Advanced Search
Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents

FU Yin, WANG ZuoDong, ZHANG Ting, WANG WenJun, LI XiaoBin, WANG ZhiYong. Detection and Geological Significance of Carotenoid-Derived Alkanes in the Source Rocks : A case of well Malu 1, Lucaogou Formation, Santanghu Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1092-1106. doi: 10.14027/j.issn.1000-0550.2024.013
Citation: FU Yin, WANG ZuoDong, ZHANG Ting, WANG WenJun, LI XiaoBin, WANG ZhiYong. Detection and Geological Significance of Carotenoid-Derived Alkanes in the Source Rocks : A case of well Malu 1, Lucaogou Formation, Santanghu Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1092-1106. doi: 10.14027/j.issn.1000-0550.2024.013

Detection and Geological Significance of Carotenoid-Derived Alkanes in the Source Rocks : A case of well Malu 1, Lucaogou Formation, Santanghu Basin

doi: 10.14027/j.issn.1000-0550.2024.013
Funds:

National Natural Science Foundation of China 42272187

National Natural Science Foundation of China 42102195

  • Received Date: 2023-07-20
  • Accepted Date: 2024-02-28
  • Rev Recd Date: 2024-01-18
  • Available Online: 2024-02-28
  • Publish Date: 2024-06-10
  • Objective Both γ-carotane and β-carotane are carotenoid-derived alkanes, which are widely distributed in sediments and crude oil, but carotenoid-derived alkanes with low carbon number are rare in the study of source rocks. This study explored the sources of γ-carotane, β-carotane and carotenoid-derived alkanes with low carbon numbers, indicating their significance in geological carriers. Methods Twelve representative source rock samples were collected from well Malu 1 in the Lucaogou Formation of the Malang Sag, Santanghu Basin. The geochemical characteristics were demonstrated in detail by gas chromatography-mass spectrometry, rock pyrolysis, vitrinite reflectance (Ro), and total organic carbon (TOC) analysis to obtain the biogenic information of the target compound. Results and Conclusions The source rocks of the Lucaogou Formation from well Malu 1 are rich in organic matter, good in type, and in the mature stage. Moreover, the source rocks are rich in γ- and β-carotane with high abundance and have carotenoid-derived alkanes with low carbon number (Carbon number ranges from C13 to C25). Based on the comprehensive analysis of the distribution characteristics of a series of biomarkers such as n-alkanes, terpanes, and steranes, bacteria may be the main biological precursors of γ- and β-carotane. In addition, combining the evidence of thermal evolution of hydrocarbon source rocks, microbial fossils, and volcanic eruptions, the present study proposes that the carotenoid-derived alkanes with low carbon number may be the products of γ- and β-carotane affected by microorganisms or thermal evolution. This study provides new insights the exploration of organic matter source, sedimentary environment and thermal maturation of source rocks.
  • [1] Brocks J J, Okenane Schaeffer P., a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the1640Ma Barney Creek Formation[J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1396-1414.
    [2] 马健,吴朝东,王熠哲,等. 准噶尔盆地渐新世安集海河组类胡萝卜素的发现及古环境意义[J]. 地质学报,2020,94(6):1853-1868.

    Ma Jian, Wu Chaodong, Wang Yizhe, et al. Discovery of carotenoids and its paleolake significance in the Oligocene Anjihaihe Formation, southern Junggar Basin, China[J]. Acta Geologica Sinica, 2020, 94(6): 1853-1868.
    [3] Anders D E, Robinson W E. Cycloalkane constituents of the bitumen from Green River Shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(7): 661-678.
    [4] Murphy M T J, McCormick A, Eglinton G. Perhydro-β-carotene in the Green River Shale[J]. Science, 1967, 157(3792): 1040-1042.
    [5] Lee C, Brocks J J. Identification of carotane breakdown products in the 1.64 billion year old Barney Creek Formation, McArthur Basin, northern Australia[J]. Organic Geochemistry, 2011, 42(4): 425-430.
    [6] Casilli A, Silva R C, Laakia J, et al. High resolution molecular organic geochemistry assessment of Brazilian lacustrine crude oils[J]. Organic Geochemistry, 2014, 68: 61-70.
    [7] 王国彬,王熠,李二庭,等. 准噶尔盆地玛湖凹陷西斜坡百口泉组含油储集岩分子与碳同位素地球化学特征及其意义[J]. 地球化学,2017,46(3):276-291.

