Advanced Search
Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents

SUN Peng, YANG HaiFeng, WANG FeiLong, TANG GuoMin, WANG GuangYuan, TANG YouJun. Response of Rare Earth Elements in Crude Oil to Biodegradation: A case from the Miaoxi Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 912-927. doi: 10.14027/j.issn.1000-0550.2024.061
Citation: SUN Peng, YANG HaiFeng, WANG FeiLong, TANG GuoMin, WANG GuangYuan, TANG YouJun. Response of Rare Earth Elements in Crude Oil to Biodegradation: A case from the Miaoxi Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 912-927. doi: 10.14027/j.issn.1000-0550.2024.061

Response of Rare Earth Elements in Crude Oil to Biodegradation: A case from the Miaoxi Sag, Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2024.061
Funds:

National Natural Science Foundatin of China 42202163

China Postdoctoral Science Foundatin Project 2022M710488

  • Received Date: 2023-08-24
  • Accepted Date: 2024-05-20
  • Rev Recd Date: 2024-04-22
  • Publish Date: 2024-06-10
  • Objective Rare earth elements (REE) in crude oil contain valuable geochemical information and are widely used in oil-oil (source) comparisons and sedimentary environment reconstructions. However, the effect of biodegradation on REE concentrations and patterns remains unclear. Methods Crude oil in the Miaoxi Sag of the Bozhong Depression in the Bohai Bay Basin has been subjected to varying degrees of biodegradation. In this study, 14 crude oil samples from the area were tested for molecular markers and inorganic elements, using Gas chronmato- graphy-Mass spectrometry (GC-MS) and Inductively coupled plasma-Mass spectrometry (ICP-MS). The degree of biodegradation in the crude oil was recognized by n-alkane intactness and 25-norbornane content. Results It was found that the crude oil samples in the study area were distributed from PM0 to PM7, with a high biodegradation gradient. Large gammacerane content and high levels of C35 hopanes were detected in the high-sulfur oil, which suggests they were derived from the contribution of more reducing and high salinity Es4 source rocks. The low-sulfur oil contained low levels of gammacerane and C35 hopanes, high C27 disteranes and high 4-methyl steranes, mainly derived from Es3 source rocks. Conclusions Comparison revealed that lacustrine crude oils generally have higher REE concentrations than marine crude oils. The REE concentrations and distribution patterns are useful for distinguishing lacustrine oils from marine oils. Sedimentary environment and maturity have limited influence on the REE concentration and distribution pattern in crude oil, whereas biodegradation has a large influence on these factors. The REE concentration in crude oil increases during the biodegradation process, and the REE patterns and some indicators (e.g., LaN/YbN, δEu, δCe) also change regularly with the degree of biodegradation. In summary, REE concentrations are useful markers for evaluating the extent of biodegradation over a slight to extreme range and in various petroleum systems.
  • [1] Henderson P. Rare earth element geochemistry[M]. Amsterdam: Elsevier, 1984: 347-378.
    [2] Murray R W, Buchholtz ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268-271.
    [3] 陈宇轩,刘建波. 微生物岩稀土元素恢复古海洋环境的研究综述[J]. 古生物学报,2020,59(4):499-511.

    Chen Yuxuan, Liu Jianbo. Review on the research of rare earth elements in microbialites[J]. Acta Palaeontologica Sinica, 2020, 59(4): 499-511.
    [4] 曹剑,吴明,王绪龙,等. 油源对比微量元素地球化学研究进展[J]. 地球科学进展,2012,27(9):925-936.

    Cao Jian, Wu Ming, Wang Xulong, et al. Advances in research of using trace elements of crude oil in oil-source correlation[J]. Advances in Earth Science, 2012, 27(9): 925-936.
    [5] Parnell J. Metal enrichments in solid bitumens: A review[J]. Mineralium Deposita, 1988, 23(3): 191-199.
    [6] Manning L K, Frost C D, Branthaver J F. A neodymium isotopic study of crude oils and source rocks: Potential applications for petroleum exploration[J]. Chemical Geology, 1991, 91(2): 125-138.
    [7] Ramirez-Caro D. Rare earth elements (REE) as geochemical clues to reconstruct hydrocarbon generation history[D]. Manhattan: Kansas State University, 2013: 1-77.
    [8] Mcintire M C. Rare earth elements (REE) in crude oil in the Lansing-Kansas city formations in central Kansas: Potential indications about their sources, locally derived or long-distance derived[D]. Manhattan: Kansas State University, 2014: 1-55.
    [9] Kwasny B. An investigation of the crude oil in the Spivey-Grabs field of south-central Kansas: An insight into oil type and origin[D]. Manhattan: Kansas State University, 2015: 1-75.
    [10] Jiao W W, Yang H J, Zhao Y, et al. Application of trace elements in the study of oil-source correlation and hydrocarbon migration in the Tarim Basin, China[J]. Energy Exploration & Exploitation, 2010, 28(6): 451-466.
    [11] Akinlua A, Torto N, Ajayi T R. Determination of rare earth elements in Niger Delta crude oils by inductively coupled plasma-mass spectrometry[J]. Fuel, 2008, 87(8/9): 1469-1477.
    [12] Shi C H, Cao J, Bao J P, et al. Source characterization of highly mature pyrobitumens using trace and rare earth element geochemistry: Sinian-Paleozoic paleo-oil reservoirs in South China[J]. Organic Geochemistry, 2015, 83-84: 77-93.
    [13] Gao P, Liu G D, Jia C Z, et al. Evaluating rare earth elements as a proxy for oil–source correlation. A case study from Aer Sag, Erlian Basin, northern China[J]. Organic Geochemistry, 2015, 87: 35-54.
    [14] Gao P, Liu G D, Wang Z C, et al. Rare earth elements (REEs) geochemistry of Sinian–Cambrian reservoir solid bitumens in Sichuan Basin, SW China: Potential application to petroleum exploration[J]. Geological Journal, 2017, 52(2): 298-316.
    [15] Chen Z H, Simoneit B R T, Wang T G, et al. Molecular markers, carbon isotopes, and rare earth elements of highly mature reservoir pyrobitumens from Sichuan Basin, southwestern China: Implications for Precambrian–Lower Cambrian petroleum systems[J]. Precambrian Research, 2018, 317: 33-56.
    [16] Niu Z C, Meng W, Wang Y S, et al. Characteristics of trace elements in crude oil in the east section of the south slope of Dongying Sag and their application in crude oil classification[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109833.
    [17] 赵野,杨海风,黄振,等. 渤海海域庙西南洼陷走滑构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率,2020,27(4):35-44.

