境中,V和Ni的富集系数差别不大。因此w(V)/w(V+Ni)比值越高,还原程度越强。前人研究认为w(V)/w(V+Ni)值小于0.6揭示氧化环境,0.6<w(V)/w(V+Ni)<0.84揭示还原环境,w(V)/w(V+Ni)值大于0.84揭示强还原环境。利用35口井的普通元素和微量元素及其组合w(V)/w(V+Ni),恢复了青山口组的氧化还原环境。w(V)/w(V+Ni)比值主要介于0.6~0.9(表3),最大值为0.90,最小值为0.44,平均值为0.80,表明青山口组的页岩形成于还原环境。这与其含丰富的有机质和黑色、灰黑色的岩性和优质的烃源岩属性一致。

  • 前人用泥页岩中有机质丰度TOC与微量元素锶(Sr)的沉积速率来研究有机质富集和保存,并认为当Sr的沉积速率小于5 cm/ka时,Sr的沉积速率越高越有利于有机质的保存;当Sr的沉积速率大于5 cm/ka时,Sr的沉积速率越高,越易造成有机质的稀释不利于有机质的富集和保存[3839]。因此,过低的沉积速率易使湖底沉积的有机质遭受分解和底栖生物的消耗,而过高的沉积速率使得有机质遭受较强的稀释作用而降低有机碳含量,因此,沉积速率只有与有机质埋藏、生物消耗达到匹配最有利。

    稀土元素配分模式及(La/Yb)N(下标N代表NASC标准化)也可定性评价沉积速率[4041]。稀土元素在水体中可以与细粒沉积物结合引起稀土元素的分异[4041]。较高的沉积速率使沉积物快速堆积,导致分异程度较弱;反之,沉积速率较低时沉积物沉积缓慢,促使黏土矿物与稀土元素接触充分,从而导致分异程度相对较强。因而,根据稀土元素的分异程度可以定性表征沉积速率。而(La/Yb)N值是稀土元素分异程度的可靠指标,(La/Yb)N值约为1.0时,反映稀土元素基本无分异或分异程度弱,代表沉积速率较高;(La/Yb)N值显著大于或小于1.0时,代表稀土元素分异程度较强,代表较低的沉积速率。从A1井的页岩的稀土元素配分曲线显示其值在0.90和1.41之间浮动变化(图8表3),反映古龙页岩沉积时期沉积速率较低。

    Figure 8.  Standardized distribution mode of rare earth elements in shales from well A1

  • 前人通过湖相沉积物的微量元素和稀土元素、测井曲线和有机碳含量来定量计算细粒沉积物沉积时期古水深[4243]。利用钴元素、镧元素含量[42]及TOC和GR曲线[43]可以定量计算湖相泥页岩原始沉积的水深,古龙页岩也形成于湖相沉积环境,因此可以借鉴以上定量计算公式来计算古水深。以A1井为例(图5),从下到上,青一段Q1油层古水深32.8~70.1 m,平均为56.7 m;Q2油层古水深40~108 m,平均为67 m;Q3油层古水深13.6~102.5 m,平均为52.97 m;Q4油层古水深5.5~74.2 m,平均为48.7 m;Q5油层古水深39.8~84.4m,平均为59.7 m;Q6油层古水深32.8~106.0 m,平均为55.1 m。青二段Q7油层古水深8.6~114.9 m,平均为59.25 m;Q8油层古水深33.1~80.3 m,平均为52.4 m;Q9油层古水深1.96~117.20,平均为41.85 m。纵向上,松辽盆地古水深从青一段向青二段不断变浅。沉积体系演化史表明,青一段到青二段,沉积体系由深湖—半深湖沉积逐渐向滨浅湖、三角洲相变化。古水深定量计算结果与沉积体系的演化一致。

  • 古龙页岩样品的稀土元素总量(REE)介于(104.1~301.92)×10-6,平均为169.30×10-6表3),大于上陆壳(Upper Continental Crust,UCC)的稀土元素总量均值146.40×10-6[44],小于北美页岩(North American Shale Composite,NASC)稀土总量均值173.01×10-6[4445]和后太古宙澳大利亚页岩(Post-Archaean Australian Shale,PAAS)的稀土总量184.77×10-6[46]。本次研究也采用NASC浓度对稀土元素进行标准化,结果显示A1井Q1和Q7段稀土配分模式与其他层段不同,主要表现在Eu正异常,松辽盆地青一段和青二段下部稀土元素配分曲线形态相似(图8),且有一定起伏,均具有弱的Ce负异常(δCe介于0.60~1.0,表3)和比较明显的Eu正异常(δEu达到1.4)。相对于青一段,青二段下部页岩的Eu正异常更为明显,反映两者的陆源碎屑输入可能不同,主要受到热液作用影响[46]