    Wang Guobin, Wang Yi, Li Erting, et al. Molecular and carbon isotopic compositions of oil components in the Baikouquan Formation oil-bearing reservoir rocks on the western slope of the Mahu Sag, Junggar Basin[J]. Geochimica, 2017, 46(3): 276-291.
    [8] 蒋文龙,阿布力米提•依明,卞保力,等. 准噶尔盆地西北缘风城组烃源岩热演化生物标志化合物变化及意义[J]. 新疆石油地质,2022,43(6):684-692.

    Jiang Wenlong, Ablimit·Yiming, Bian Baoli, et al. Changes and significance of biomarkers in thermal evolution of Fengcheng Formation source rocks in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(6): 684-692.
    [9] 曾文人,陈璇,付国斌,等. 准噶尔盆地石树沟凹陷二叠系平地泉组烃源岩地球化学特征及形成条件[J]. 东北石油大学学报,2023,47(2):70-80.

    Zeng Wenren, Chen Xuan, Fu Guobin, et al. Geochemical characteristics and formation conditions of Permian Pingdiquan Formation source rocks in Shishugou Sag, Junggar Basin[J]. Journal of Northeast Petroleum University, 2023, 47(2): 70-80.
    [10] Zhang Z D, Gu Y L, Jin J, et al. Assessing source and maturity of oils in the Mahu Sag, Junggar Basin: Molecular concentrations, compositions and carbon isotopes[J]. Marine and Petroleum Geology, 2022, 141: 105724.
    [11] Liu Y Z, Zeng J H, Jin J, et al. Geochemical evaluation of produced petroleum from the Middle Permian Lucaogou reservoirs Junggar Basin and its implication for the unconventional shale oil play[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110202.
    [12] Li W W, Cao J, Hu W X, et al. Revealing continuous hydrocarbon generation and shale oil accumulation of saline lacustrine source rocks by sequential extraction[J]. Fuel, 2023, 352: 129081.
    [13] Xia L W, Cao J, Bian L Z, et al. Co-evolution of paleo-environment and bio-precursors in a Permian alkaline lake, Mahu mega-oil province, Junggar Basin: Implications for oil sources[J]. Science China Earth Sciences, 2022, 65(3): 462-476.
    [14] Ma J, French K L, Cui X Q, et al. Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela upwelling system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(29): e2106040118.
    [15] Moldowan J M, Seifert W K, Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 1985, 69(8): 1255-1268.
    [16] Ding X J, Gao C H, Zha M, et al. Depositional environment and factors controlling β-carotane accumulation: A case study from the Jimsar Sag, Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 833-842.
    [17] Zhang T, Wang Z D, Wang X F, et al. Characterization of oxygen-bearing geolipids in the Upper Permian Lucaogou shale, Santanghu Basin, NE China, using stepwise pyrolysis and hydrous pyrolysis[J]. Marine and Petroleum Geology, 2021, 126: 104926.
    [18] 张婷,王作栋,钱宇,等. 长直链烷基苯及其异构体母质来源研究及地球化学意义[J]. 沉积学报,2017,35(4):843-852.

    Zhang Ting, Wang Zuodong, Qian Yu, et al. Distribution characteristics of long-chain alkylbenzene and its isomers[J]. Acta Sedimentologica Sinica, 2017, 35(4): 843-852.
    [19] Wang Z D, Liang M L, Qian Y, et al. The oxygen-bearing geolipids in the Lucaogou shale of Upper Permian, Santanghu Basin, China[J]. Organic Geochemistry, 2016, 102: 59-66.
    [20] 肖洪,李美俊,王铁冠,等. 中元古界沉积物中典型分子标志化合物及其地质意义:以宣隆坳陷下马岭组黑色页岩为例[J]. 沉积学报,2022,40(2):547-556.

    Xiao Hong, Li Meijun, Wang Tieguan, et al. Typical molecular marker assemblage of the Mesoproterozoic sediments: A case study of the Xiamaling Formation black shales in the Xuanlong Depression[J]. Acta Sedimentologica Sinica, 2022, 40(2): 547-556.
    [21] Xie Z B, Tao H F, Qu Y Q, et al. Synergistic evolution of palaeoenvironment-bionts and hydrocarbon generation of Permian saline lacustrine source rocks in Jimusar Sag, Junggar Basin[J]. Energies, 2023, 16(9): 3797.
    [22] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Volume 2: Biomarkers and isotopes in petroleum systems and earth history[M]. New York: Cambridge University Press, 2005.
    [23] 徐银波,李锋,张家强,等. 三塘湖盆地石头梅地区二叠系芦草沟组有机质富集特征[J]. 地质学报,2022,96(11):4010-4022.