    Zhao Ye, Yang Haifeng, Huang Zhen, et al. Strike-slip structural characteristics and its controlling effect on hydrocarbon accumulation in Miaoxinan Sag, Bohai Sea[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 35-44.
    [18] 薛永安,王飞龙,汤国民,等. 渤海海域页岩油气地质条件与勘探前景[J]. 石油与天然气地质,2020,41(4):696-709.

    Xue Yong’an, Wang Feilong, Tang Guomin, et al. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea[J]. Oil & Gas Geology, 2020, 41(4): 696-709.
    [19] 孙哲,于海波,彭靖淞,等. 渤海湾盆地庙西中南洼围区原油成因类型及分布主控因素[J]. 吉林大学学报(地球科学版),2021,51(6):1665-1677.

    Sun Zhe, Yu Haibo, Peng Jingsong, et al. Genetic types and main controlling factors of crude oil distribution in south-central Miaoxi Depression of Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(6): 1665-1677.
    [20] 刘丹丹,汤国民,王飞龙. 渤海海域东部凹陷烃源岩特征及油源分析[J]. 西安石油大学学报(自然科学版),2020,35(1):9-17,27.

    Liu Dandan, Tang Guomin, Wang Feilong. Characteristics of hydrocarbon source rocks and analysis of oil source in eastern sag of Bohai Sea area[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2020, 35(1): 9-17, 27.
    [21] 孙哲,彭靖淞,江尚昆,等. 渤海海域庙西中南洼围区烃源岩有机相与测井评价[J]. 岩性油气藏,2020,32(1):102-110.

    Sun Zhe, Peng Jingsong, Jiang Shangkun, et al. Organic facies and well logging evaluation of source rocks in centeral-south sag of Miaoxi Depression and its surrounding areas, Bohai Sea[J]. Lithologic Reservoirs, 2020, 32(1): 102-110.
    [22] 汤国民,王飞龙,万琳,等. 渤海海域莱州湾凹陷油源特征及原油成因类型[J]. 西安石油大学学报(自然科学版),2021,36(1):28-36,44.

    Tang Guomin, Wang Feilong, Wan Lin, et al. Characteristics of oil source and genetic types of crude oil in Laizhouwan Depression, Bohai Sea[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2021, 36(1): 28-36, 44.
    [23] Peters K E, Walters C C, Moldowan J M. The biomarker guide[M]. 2nd ed. New York: Cambridge University Press, 2004.
    [24] Larter S, Wilhelms A, Head I, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part 1: Biodegradation rates in petroleum reservoirs[J]. Organic Geochemistry, 2003, 34(4): 601-613.
    [25] Larter S, Huang H P, Adams J, et al. The controls on the composition of biodegraded oils in the deep subsurface: Part II-Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction[J]. AAPG Bulletin, 2006, 90(6): 921-938.
    [26] Larter S, Huang H P, Adams J, et al. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils[J]. Organic Geochemistry, 2012, 45: 66-76.
    [27] Sun P, Cai C F, Tang Y J, et al. A new approach to investigate effects of biodegradation on pyrrolic compounds by using a modified Manco scale[J]. Fuel, 2020, 265: 116937.
    [28] 肖洪,李美俊,杨哲,等. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J]. 地球化学,2019,48(2):161-170.

    Xiao Hong, Li Meijun, Yang Zhe, et al. Distribution patterns and geochemical implications of C19~C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170.
    [29] Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17(1): 47-61.
    [30] Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986, 9(2): 83-99.
    [31] Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352.
    [32] Wang W F, Qin Y, Sang S X, et al. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China[J]. International Journal of Coal Geology, 2008, 76(4): 309-317.
    [33] Abanda P A, Hannigan R E. Effect of diagenesis on trace element partitioning in shales[J]. Chemical Geology, 2006, 230(1/2): 42-59.
    [34] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
    [35] Pan C C, Feng J H, Tian Y M, et al. Interaction of oil components and clay minerals in reservoir sandstones[J]. Organic Geochemistry, 2005, 36(4): 633-654.
    [36] Barth T, Høiland S, Fotland P, et al. Acidic compounds in biodegraded petroleum[J]. Organic Geochemistry, 2004, 35(11/12): 1513-1525.
    [37] Tomczyk N A, Winans R E, Shinn J H, et al. On the nature and origin of acidic species in petroleum. 1. Detailed acid type distribution in a California crude oil[J]. Energy & Fuels, 2001, 15(6): 1498-1504.
    [38] 窦立荣,侯读杰,程顶胜,等. 高酸值原油的成因与分布[J]. 石油学报,2007,28(1):8-13.