    生产力是指生物在能量循环过程中固定能量的速率,即单位面积、单位时间内所产生的有机质的量(单位为g/(m2·a))[47]。为消除热液活动的影响,元素组合P/Ti可以准确反映生产力的大小。在现代湖泊中也可直接测定湖泊生产力[48]。对古代湖泊生产力的定量计算却要复杂得多,通常采用同位素法[49]、有机碳法[5052]及古生物法[53]等。古生产力高低与湖泊水体中的营养程度有密切关系,生物生存的营养越充沛,生物活动就会越繁盛,生物依赖光合作用吸收碳的能力就越强,促成的古生产力就越大。

    古龙页岩样品P/Ti值介于0.20~1.44,平均为0.34(表2),明显高于PASS的P/Ti值0.12[44],指示古龙页岩沉积时期具有较高湖泊生产力。古龙页岩Mo含量介于(3.9~13.2)×10-6,平均为7.4×10-6表3),明显高于PASS的对应值1.0×10-6[47]。同样反映古龙页岩沉积时期具有高的湖泊生产力。

    松辽盆地湖泊有机质主要为湖泊内的水生生物,受陆生有机质影响很小,因此可以按照有机碳法计算湖泊生产力[52]。对古龙页岩A1井的192块页岩样品进行了有机碳和孔隙度的实验分析,进行古生产力恢复,研究表明,古龙页岩形成时期湖泊古生产力介于500~2 360 g/(m2·a),青一段湖泊古生产力生产力介于307~2 377 g/(m2·a),平均为953 g/(m2·a),青二段湖泊古生产力介于386~1 067 g/(m2·a),平均为802 g/(m2·a),整体上属于高生产力,相比之下,青一段比青二段具有更高的古生产力(图5)。

  • 前人研究认为松辽盆地南部青一段泥页岩中有机质是否富集主要受古气候、古氧化还原条件控制,潮湿气候条件下还原水体中形成的泥页岩有机质类型好,有机质类型主要为腐泥质,生油能力强,滞留烃含量高[35]。松辽盆地北部青一段优质烃源岩形成于湖泊盐度高、水体分层的潟湖型沉积环境;青二、青三段烃源岩形成于淡水、浅水的湖泊三角洲沉积环境[1314];青一段半深湖—深湖相发育的暗色泥页岩既是优质烃源岩,又是古龙页岩油有利的储集体[54]

    为了研究沉积环境对有机质富集的控制作用,系统分析了古气候、古盐度、古氧化还原条件、古水深、沉积速率、古湖泊生产力与有机质TOC关系(图9)。研究表明页岩沉积时的古气候越湿润,越有利于生物的繁殖和生长,生物的繁殖为有机质的来源提供了重要的物质基础,从而有利于有机质的形成与富集(图9a)。

    Figure 9.  Intersection diagram of between sedimentary environment indicators and total organic carbon (TOC)

    页岩形成时的水体古盐度越高,越易形成水体的分层,造成富氧层、贫氧层和缺氧层在水体纵向上依次从浅到深分布,缺氧层越发育越有利于有机质富集(图9b)。

    氧化还原环境指标对有机质丰度分布没有明显的控制关系(图9c),说明氧化还原条件对有机质的富集并不起到决定性作用。

    页岩的沉积速率越低越有利于有机质的富集(图9d),沉积速率低,有机质不易稀释,有利于有机质的保存和富集。页岩沉积时期古水深越深,越利于有机质的保存,从而导致有机质更加富集(图9e)。

    富集系数能够有效反映泥页岩中元微量及稀土元素的富集程度,按照公式(1)计算可得到微量元素Mo的富集系数EFMo。古湖泊生产力EFMo与有机质越富集亦成正相关关系(图9f),说明古湖泊生产力对有机质形成与富集起着重要的作用。

    古气候C值与古盐度w(Sr)/w(Ba)呈正相关关系(图9g),古盐度w(Sr)/w(Ba)与湖泊生产力EFMo呈正相关关系(图9h),说明古气候对湖水盐度起着重要的控制作用,且气候和水体盐度对湖泊生产力均有重要的控制作用。气候温湿,有利于生物的繁殖和生长,从而促进了古生产力的升高,盐度造成的水体缺氧层的出现,加之较低的沉积速率造成水体稀释速度变慢,有利于有机质的保存,从而促成了有机质的形成和富集。由此可见,松辽盆地古龙页岩有机质富集是气候、盐度、古水深、沉积速率、湖泊生产力等多因素综合影响的结果,不同影响因素之间也存在着相互作用和制约关系。