    Xu Yinbo, Li Feng, Zhang Jiaqiang, et al. Enrichment characteristics of organic matter in the Permian Lucaogou Formation in Shitoumei area, Santanghu Basin[J]. Acta Geologica Sinica, 2022, 96(11): 4010-4022.
    [24] 赵泽辉,郭召杰,张臣,等. 新疆东部三塘湖盆地构造演化及其石油地质意义[J]. 北京大学学报(自然科学版),2003,39(2):219-228.

    Zhao Zehui, Guo Zhaojie, Zhang Chen, et al. Tectonic evolution of the Santanghu Basin, east Xinjiang and its implication for the hydrocarbon accumulation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2003, 39(2): 219-228.
    [25] 王作栋,陶明信,梁明亮,等. 三塘湖盆地上二叠统芦草沟组烃源岩地球化学特征[J]. 沉积学报,2012,30(5):975-982.

    Wang Zuodong, Tao Mingxin, Liang Mingliang, et al. Characteristics of organic geochemistry of Lucaogou Formation source rocks, Upper Permian, Santanghu Basin[J]. Acta Sedimentologica Sinica, 2012, 30(5): 975-982.
    [26] 李玮,柳益群,董云鹏,等. 新疆三塘湖地区石炭纪火山岩年代学、地球化学及其大地构造意义[J]. 中国科学(D辑):地球科学,2012,42(11):1716-1731.

    Li Wei, Liu Yiqun, Dong Yunpeng, et al. The geochemical characteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in northeastern Xinjiang, China[J]. Science China (Seri. D): Earth Sciences, 2012, 42(11): 1716-1731.
    [27] 焦悦,吴朝东,王家林,等. 天山东段地区二叠系芦草沟组沉积特征与古环境对比[J]. 古地理学报,2023,25(2):277-293.

    Jiao Yue, Wu Chaodong, Wang Jialin, et al. Comparative study on sedimentary characteristics and palaeoenvironment of the Permian Lucaogou Formation in eastern Tianshan Mountains[J]. Journal of Palaeogeography, 2023, 25(2): 277-293.
    [28] 柳益群,周鼎武,冯乔,等. 新疆北部二叠系特征及其与三叠系界线划分[J]. 西北大学学报(自然科学版),2006,36(4):615-622.

    Liu Yiqun, Zhou Dingwu, Feng Qiao, et al. Characterristics of Permian and the boundary between Permian and Triassic system in the northern Xinjiang[J]. Journal of Northwest University (Natural Science Edition), 2006, 36(4): 615-622.
    [29] 方向,郝翠果,刘俊田,等. 新疆三塘湖盆地芦草沟组混积岩型致密油形成条件与富集因素[J]. 地质通报,2023,42(2/3):397-410.

    Fang Xiang, Hao Cuiguo, Liu Juntian, et al. Geological conditions and enrichment factors of the Lucaogou Formation diamictite tight oil in Santanghu Basin, Xinjiang[J]. Geological Bulletin of China, 2023, 42(2/3): 397-410.
    [30] 潘永帅,黄志龙,郭小波,等. 火山灰影响下的湖相富有机质页岩油成藏条件分析:以三塘湖盆地条湖—马朗凹陷芦草沟组为例[J]. 地质学报,2022,96(3):1053-1068.

    Pan Yongshuai, Huang Zhilong, Guo Xiaobo, et al. Analysis of accumulation conditions of lacustrine organic-rich shale oil affected by volcanic ash: A case study of the Lucaogou Formation in the Tiaohu-Malang Sag, Santanghu Basin[J]. Acta Geologica Sinica, 2022, 96(3): 1053-1068.
    [31] 范谭广,徐雄飞,范亮,等. 三塘湖盆地二叠系芦草沟组页岩油地质特征与勘探前景[J]. 中国石油勘探,2021,26(4):125-136.

    Fan Tanguang, Xu Xiongfei, Fan Liang, et al. Geological characteristics and exploration prospect of shale oil in Permian Lucaogou Formation, Santanghu Basin[J]. China Petroleum Exploration, 2021, 26(4): 125-136.
    [32] 梁世君,罗劝生,王瑞,等. 三塘湖盆地二叠系非常规石油地质特征与勘探实践[J]. 中国石油勘探,2019,24(5):624-635.