    Dou Lirong, Hou Dujie, Cheng Dingsheng, et al. Origin and distribution of high-acidity oils[J]. Acta Petrolei Sinica, 2007, 28(1): 8-13.
    [39] Chai Z, Chen, Z H, Patience R., et al. Light hydrocarbons and diamondoids in deep oil from Tabei of Tarim Basin: Implications on petroleum alteration and mixing[J]. Marine and Petroleum Geology, 2022,138:105565.
    [40] Chang X C, Wang T G, Li Q M, et al. Charging of Ordovician reservoirs in the Halahatang Depression (Tarim Basin, NW China) determined by oil geochemistry[J]. Journal of Petroleum Geology, 2013, 36(4): 383-398.
    [41] Zhu G Y, Zhang S C, Su J, et al. Alteration and multi-stage accumulation of oil and gas in the Ordovician of the Tabei uplift, Tarim Basin, NW China: Implications for genetic origin of the diverse hydrocarbons[J]. Marine and Petroleum Geology, 2013, 46: 234-250.
    [42] Akinlua A, Ajayi T R, Adeleke B B. Organic and inorganic geochemistry of northwestern Niger Delta oils[J]. Geochemical Journal, 2007, 41(4): 271-281.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(2)

Article Metrics

Article views(117) PDF downloads(22) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-08-24
  • Revised:  2024-04-22
  • Accepted:  2024-05-20
  • Published:  2024-06-10

Response of Rare Earth Elements in Crude Oil to Biodegradation: A case from the Miaoxi Sag, Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2024.061
Funds:

National Natural Science Foundatin of China 42202163

China Postdoctoral Science Foundatin Project 2022M710488

Abstract: Objective Rare earth elements (REE) in crude oil contain valuable geochemical information and are widely used in oil-oil (source) comparisons and sedimentary environment reconstructions. However, the effect of biodegradation on REE concentrations and patterns remains unclear. Methods Crude oil in the Miaoxi Sag of the Bozhong Depression in the Bohai Bay Basin has been subjected to varying degrees of biodegradation. In this study, 14 crude oil samples from the area were tested for molecular markers and inorganic elements, using Gas chronmato- graphy-Mass spectrometry (GC-MS) and Inductively coupled plasma-Mass spectrometry (ICP-MS). The degree of biodegradation in the crude oil was recognized by n-alkane intactness and 25-norbornane content. Results It was found that the crude oil samples in the study area were distributed from PM0 to PM7, with a high biodegradation gradient. Large gammacerane content and high levels of C35 hopanes were detected in the high-sulfur oil, which suggests they were derived from the contribution of more reducing and high salinity Es4 source rocks. The low-sulfur oil contained low levels of gammacerane and C35 hopanes, high C27 disteranes and high 4-methyl steranes, mainly derived from Es3 source rocks. Conclusions Comparison revealed that lacustrine crude oils generally have higher REE concentrations than marine crude oils. The REE concentrations and distribution patterns are useful for distinguishing lacustrine oils from marine oils. Sedimentary environment and maturity have limited influence on the REE concentration and distribution pattern in crude oil, whereas biodegradation has a large influence on these factors. The REE concentration in crude oil increases during the biodegradation process, and the REE patterns and some indicators (e.g., LaN/YbN, δEu, δCe) also change regularly with the degree of biodegradation. In summary, REE concentrations are useful markers for evaluating the extent of biodegradation over a slight to extreme range and in various petroleum systems.

SUN Peng, YANG HaiFeng, WANG FeiLong, TANG GuoMin, WANG GuangYuan, TANG YouJun. Response of Rare Earth Elements in Crude Oil to Biodegradation: A case from the Miaoxi Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 912-927. doi: 10.14027/j.issn.1000-0550.2024.061
Citation: SUN Peng, YANG HaiFeng, WANG FeiLong, TANG GuoMin, WANG GuangYuan, TANG YouJun. Response of Rare Earth Elements in Crude Oil to Biodegradation: A case from the Miaoxi Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 912-927. doi: 10.14027/j.issn.1000-0550.2024.061
  • 稀土元素(Rare Earth Element,REE)是指从La到Lu的镧系元素(原子序数57~71)。这类元素拥有相似的化学行为,记录着沉积物形成过程中的各种物理、化学和环境变化等信息[12]。因此,REE已经成为古老和现代沉积物的物质来源追踪和环境重建的重要工具[34]。REE也是原油或沥青中无机元素的重要组成部分,其在含油气系统方面的应用一直被广泛关注,目前研究主要集中在油—油(源)对比和沉积环境重建方面[414]。REE中的Dy浓度可以区分不同来源的固体沥青[5];Nd同位素(143Nd/144Nd)和Sm/Nd具有油源对比的潜力[6];REE浓度和模式可以区分Kansas和Oklahoma油田不同地区原油的来源和成因[79]。固体沥青中也富含REE,固体沥青REE可以作为复杂含油气系统中油—油(源)对比的补充方法[1114]。Jiao et al.[10]通过对比塔里木盆地海相端元原油和塔中地区奥陶系原油中的REE组成,判识了塔中地区的奥陶系原油为混合来源;Chen et al.[15]结合分子标志物、微量元素和REE数据,报道了四川盆地安岳气田寒武系储层沥青的烃源岩沉积于还原环境。Niu et al.[16]利用原油中的微量元素和REE区分了渤海湾盆地东营凹陷不同来源的原油。

    干酪根有机质中含有一定量的REE[56],其生成的油气可继承有机质及其沉积成岩环境中特有的REE配分模式[79],原油中初始的REE主要来自烃源岩中的有机质,因此原油中初始的REE浓度和配分模式主要受控于有机质类型或烃源岩沉积环境。然而,原油在运移、聚集过程中还可能受到热蚀变和生物降解等次生改造,这些烃—水—岩体系的改变可能影响原油中REE浓度和配分模式[10,13]。塔里木盆地TD2井严重热蚀变的原油具有异常高的REE浓度[10],准噶尔盆地独山子地区油苗中相对较高的REE浓度可能是生物降解作用所导致[13]。以上报道仅对该现象进行了阐述,然而生物降解作用等油气藏次生改造过程对REE浓度和配分模式的影响尚未系统研究。因此,迫切需要进一步了解REE在油气成藏过程中的地球化学行为。渤海湾盆地渤中坳陷庙西凹陷具有较大的油气资源潜力,该地区相继发现了渤中36、蓬莱31等大中型油田[17]。该区复杂的断裂疏导体系导致原油普遍经历了生物降解作用,且生物降解程度具有一定的差异[1819],这一含油气系统为研究生物降解作用对REE的响应提供了良好实例。本文以庙西凹陷14个原油为例,对原油样品中的生物标志物、无机元素进行了测试,利用传统的生物标志物明确了原油样品的生物降解程度和成因差异,结合前人报道的数据,系统分析了成因差异、成熟度和生物降解作用对REE浓度和配分模式的影响。研究结果进一步明确了原油中REE的配分模式和影响因素,为更好的应用REE解决油气成藏问题提供了依据。