  • 气候变化影响岩石风化程度和地表径流的变化,控制着陆源营养物质的输入和生物的繁殖程度,从而控制湖泊生产力的变化,湖泊生产力直接影响有机质的富集程度。不同深度水体盐度分层可以为有机质提供良好的富集和保存条件。低的沉积速率有利于有机质的充分形成和保存。

    松辽盆地页岩有机质主要来源于藻类的贡献,有机质的形成与富集整体受控于松辽盆地古地貌和古沉积环境。青一段沉积时期,古龙页岩主要形成于受古中央隆起区控制的东西两个凹陷内,由于青一段沉积时期气候温暖潮湿,同时火山活动、浊流沉积、岩浆热流等地质事件间歇性地带来丰富的营养物质,为浮游生物、鱼类、介形虫等古生物的繁殖和生长奠定了很好的物质基础,其中藻类生物的繁殖使得古湖泊生产力极高,为高丰度有机质的形成富集提供了良好的物质基础。西部凹陷由于是当时的沉降沉积中心,古水深较深,水体为淡水—微咸水半深湖—深湖相还原环境,底部水体滞留形成缺氧层,具有很好的分层性,为高丰度有机质的形成提供了良好的环境基础。东部凹陷,水体深度仅次于西部凹陷,水体为咸水和淡水—半咸水半深湖—深湖相还原环境,也具有较好的分层性,有利于页岩的形成,但是由于埋深相对较浅,在整个构造演化过程中有机质的演化程度不如西部凹陷高。

    青二段沉积时期,古龙页岩主要发育在东西两个凹陷,水体盐度较青一段有所变小,气候也逐渐向半湿润和干旱转变。由于青二段沉积时期气候逐渐由温暖潮湿向半温湿及干燥气候转变,古生物的繁殖速度不如青一段高,但受到地质事件带来的营养物质的影响,仍然繁殖的藻类生物带来了较高的古湖泊生产力,为中—高丰度有机质的形成和页岩的形成提供了物质基础。西部凹陷古水深较深,淡水—微咸水还原环境及缺氧层水体为中—高丰度有机质的形成提供了重要的沉积环境。东部凹陷,水体为淡水—半咸水半深湖—深湖相还原环境,也具有较好的分层性,比较有利于页岩的形成,但埋深相对较浅,有机质的演化程度不如西部凹陷高。

    青山口组沉积时期,湖相广泛发育,火山喷发、浊流沉积、岩浆热流为生物繁殖带来了充足的营养物质。在温湿气候驱动下,藻类等生物繁殖生长促成了高的湖泊生产力,成为有机质的重要来源,生物遗体在淡水—微咸水造成的缺氧层还原水底埋藏,再因较低的沉积速率有利于有机质的充分形成和保存,促成了有机质的大规模富集(图10),为快速形成面积广、厚度大的页岩沉积及后期页岩有机质演化奠定了基础。

    Figure 10.  Organic matter enrichment model of the Gulong shale

  • (1) 松辽盆地现代湖盆分析表明存在半咸水湖泊,其地球化学指标与青山口组古龙页岩的几近相同,揭示了青山口组沉积时期同样存在淡水—微咸水湖泊水体环境,局部发育咸水沉积,有利于有机质富集。

    (2) 地球化学指标揭示古龙页岩沉积时期古气候指数以温湿气候为主,页岩沉积时期古盐度主要为淡水—微咸水环境,以还原—强还原水体为主,沉积时水体整体较深,介于25~117 m,沉积速率低。浮游生物、介形虫、叶肢介、鱼类和菌藻类等生物繁殖生长,提供了高湖泊生产力,为页岩形成奠定了物质基础;另外,西部凹陷和东部凹陷是当时的沉降中心,水体较深,淡水—微咸水及咸水沉积环境易形成水体分层,且分层后处于还原状态,为页岩形成和保存提供了良好的沉积环境。

    (3) 古龙页岩有机质富集主要受古气候、古盐度、古水深、沉积速率和古湖泊生产力的耦合控制,在火山喷发和岩浆热流的外力影响作用下,为形成面积广、厚度大的黑色页岩提供了触发机制。

Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return