    Liang Shijun, Luo Quansheng, Wang Rui, et al. Geological characteristics and exploration practice of unconventional Permian oil resources in the Santanghu Basin[J]. China Petroleum Exploration, 2019, 24(5): 624-635.
    [33] 蒋德鑫,姜正龙,张贺,等. 烃源岩总有机碳含量测井预测模型探讨:以陆丰凹陷文昌组为例[J]. 岩性油气藏,2019,31(6):109-117.

    Jiang Dexin, Jiang Zhenglong, Zhang He, et al. Well logging prediction models of TOC content in source rocks: A case of Wenchang Formation in Lufeng Sag[J]. Lithologic Reservoirs, 2019, 31(6): 109-117.
    [34] Ding W J, Hou D J, Jiang L, et al. High abundance of carotanes in the brackish-saline lacustrine sediments: A possible cyanobacteria source?[J]. International Journal of Coal Geology, 2020, 219: 103373.
    [35] 李志明,徐二社,秦建中,等. 烃源岩评价中的若干问题[J]. 西安石油大学学报(自然科学版),2010,25(6):8-12,27.

    Li Zhiming, Xu Ershe, Qin Jianzhong, et al. Some problems on the evaluation of source rock[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2010, 25(6): 8-12, 27.
    [36] 卢双舫,马延伶,曹瑞成,等. 优质烃源岩评价标准及其应用:以海拉尔盆地乌尔逊凹陷为例[J]. 地球科学:中国地质大学学报,2012,37(3):535-544.

    Lu Shuangfang, Ma Yanling, Cao Ruicheng, et al. Evaluation criteria of high-quality source rocks and its applications: Taking the Wuerxun Sag in Hailaer Basin as an example[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(3): 535-544.
    [37] 赵佳玉,王淑贤, Darin A,等. 新疆阿尔泰全新世双湖沉积物正构烷烃分布及其环境意义[J]. 第四纪研究,2021,41(4):965-975.

    Zhao Jiayu, Wang Shuxian, Darin A, et al. N-Alkane distribution and their paleoenvironmental implications during Holocene in lacustrine sediments in Lake Shuang, Xinjiang[J]. Quaternary Sciences, 2021, 41(4): 965-975.
    [38] Peters K E, Fraser T H, Amris W, et al. Geochemistry of crude oils from eastern Indonesia[J]. AAPG Bulletin, 1999, 83(12): 1927-1942.
    [39] Volkman J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986, 9(2): 83-99.
    [40] Volkman J K. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506.
    [41] 王作栋,孟仟祥,陶明信,等. 烃源岩中C19~C29甾烷系列和25-降藿烷系列的检出及其地质意义[J]. 沉积学报,2009,27(1):180-185.

    Wang Zuodong, Meng Qianxiang, Tao Mingxin, et al. Identification of C19-C29 steranes and 25-norhopanes in source rock and geological significance[J]. Acta Sedimentologica Sinica, 2009, 27(1): 180-185.
    [42] Knoll A H, Summons R E, Waldbauer J R, et al. The geological succession of primary producers in the oceans[M]//Falkowski P G, Knoll A H. Evolution of primary producers in the sea. Boston: Academic Press, 2007: 133-163.
    [43] Volkman J K. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways[J]. Organic Geochemistry, 2005, 36(2): 139-159.
    [44] Zeng W R, Zhang Z H, Wang B R, et al. Formation mechanism of organic-rich mixed sedimentary rocks in saline lacustrine basin, Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, northwest China[J]. Marine and Petroleum Geology, 2023, 156: 106452.
    [45] Qiao J Q, Baniasad A, Zieger L, et al. Paleo-depositional environment, origin and characteristics of organic matter of the Triassic Chang 7 member of the Yanchang Formation throughout the mid-western part of the Ordos Basin, China[J]. International Journal of Coal Geology, 2021, 237: 103636.
    [46] Luo G M, Hallmann C, Xie S C, et al. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation[J]. Geochimica et Cosmochimica Acta, 2015, 151: 150-167.
    [47] Zumberge J E. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1625-1637.
    [48] Peters K E, Moldowan J M, Driscole A R, et al. Origin of Beatrice oil by co-sourcing from Devonian and Middle Jurassic source rocks, Inner Moray Firth, United Kingdom[J]. AAPG Bulletin, 1989, 73(4): 454-471.
    [49] 敖添,王作栋,张婷,等. 塔河油田原油三环萜烷异常分布特征及成因探讨[J]. 沉积学报,2023,41(4):1202-1211.