  • 庙西凹陷位于渤海湾盆地的东部海域地区,隶属于渤中坳陷(图1a)。该凹陷是在元古界—中生界基底之上发育的NNE走向的新生代盆缘凹陷,其东部紧邻胶辽隆起,西北部为渤南低凸起,西部及南部与黄河口东洼、莱州湾东北洼相通,北部为庙西南凸起[17]图1b)。

    Figure 1.  Sketch map of study area and sampled wells

    该凹陷主要发育古近系和新近系两套地层。其中,古近纪为裂陷演化阶段,发育扇三角洲—辫状河三角洲砂砾岩和湖相泥岩,自下而上为孔店组(Ek)、沙河街组(Es)和东营组(Ed[1819]。新近纪为坳陷演化阶段,发育河流相和浅水三角洲沉积,自下而上分为馆陶组(Ng)和明化镇组(Nm)(图1c)。沙河街组的湖相沉积地层是渤海湾盆地的重要生烃层系,可分为Es4、Es3、Es2和Es1。其中,Es4和Es3的暗色泥岩为研究区的主力生烃层系[2022]图1c)。

    庙西凹陷是Es4、Es3优质烃源岩的叠合发育区,相继发现了渤中36、蓬莱31等大中型油田,具有较大的油气资源潜力[17]。目前已发现高硫油、低硫油两种类型的原油,前人研究表明高硫油主要来自沙四段烃源岩贡献,低硫油来自沙三段烃源岩贡献[1722]。研究表明高丰度油藏均与优质烃源岩相伴而生[18],具有近源成藏的特征[20],蓬莱25区和垦利6-4区原油类型主要受烃源岩控制,而蓬莱31区和渤中36区原油类型及分布受断裂和烃源岩共同控制[19]

  • 本次研究从渤海湾盆地渤中坳陷庙西凹陷采集了14个原油样品,样品基本信息如表1所示。这些原油样品来自8口不同生产井或同一生产井的不同产层深度,采样井分布位置如图1b所示。这些样品的含硫量具有明显的差异,分为低硫油和高含硫两类。其中,低硫油含硫量小于0.52%,高硫油含硫量大于1.00%。

    样品编号井号深度/m层位密度/(g/cm3123456789101112PM硫含量
    A-1A1 119~1 207N10.9900.300.690.130.650.220.4935.7327.7736.500.450.440.596低硫油
    A-2A1 267~1 317N10.9800.310.760.110.690.170.3834.7526.0039.250.420.390.286
    A-3A1 449~1 472N10.9800.270.790.110.750.170.4235.5625.7038.740.400.380.266
    B-1B1 284N1g0.9440.200.790.090.590.150.5732.2823.8643.860.370.320.05~3.5
    B-2B1 417~1 441N1g0.9300.250.820.130.690.210.5835.0026.8838.120.350.290.02~3.5
    C-1C1 040N1g1.0100.260.540.360.540.190.4630.6527.6941.660.510.424.267
    G-1G2 561~2 565Es0.8900.250.860.050.660.220.4836.5623.1540.290.350.3001
    G-2G2 585~2 603Es0.8900.240.840.060.730.200.4634.4526.2939.250.360.3201
    H-1H2 153~2 181Ed0.8800.370.900.080.670.270.3637.5821.1441.290.400.3201
    D-1D1 297~1 322N1m0.9940.270.930.231.110.100.2930.7425.9643.290.420.380.165高硫油
    D-2D1 552~1 570N1g0.9510.311.020.211.000.150.3033.8323.9942.180.410.3502
    E-1E1 507~1 530N1g0.9500.360.960.130.820.180.3533.6025.3341.070.490.3703
    E-2E1 241~1 259N1m0.9900.400.940.120.870.180.2433.5323.7842.690.550.400.145
    F-1F2 132Ed0.9270.280.990.230.980.090.3629.3924.5146.100.470.3900
    注:1=C19/C23TT;2=C24TeT/C26TT;3=G/C30H;4=C35/C34H;5=C27Ds/C27RS;6=C30/C29RS;7=C27RS(%);8=C28RS(%);9=C29RS(%);10=Ts/(Ts+Tm);11=ββ/(ββ+αα)-C29RS;12=C29NH/C30H.TT:三环萜烷;Tet.四环萜烷;H.藿烷;G.伽马蜡烷;PS.孕甾烷;DS.升孕甾烷;RS.规则甾烷;NH.25⁃降藿烷;PM.生物降解程度;低硫油:硫含量低于0.52%;高硫油:硫含量高于1.00%。

    Table 1.  Basic information and organic molecular parameters of the crude oil in the study area

  • 采用常规硅胶柱层析法将原油中的饱和烃分离出来,然后采用气相色谱—质谱(Gas Chronmato- graphy-Mass Spectrometry,GC-MS)进行分析。将正己烷加入原油样品中,溶解沉淀并将沥青质过滤出来;将溶液部分转移至填充氧化铝和硅胶的层析柱中,然后依次加入正己烷、正己烷/二氯甲烷混合物(体积比1∶2)和二氯甲烷/甲醇混合物(体积比93∶7)来分离饱和烃、芳香烃和非烃。使用安捷伦6890A GC-5975I MS来鉴定饱和烃组分,GC配有HP-5 MS柱(60 m×0.25 mm×0.25 μm)。GC温度设定为50 ℃,持续1 min,然后以3 ℃/min的速度升至250 ℃,以20 ℃/min的速度升至310 ℃,并保持10 min。GC-MS检测出来的饱和烃类化合物的分布如图2图3所示。由该类化合物所计算的一些重要地球化学参数列于表1

    Figure 2.  Mass m/z 85 and m/z 177 chromatograms for Miaoxi Sag crude oil

    Figure 3.  Mass chromatograms of Miaoxi Sag crude oil of different types and biodegradation degree, showing the distribution of terpanes (m/z 191) and steranes (m/z 217)

    无机元素的测定,需要用酸消解法对原油样品进行预处理。具体操作如下:将25 mg的原油样品放入可密封的聚四氟乙烯杯中,依次加入HNO3、HF和HCl,放入烘箱预热4 h,温度为150 ℃;然后再加入HNO3和HF溶解样品,在180 ℃的烘燥箱中加热48 h;冷却后,向溶液中加入HClO4,HNO3,放置烘箱中150 ℃保持12 h。最后,用超纯水对剩下的溶液进行稀释,转移至50 mL的容量瓶中,用电感耦合等离子体质谱(Inductively Coupled Plasma-Mass Spectrometry,ICP-MS)测定原油中的稀土元素,并采用Rh作为内标来定量元素的浓度。每5个样品进行重复样检测,确保误差值小于1%。原油样品中检测到的REE的浓度列于表2

    sample IDA-1A-2A-3B-1B-2C-1G-1G-2H-1D-1D-2E-1E-2F-1
    La1.671 81.661 52.329 10.182 50.009 44.579 80.020 30.008 50.006 70.835 60.007 70.010 90.501 50.007 3
    Ce3.117 33.287 84.784 00.358 20.023 48.824 40.036 50.022 10.012 81.748 90.014 10.020 91.059 60.019 4
    Pr0.381 10.412 20.575 60.046 70.004 01.110 50.006 50.003 40.003 80.228 00.003 70.004 30.133 30.001 9
    Nd1.656 91.863 62.530 00.226 40.013 25.094 80.016 10.008 10.008 11.132 70.007 80.011 60.634 00.006 8
    Sm0.403 00.537 40.693 60.066 60.004 11.384 20.005 90.004 10.002 60.340 40.002 80.003 50.173 70.001 7
    Eu0.130 00.156 60.177 90.025 60.002 10.451 00.008 00.001 80.002 00.107 80.002 60.002 80.051 80.000 4
    Gd0.454 30.773 30.909 70.119 50.006 11.856 40.005 10.002 20.002 80.538 60.003 00.004 30.262 80.001 2
    Tb0.066 30.118 80.135 60.020 10.001 70.270 20.002 50.001 30.002 30.084 00.002 60.002 70.040 20.000 2
    Dy0.429 80.859 20.918 20.136 60.006 81.667 90.004 80.001 20.002 30.586 90.003 50.004 30.246 80.001 6
    Ho0.080 70.179 70.175 20.032 00.002 60.338 50.003 20.001 70.002 20.120 60.002 60.003 00.051 10.000 2
    Er0.217 10.515 00.455 30.085 70.006 60.867 80.005 70.001 80.002 10.310 20.002 60.004 60.119 70.001 1
    Tm0.025 00.060 30.048 70.012 40.001 80.091 40.002 30.001 30.002 20.036 00.002 00.002 80.014 40.000 2
    Yb0.147 30.349 90.274 50.063 10.004 40.520 30.003 10.001 90.002 80.199 20.002 70.004 00.071 80.000 7
    Lu0.020 40.052 30.036 90.009 40.001 50.069 70.002 70.001 70.002 40.028 30.002 30.003 40.012 50.000 1
    ΣREE8.800 810.827 714.044 41.384 70.087 627.126 90.122 60.061 00.055 26.297 30.059 90.083 33.373 20.042 9
    ΣLREE7.360 17.919 111.090 10.905 90.056 221.444 70.093 30.048 00.036 04.393 40.038 60.054 22.553 90.037 5
    ΣHREE1.440 82.908 62.954 20.478 80.031 45.682 20.029 40.013 00.019 21.903 80.021 30.029 10.819 40.005 3
    V/Ni0.040.040.030.030.030.050.030.030.030.100.060.060.080.11
    ΣLREE/ΣHREE5.112.723.751.891.793.773.173.701.872.311.811.863.127.03
    Sm/Nd0.240.290.270.290.310.270.360.500.320.300.360.300.270.25
    δEu1.431.141.051.351.981.326.902.863.431.194.213.421.141.44
    δCe0.900.920.950.900.880.900.730.950.580.920.610.700.951.22
    Pr/Pr*0.980.970.970.951.330.961.571.482.170.932.031.620.940.95
    δTb0.910.880.900.951.560.933.024.895.480.904.783.820.951.04
    δHo0.971.001.001.091.411.042.244.443.691.043.152.481.090.63
    δTm0.980.990.961.182.380.953.804.746.401.015.264.541.091.41
    LaN/YbN0.840.350.630.210.160.650.480.330.180.310.210.200.520.76
    LaN/SmN0.600.450.490.400.330.480.500.300.370.360.400.450.420.61
    GdN/YbN1.871.342.011.150.832.160.990.680.621.640.670.652.211.02
    LaN/NdN0.900.790.820.720.630.801.120.940.740.650.880.840.700.94
    DyN/SmN1.261.901.572.431.961.430.980.341.062.041.511.461.691.10
    DyN/YbN1.761.482.021.310.931.930.940.360.511.780.780.652.071.36
    DyN/ErN1.211.021.230.970.621.170.520.400.671.150.830.571.260.89
    EuN/LuN2.541.191.921.080.572.571.190.420.331.510.440.331.651.28
    注:ΣREE=稀土元素总浓度;ΣLREE=La+Ce+Pr+Nd+Sm+Eu;ΣHREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;LaN=(La)样品/(La)PAAS;δEu= EuN/(SmN×GdN)×0.5;δCe=CeN/(LaN×PrN)×0.5;Pr/Pr*=2PrN/(CeN+NdN);δTb=TbN/(GdN×DyN)×0.5;δHo=HoN/(DyN×ErN)×0.5;δTm=TmN/(ErN×YbN)×0.5;N为后太古代平均澳大利亚页岩(Post Archean Australian Shale,PAAS)归一化比值。