    Ao Tian, Wang Zuodong, Zhang Ting, et al. Abnormal distribution of tricyclic terpanes and its genesis in crude oils from Tahe oilfield[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1202-1211.
    [50] Erlich R N, Astorga A, Sofer Z, et al. Palaeoceanography of organic-rich rocks of the Loma Chumico Formation of Costa Rica, Late Cretaceous, eastern Pacific[J]. Sedimentology, 1996, 43(4): 691-718.
    [51] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222.
    [52] Ma J, Huang Z L, Gao X Y, et al. Oil-source rock correlation for tight oil in tuffaceous reservoirs in the Permian Tiaohu Formation, Santanghu Basin, northwest China[J]. Canadian Journal of Earth Sciences, 2015, 52(11): 1014-1026.
    [53] Ten H H L, Rohmer M, Rullkötter J, et al. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 3073-3079.
    [54] 陈治军,高怡文,刘护创,等. 银根—额济纳旗盆地哈日凹陷下白垩统烃源岩地球化学特征与油源对比[J]. 石油学报,2018,39(1):69-81.

    Chen Zhijun, Gao Yiwen, Liu Huchuang, et al. Geochemical characteristics of Lower Cretaceous source rocks and oil-source correlation in Hari Sag, Yingen-Ejinaqi Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 69-81.
    [55] Li Y, Hou D J, Cheng X, et al. Geochemical characteristics and significance of aromatic hydrocarbons in crude oil from the east Fukang Sag, Junggar Basin, NW China[J]. Frontiers in Earth Science, 2023, 10: 1031367.
    [56] Huang D F, Li J C, Zhang D J. Maturation sequence of continental crude oils in hydrocarbon basins in China and its significance[J]. Organic Geochemistry, 1990, 16(1/2/3): 521-529.
    [57] Seifert W K, Moldowan J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986, 24: 261-290.
    [58] Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17(1): 47-61.
    [59] Seifert W K, Moldowan J M. Effect of biodegradation on steranes and terpanes in crude oils[J]. Geochimica et Cosmochimica Acta, 1979, 43(1): 111-126.
    [60] Jiang Z S, Fowler M G. Carotenoid-derived alkanes in oils from northwestern China[J]. Organic Geochemistry, 1986, 10(4/5/6): 831-839.
    [61] Wang Q R, Huang H P, Li Z, et al. Geochemical significance of β-carotane in lacustrine oils from the Shahejie Formation of the Dongying Depression, eastern China[J]. Organic Geochemistry, 2021, 156: 104241.
    [62] Wang D Y, Li M J, Chen J F, et al. The biological source and paleoenvironment implication of rare short-chain lanostanes in alkaline lacustrine sediments[J]. Organic Geochemistry, 2023, 186: 104705.
    [63] Boudou J P, Trichet J, Robinson N, et al. Profile of aliphatic hydrocarbons in a recent Polynesian microbial mat[J]. International Journal of Environmental Analytical Chemistry, 1986, 26(2): 137-155.
    [64] Köster J, Volkman J K, Rullkötter J, et al. Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum[J]. Organic Geochemistry, 1999, 30(11): 1367-1379.
    [65] Shiea J, Brassell S C, Ward D M. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments?[J]. Organic Geochemistry, 1990, 15(3): 223-231.
    [66] Hou M G, Zha M, Liu H, et al. The coupling control of biological precursors and environmental factors on β-carotane enrichment in alkaline lacustrine source rocks: A case study from the Fengcheng Formation in the western Junggar Basin, NW China[J]. Petroleum Science, 2024, doi:  10.1016/j.petsci.2023.12.019.
    [67] Xia L W, Cao J, Hu W X, et al. Coupling of paleoenvironment and biogeochemistry of deep-time alkaline lakes: A lipid biomarker perspective[J]. Earth-Science Reviews, 2021, 213: 103499.
    [68] 支东明,李建忠,陈旋,等. 吐哈探区深层油气勘探进展及潜力评价[J]. 新疆石油地质,2023,44(3):253-264.

    Zhi Dongming, Li Jianzhong, Chen Xuan, et al. Exploration progress and potential evaluation of deep oil and gas in Turpan-Hami exploration area[J]. Xinjiang Petroleum Geology, 2023, 44(3): 253-264.
    [69] 支东明,唐勇,郑孟林,等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探,2019,24(5):615-623.

    Zhi Dongming, Tang Yong, Zheng Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623.
    [70] 支东明,唐勇,何文军,等. 准噶尔盆地玛湖凹陷风城组常规—非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发,2021,48(1):38-51.