    Table 2.  Rare earth element (REE) concentrations (μg/g) and REE ratios in Miaoxi Sag crude oil

  • 层次聚类分析(Hierarchical Cluster Analysis, HCA)利用IBM SPSS Statistics (22.0版本)来完成。选定的参数通过标准差方式标准化。操作时采用系统聚类形式,不指定方案范围,组间连接和Euclidean距离的聚类方法。

  • 前人在原油生物降解程度的评价方面做了大量的探索[2327]。目前PM评价标准被采用最多,根据不同类别化合物抗生物降解能力差异将生物降解等级分为级别PM0~PM10。对庙西凹陷的原油样品来说,其生物降解等级分别为PM0、PM1、PM2、PM3、PM5、PM6和PM7(表1)。

    (1) 6个原油样品正构烷烃没有被完全消耗,饱和烃TIC基线平稳,而且未检测到严重生物降解的标志物25-降藿烷(图2a~d),指示其PM<4[2327]。其中,样品F-1正构烷烃最为完整,低碳数的正构烷烃也没有被消耗(图2a),PM=0;样品H-1、G-1和G-2仅低碳数正构烷烃的缺失(图2b),PM=1;样品D-2正构烷烃大量损耗,生物降解抗性更高的类异戊二烯也发生了轻微损耗(图2c),PM=2;样品E-1正构烷烃严重损耗,类异戊二烯大量损耗(图2d),PM=3。

    (2) 6个原油样品正构烷烃已经被完全消耗,饱和烃TIC出现了明显的“UCM”鼓包,而且在原油中可以检测到大量的25降藿烷(图2e~g),指示其PM>4[2327]。其中,样品E-2和D-1的25降藿烷丰度远低于藿烷(图2e),C29NH/C30H值仅为0.14和0.16(表1),PM=5;样品A-3、A-2和A-1的25-降藿烷含量大量增加,藿烷含量大量降低(图2f),C29NH/C30H值分别为0.26、0.28和0.59,PM=6;样品C-1的25-降藿烷类极为丰富,藿烷几乎被完全消耗(图2g),规则甾烷也发生了明显损耗(图3d),C29NH/C30H值高达4.26,PM=7。

    (3) 样品B-1和B-2既含有完整系列的正构烷烃,还检测到25-降藿烷(图2h),指示其为轻微和严重生物降解油的混合物[23]。依据PM等级和密度关系推测其降解等级为~PM3.5(图3d)。

    值得注意的是,高硫油和低硫油样品的PM等级均和密度呈现出较好的线性关系(R2>0.9,图4),表明利用PM标准划定的生物降解程度是可靠的。

    Figure 4.  Cross⁃plot of PM scale vs. density

  • 成因对比可以了解储层中的原油是否具有同源性。统计学中的HCA方法能够综合多项参数特征,识别并剔除干扰数据,已经广泛地应用于原油的成因对比[16,23]

    考虑到研究区烃源岩发育条件和原油成藏过程较为复杂[2122],首先利用HCA方法对原油样品进行多参数成因对比。选用的10个对比参数包括C19/C23三环萜烷、C26/C25三环萜烷、C27重排甾烷/C27规则甾烷、C24四环萜烷/C26三环萜烷、伽马蜡烷/C30藿烷、C35/C34升藿烷、C27规则甾烷(%)、C28规则甾烷(%)、C29规则甾烷(%)、C30/C29甾烷。其中,C19/C23三环萜烷、C26TT/C25TT和C27重排甾烷/C27规则甾烷主要反映烃源岩沉积环境[23,28],C24四环萜烷/C26三环萜烷、伽马蜡烷/C30藿烷和C35/C34升藿烷指示烃源岩沉积时水体盐度和还原程度[29],C27规则甾烷(%)、C28规则甾烷(%)、C29规则甾烷(%)和C30/C29甾烷记录了母质输入[30],这些参数都是渤海湾盆地油源研究中常用的分子指标[16,27]。HCA分析显示,除样品C-1外,其他样品依照低硫和高硫分别聚为两类(图5a)。庙西凹陷的高硫油和低硫油分别具有成因联系,但两者之间存在成因差异。样品C-1应该是极严重的生物降解作用导致参数蚀变造成的偏离[31],如伽马蜡烷/C30藿烷就由于蚀变呈现异常高值(图5b)。

    Figure 5.  Genetic relationships of crude oil samples

    相比于低硫油,高硫油具有高丰度的C24四环萜烷、伽马蜡烷和C35升藿烷(图3),C24四环萜烷/C26三环萜烷、伽马蜡烷/C30藿烷和C35/C34升藿烷值也较高(图5b,c)。已有研究表明,渤海湾盆地沙四段烃源岩在还原性和盐度较强的沉积环境下形成,以高丰度的C24四环萜烷、伽马蜡烷和C35升藿烷为特征[2930],与发现的高硫油具有相似的特征,所以高硫油来自沙四段烃源岩的贡献,低硫油来自沙三段烃源岩的贡献。因此,高硫油相比于低硫油而言,其烃源岩应形成于还原性更强、盐度更高的水体环境,这一认识和前人的研究结果一致[2930]