    Zhi Dongming, Tang Yong, He Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Development, 2021, 48(1): 38-51.
    [71] Wang W H, Cui H S, Tan J Q, et al. Permian cyanobacterial blooms resulted in enrichment of organic matter in the Lucaogou Formation in the Junggar Basin, NW China[J]. Minerals, 2023, 13(4): 537.
    [72] Zhang S H, Liu C Y, Liang H, et al. Mineralogical composition and organic matter characteristics of lacustrine fine-grained volcanic-hydrothermal sedimentary rocks: A data-driven analytics for the Second member of Permian Lucaogou Formation, Santanghu Basin, NW China[J]. Marine and Petroleum Geology, 2021, 126: 104920.
    [73] Brocks J J, Buick R, Summons R E, et al. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, western Australia[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4321-4335.
    [74] 张俊杰,邢磊,侯笛. 蓝细菌生物标志物:2-甲基藿烷类化合物研究进展及其应用[J]. 地球环境学报,2018,9(5):434-443.

    Zhang Junjie, Xing Lei, Hou Di. Progress of research on the cyanobacterial biomarker: 2-methylhopanoid and its application[J]. Journal of Earth Environment, 2018, 9(5): 434-443.
    [75] Grba N, Šajnović A, Stojanović K, et al. Preservation of diagenetic products of β-carotene in sedimentary rocks from the Lopare Basin (Bosnia and Herzegovina)[J]. Geochemistry, 2014, 74(1): 107-123.
    [76] Xie X M, Borjigin T, Zhang Q Z, et al. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar Basin, NW China[J]. International Journal of Coal Geology, 2015, 146: 166-178.
    [77] Kuang L C, Tang Y, Lei D W, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 700-711.
    [78] Liang P, Chen L, Li R C, et al. In-situ element geochemical and sulfur isotope signature of pyrite and chalcopyrite: Constraints on ore-forming processes of the Laoshankou iron oxide-copper (-gold) deposit, northern East Junggar[J]. Ore Geology Reviews, 2021, 139: 104510.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(2)

Article Metrics

Article views(202) PDF downloads(23) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-07-20
  • Revised:  2024-01-18
  • Accepted:  2024-02-28
  • Published:  2024-06-10

Detection and Geological Significance of Carotenoid-Derived Alkanes in the Source Rocks : A case of well Malu 1, Lucaogou Formation, Santanghu Basin

doi: 10.14027/j.issn.1000-0550.2024.013
Funds:

National Natural Science Foundation of China 42272187

National Natural Science Foundation of China 42102195

Abstract: Objective Both γ-carotane and β-carotane are carotenoid-derived alkanes, which are widely distributed in sediments and crude oil, but carotenoid-derived alkanes with low carbon number are rare in the study of source rocks. This study explored the sources of γ-carotane, β-carotane and carotenoid-derived alkanes with low carbon numbers, indicating their significance in geological carriers. Methods Twelve representative source rock samples were collected from well Malu 1 in the Lucaogou Formation of the Malang Sag, Santanghu Basin. The geochemical characteristics were demonstrated in detail by gas chromatography-mass spectrometry, rock pyrolysis, vitrinite reflectance (Ro), and total organic carbon (TOC) analysis to obtain the biogenic information of the target compound. Results and Conclusions The source rocks of the Lucaogou Formation from well Malu 1 are rich in organic matter, good in type, and in the mature stage. Moreover, the source rocks are rich in γ- and β-carotane with high abundance and have carotenoid-derived alkanes with low carbon number (Carbon number ranges from C13 to C25). Based on the comprehensive analysis of the distribution characteristics of a series of biomarkers such as n-alkanes, terpanes, and steranes, bacteria may be the main biological precursors of γ- and β-carotane. In addition, combining the evidence of thermal evolution of hydrocarbon source rocks, microbial fossils, and volcanic eruptions, the present study proposes that the carotenoid-derived alkanes with low carbon number may be the products of γ- and β-carotane affected by microorganisms or thermal evolution. This study provides new insights the exploration of organic matter source, sedimentary environment and thermal maturation of source rocks.