  • ΣREE浓度和LaN/YbN比值常被用来表征REE的模式[1,32]。Gao et al.[13]收集了世界各地不同类型原油和有机提取物的REE数据,利用ΣREE浓度和LaN/YbN比值的交会图展示了不同成因原油的分布特征(图6)。此次在其基础上添加了渤海湾盆地东营凹陷的陆相原油、准噶尔盆地的陆相原油,和塔里木盆地的海相原油的样品。如图6所示,原油的LaN/YbN普遍大于0.1,和泥页岩中干酪根(或有机组分)的REE模式一致[33]。而煤的抽提物中LaN/YbN<0.1,显示出和其他有机质来源不一致的分布特征[32]。此外,陆相成因油的ΣREE浓度普遍大于海相油的ΣREE浓度。这表明LaN/YbN和ΣREE浓度可以用来区分不同成因的原油。庙西凹陷原油样品的LaN/YbN>0.1,ΣREE浓度>0.06 μg/g,和典型的陆相成因油特征一致(图6)。

    Figure 6.  ΣREE concentration vs. LaN/YbN (modified from reference [13])

    前文已述,本次研究的庙西凹陷原油样品在水体氧化程度上具有明显的不同,高硫油来自还原性更强的咸水环境烃源岩,而低硫油来自沙三段氧化、淡水环境的烃源岩,然而高硫油和低硫油的LaN/YbN和ΣREE浓度在图6中并没有显示出差异。但还原性强的咸水环境中,C33-C35藿烷系列含量逐渐增高,因此C35H/C34H参数可以表征水体的氧化程度和盐度。显然,庙西凹陷和东营凹陷原油的ΣREE浓度、LaN/YbN与C35H/C34H同样不具备明显的相关性(图7a,b)。基于以上两方面的证据,认为水体氧化程度和盐度的变化对REE浓度和模式的影响有限。

    Figure 7.  (a⁃c) C35H/C34H, Ts/(Ts+Tm) and ββ/(ββ+αα)⁃C29RS vs. ΣREE concentrations; (d⁃f) C35H/C34H, Ts/(Ts+Tm) and ββ/(ββ+αα)⁃C29RS vs. LaN/YbN

    原油的成熟度可以通过生物标志化合物参数进行表征,由于庙西凹陷原油普遍经历了生物降解,因此在选择成熟度参数时需选取抗生物降解能力强的参数进行表征。Ts、Tm及C29甾烷抗生物降解能力强,是生物降解原油中表征成熟度的可靠参数。庙西凹陷和东营凹陷原油,以及二连盆地原油的ΣREE浓度和LaN/YbN和成熟度参数Ts/(Ts+Tm)、ββ/(ββ+αα)-C29RS不具备相关性(图7c~f),表明成熟度对REE浓度和模式的影响也比较有限。

  • 庙西凹陷原油中检测到从La到Lu的14个REE元素,其总浓度(ΣREE)为0.06~27.13 μg/g(表2)。轻稀土元素(LREE)和重稀土元素(HREE)的浓度分别为0.04~21.44 μg/g和0.01~5.68 μg/g,以LREE占主导(图8a)。REE分布曲线显示不同样品中的元素浓度存在显著差异(图8b)。PAAS标准化后的REE模式呈现略向右上倾斜的趋势(图8c),指示HREE相对更富集。

    Figure 8.  Rare earth element distribution of crude oil in the Miaoxi Sag

    大部分原油样品的ΣREE浓度和饱和烃含量呈负相关关系,和非烃含量呈正相关,但与芳香烃和沥青质含量没有表现出相关性(图9)。一般认为REE主要赋存在非烃和沥青质组分中,并且随饱和烃、芳烃馏分的降低而增加。样品B-1可能是混合作用造成的偏离。考虑到族组分还受母质来源的影响,高硫油的伽马蜡烷/C30藿烷和C35/C34升藿烷范围又较宽,部分高硫油在图9中的偏离可能是沉积环境的影响所致。

    Figure 9.  ΣREE concentration vs. content of (a) saturates; (b) aromatics; (c) resins; (d) asphaltenes

    REE浓度的HCA分析也是油—油(源)对比常用的手段。庙西凹陷原油样品REE的HCA分析结果表明,原油样品可以分为A和B两个大类,有趣的是高硫油和低硫油没有分别聚集在一起,HCA结果和原油的生物降解程度呈现为良好的耦合关系(图10)。A1类原油的PM等级为0~5,C29NH/C30H为0~0.14;A2类原油的PM等级为5~6,C29NH/C30H为0.16~0.59;B类原油的PM等级为7,C29NH/C30H为4.26。这表明原油中的REE浓度和生物降解程度有密切的联系,可用于不同生物降解程度原油的区分。在轻微生物降解阶段(PM<4)原油中稀土元素的变化并不明显,当发生严重—强烈生物降解时(PM>4),ΣREE、ΣLREE、ΣHREE和单个REE的浓度均随PM等级的增大而显著增加(图11)。由此可见,严重—强烈生物降解作用使得庙西凹陷原油中的REE浓度不断富集,这是因为随着生物降解程度的增加,原油中的烃类成分被消耗,非烃及沥青质变得相对富集,导致稀土元素浓度增加。

    Figure 10.  (a) Dendrogram produced by cluster analysis using ΣREE concentration; (b) histogram of PM scale; (c) histogram of C29NH/C30H

    Figure 11.  PM scale vs. concentration of (a) ΣREE; (b) ΣLREE; (c) ΣHREE; (d) La; (d) Eu; (f) Yb