FU Yin, WANG ZuoDong, ZHANG Ting, WANG WenJun, LI XiaoBin, WANG ZhiYong. Detection and Geological Significance of Carotenoid-Derived Alkanes in the Source Rocks : A case of well Malu 1, Lucaogou Formation, Santanghu Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1092-1106. doi: 10.14027/j.issn.1000-0550.2024.013
Citation: FU Yin, WANG ZuoDong, ZHANG Ting, WANG WenJun, LI XiaoBin, WANG ZhiYong. Detection and Geological Significance of Carotenoid-Derived Alkanes in the Source Rocks : A case of well Malu 1, Lucaogou Formation, Santanghu Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1092-1106. doi: 10.14027/j.issn.1000-0550.2024.013
  • 类胡萝卜素来源于自然界中能够进行光合作用的光合细菌、真核生物以及特殊的非光合作用生物[12]。类胡萝卜素全氢化后会形成类胡萝卜烷[2],γ-和β-胡萝卜烷是其中两个典型化合物。在地质过程中,β-胡萝卜素全氢化后会转变为β-胡萝卜烷(C40H78),存在于地质载体中[23]。目前,国内外不同盆地烃源岩中检出β-胡萝卜烷的相关报道有很多。例如:Murphy et al.[4]首次在科罗拉多州始新世绿河页岩中发现β-胡萝卜烷,认为该化合物不是植物来源,且还原环境有利于其碳结构的保存。Lee et al.[5]在澳大利亚北部McArthur盆地距今16.4亿年的Barney Creek组发现了超过22种不同的C40类胡萝卜素衍生物,但在更深部却未检测到该类化合物,认为C40类胡萝卜素在深部发生了热降解作用。此外,Casilli et al.[6]利用全二维气相色谱—飞行时间质谱在巴西东北部Reconcavo盆地早白垩世Candeias组湖相原油中也检出了丰富的β-胡萝卜烷,指出通过β-胡萝卜烷与C30藿烷比值可以指示古湖沼的咸化程度,比值越大指示咸化程度越高。不仅如此,我国准噶尔盆地、渤海湾盆地、柴达木盆地和四川盆地的沉积地层中也检出高丰度的γ-和β-胡萝卜烷。例如,王国彬等[7]在准噶尔盆地玛湖凹陷下三叠统砂岩中,检测出γ-和β-胡萝卜烷,认为还原环境有利于其富集。蒋文龙等[8]通过黄金管封闭体系热模拟实验探究了β-胡萝卜烷绝对含量和热成熟度的关系,发现γ-和β-胡萝卜烷热稳定性较差,特别是在高熟阶段后期含量骤降。曾文人等[9]对准噶尔盆地石树沟凹陷二叠系平地泉组泥岩的研究表明,高含量的β-胡萝卜烷指示干旱程度大和水体盐度相对较高。马健等[2]在准噶尔盆地渐新世安集海河组泥岩中发现了β-胡萝卜烷等,并结合其他化合物的共生关系探讨了古湖泊的水体环境。此外,β-胡萝卜烷也在原油中大量检出,例如,Zhang et al.[10]对准噶尔盆地下二叠系凤城组原油的研究表明,β-胡萝卜烷/nC21比值与成熟度具有很好的相关性。Liu et al.[11]在吉木萨尔凹陷二叠系芦草沟组原油中也发现了该化合物,认为高丰度的β-胡萝卜烷与光合蓝藻的发育有关。然而,目前对类胡萝卜烷的来源并没有统一的认识,其在地质载体中的指示意义仍不清楚。

    目前对于β-胡萝卜烷的母质来源主要有两种观点。一种观点认为该化合物主要来源于细菌和藻类等,如蓝藻、绿硫细菌、紫色硫细菌、杜氏藻等。例如,Li et al.[12]对准噶尔盆地玛湖凹陷下二叠统凤城组不同成熟度的烃源岩样品进行了研究,认为蓝藻为该化合物的母源。Xia et al.[13]通过有机岩石学和有机地球化学的研究,认为高β-胡萝卜烷和C28/C29甾烷比值指示杜氏藻母源,而高含量的中链单甲基烷烃是蓝藻的典型生物标志物。Ma et al.[14]将纳米比亚陆架现代沉积物中的芳香类胡萝卜素归因于绿硫细菌(Green Sulfur Bacteria,GSB)和紫色硫细菌(Purple Sulfur Bacteria,PSB)来源。另一种观点认为β-胡萝卜烷主要来源于陆源有机质。例如,Moldowan et al.[15]将β-胡萝卜烷解释为陆生有机质的标志。Ding et al.[16]对吉木萨尔凹陷中二叠统芦草沟组烃源岩进行分析,结合高的碳优势指数(Carbon Preference Index,CPI),高丰度的C29规则甾烷、高C26与C25三环萜烷的比值(C26TT/C25TT)等,认为该化合物主要来自光合生物和陆生植物。由此可见,类胡萝卜烷的来源及其地质意义还需要更深入地研究。