    庙西凹陷高硫油和低硫油PAAS规范化后的REE模式没有显示出明显不同(图8),指示其成因差异对原油样品的REE配分模式的影响有限。庙西凹陷高硫油和低硫油的这些参数也没有表现出不同(表2)。前人还引入ΣLREE/ ΣHREE、Sm/Nd、LaN/YbNδEu、δCe和Pr/Pr*等表征REE分布模式的参数来进行沉积环境重建和油—油(源)对比[6,13,34]。然而,随生物降解程度增强,PAAS规范化后的REE分布曲线变得更为平滑(图6c),指示不同的REE元素在生物降解过程中增加程度存在差异。例如Gd和Dy的增加程度就明显高于Eu和Tb,这一点由稀土元素指标随生物降解程度增加所发生的规律性变化所证实。随生物降解程度增加,ΣLREE/ΣHREE和LaN/YbN表现出先降低后增加的趋势。在轻微生物降解阶段(PM<4),ΣLREE/ΣHREE和LaN/YbN显著下降,在严重—强烈生物降解阶段(PM>4)时,ΣLREE/ΣHREE和LaN/YbN表现为增加的趋势。Sm/Nd、δEu和Pr/Pr*随生物降解程度的增加均呈现为降低的趋势,δCe表现为微弱增加的趋势(图12)。需要注意的是,δEu和Pr/Pr*随生物降解程度的增加而明显减小,具备作为生物降解程度评价指标的潜力。模仿LaN/YbN构建的GdN/YbN、DyN/ErN和EuN/LuN几个新参数也和PM等级显示良好的相关性(图12)。这种现象可能与生物降解对储层中油—水—岩相互作用的影响有关。在原油运移聚集过程中,会发生复杂的油—水—岩相互作用[35]。石油中的稀土元素除了来源于烃源岩外,还可能来源于地层水和储集岩。生物降解过程会产生一种酸性物质,从而影响原油与储层矿物的相互作用。原油的酸性随着生物降解程度的增加而增强[36]。大量研究表明,生物降解过程中形成的有机酸会极大地影响陆相油的总酸值的结果[37],例如苏丹Muglad和Melut盆地以及中国渤海湾盆地的陆相油的总酸值随着生物降解水平的增加而增加,特别是当PM≥4时[38]。因此,这些有机酸可能与烃源岩热演化过程中释放的有机酸相似,能够溶解储集层矿物,析出稀土元素,导致原油中稀土元素的差异富集。另一方面,生物降解过程中产生的有机酸盐也可以为稀土元素提供大量载体。综上,生物降解作用可以使REE中的各个元素浓度均有所增加,但不同元素浓度的增加程度存在差异。

    Figure 12.  PM scale vs. REE ratios

  • 研究表明原油中的稀土元素主要来自烃源岩中的有机质,而沉积环境和成熟度对稀土元素的影响有限。原油在运聚的过程中,次生改造作用会导致稀土元素发生改变,而生物降解作用是油气藏中最为普遍的一种次生改造作用。生物降解作用不仅出现在浅层油气藏中[27](比如渤海湾盆地歧口凹陷新近系油气藏),还出现在一些深层油气藏中[39](比如塔里木盆地塔北隆起的奥陶系油气藏)。在生物降解的过程中,微生物会氧化破坏原油中烃类,使原油的品质发生改变,进而影响勘探和开采策略的选择[32]。因此,生物降解作用长期以来都是油气藏研究的重要内容之一。

    原油中的有机分子标志物一直是生物降解作用的主要依据[23,26],这对于低降解程度的原油评估也非常有效。然而,高程度的生物降解会严重破坏或甚至完全消耗掉分子标志物,利用这些方法准确评价生物降解程度时会存在一些困难。如艾伯塔Peace River地区的油砂绝大部分降解等级均可定为PM5,但其黏度却呈数量级的差别[40]

    本研究结果显示,REE浓度随生物降解程度的增加而显著增大,在高降解原油中更丰富,这和常规的分子标志物正好相反。原油中REE的初始浓度较低,而且受烃源岩沉积环境或成熟度的影响有限,因而轻微程度生物降解作用造成的REE浓度增加就能够掩盖掉初始来源造成的样品间浓度差异,表现为高REE浓度的特征。也就是说,轻微到极端各个程度的生物降解作用都能够在REE浓度上有所体现。此外,REE浓度随生物降解增强显著增加的情况普遍存在,这一现象也出现在其他类型的含油气系统中。如图13所示,准噶尔盆地车排子凸起陆相火山岩油气藏和塔里木盆地塔北隆起海相碳酸盐岩油气藏中原油的密度越大,ΣREE浓度越高。考虑到生物降解作用是这些油气藏原油密度增加的主要原因[41],陆相火山岩和海相碳酸盐岩含油气系统中的原油ΣREE浓度也随生物降解作用增强而增加。这些原油的ΣREE浓度越高,饱和烃TIC的“UCM”越明显,m/z 177检测到的25-降藿烷越丰富的事实更加证实了这一点(图13a2,b2)。此外,Akinlua et al.[42]在Niger Delta的含油气系统中也观察到了这一现象。

    Figure 13.  Relationship between ΣREE concentration and extent of crude oil biodegradation

    综上,原油中REE浓度能够作为生物降解作用指标,而且适用于轻微降解到极端的各个阶段和各种含油气系统的生物降解程度评价。

  • (1) 庙西南洼陷的原油正构烷烃、类异戊二烯、藿烷和甾烷遭受了不同程度的损耗,指示其遭受了从无到强烈程度的生物降解作用,对应的生物降解等级为PM0~PM7。利用母源和沉积环境相关的10项分子参数进行的层次聚类分析结果显示,低硫油和高硫油具有不同的来源,高硫油来自沙四段烃源岩的贡献,低硫油来自沙三段烃源岩贡献。

    (2) REE主要赋存于原油中的非烃和沥青质组分,其浓度和配分模式可以用来区分海相和陆相成因油,陆相油比海相油的REE浓度高。烃源岩的沉积环境和原油成熟度的变化对REE浓度和配分模式的影响有限。

    (3) 生物降解作用会导致原油中REE发生改变,随生物降解作用增强,REE浓度不断增加。由于不同元素的增加程度不同,REE模式和一些地球化学指标,比如LaN/YbNδEu和δCe,也随生物降解程度的增加而变化。总之,REE可以作为标志物应用于轻微到极端各个阶段,各种类型含油气系统的生物降解程度评价。

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return