    同其他生物标志化合物一样[1721],类胡萝卜烷也具有生物继承性,因此,通过详细分析其他生物标志物能够为类胡萝卜烷的来源提供可能的信息。生物标志化合物是由活体生物演化而来,存在于沉积物、岩石及原油中的分子化石,蕴含着丰富的地球化学信息[22]。根据生物标志物参数,结合烃源岩基础地球化学特征,可以为上述问题的解决提供更有价值的见解。因此,借助气相色谱—质谱联用仪和岩石热解分析仪等,对马朗凹陷马芦1井芦草沟组共计12个岩心样品进行系统的有机地球化学分析,并以常规地球化学参数为基础,主要探讨了γ-和β-胡萝卜烷以及C13~C25低碳数类胡萝卜烷分布与组成特征,进一步完善了芦草沟组烃源岩中有机质生源和沉积环境的认识,在此基础上明确类胡萝卜烷的地质意义。

  • 三塘湖盆地位于新疆维吾尔自治区东北部,盆地面积约2.3×104 km2[23],是大型含油气盆地边缘的中小型盆地[2425],位于天山东段,邻近西伯利亚板块与哈萨克—准噶尔板块的结合带[26]。自石炭纪以来经历了复杂的构造演化,二叠纪进入后碰撞裂谷伸展的陆内演化阶段[27],自下而上沉积了芦草沟组和条湖组。在之后的多次挤压、推覆联合作用影响下[28],形成了现今平面上的狭长不规则条形展布,可分为北部隆起带、中央坳陷带和南缘冲断带。马朗凹陷位于三塘湖盆地中央坳陷带东南部,由北部的北部隆起带和南部的南缘冲断带所夹持,被周围多个凹陷—凸起所围限,北邻条山凸起、西起条湖凹陷、东接淖毛湖凹陷。凹陷内发育河流、湖泊及三角洲等陆相沉积。二叠系芦草沟组平行不整合于下伏石炭系卡拉岗组之上,与上覆二叠系条湖组整合接触[29],沉积厚度较大,沉积时期水体盐度较高,受到周缘频繁火山活动的强烈影响[30],形成了一套以火山碎屑岩和碳酸盐岩为主的湖相沉积[31],其记录了天山东段地区古环境演化和构造背景的关键信息[27]

    马芦1井(ML1)位于马朗凹陷的斜坡—洼陷区(图1[3132]。采集深度介于3 460~3 659 m的岩心样品12块,岩性以深灰色泥岩为主(表1)。

    Figure 1.  Division of structural units and location of the study area in Santanghu Basin[3132]

    样品名称层位岩性深度/mS1/(mg/g)S2/(mg/g)S3/(mg/g)HI/(mg/g)Tmax/℃S1+S2/(mg/g)S2/S3TOC/%Ro/%
    ML1-1P2l深灰色凝灰质泥岩3 460.0~3 461.52.9963.410.42827.8144966.40150.987.660.84
    ML1-2P2l深灰色荧光凝灰岩3 461.9~3 463.72.658.180.42449.4544210.8319.481.820.75
    ML1-3P2l深灰色凝灰质泥岩3 472.4~3 474.42.7425.630.46555.9744328.3755.724.610.61
    ML1-4P2l深灰色凝灰质泥岩3 472.5~3 474.51.2339.010.40723.7545040.2497.535.390.98
    ML1-5P2l灰黑凝灰质泥岩3 504.0~3 504.50.9820.040.23603.6144221.0287.133.320.90
    ML1-6P2l深灰色凝灰质泥岩3 526.4~3 527.40.4526.630.42780.9444927.0863.403.410.92
    ML1-7P2l深灰色凝灰质泥岩3 546.5~3 547.51.2923.110.31521.6744424.4074.554.430.85
    ML1-8P2l含油角砾岩3 581.5~3 583.50.4213.670.28484.7544714.0948.822.821.02
    ML1-9P2l深灰色凝灰质泥岩3 604.5~3 606.51.6185.410.3917.4045387.02284.709.310.94
    ML1-10P2l深灰色凝灰质泥岩3 609.5~3 610.01.2824.790.25659.3144426.0799.163.760.86
    ML1-11P2l深灰色凝灰质泥岩3 624.0~3 624.90.5727.540.35691.9644828.1178.693.980.90
    ML1-12P2l深灰色凝灰质泥岩3 657.1~3 659.00.3015.860.22626.8844916.1672.092.530.85
    注:S1为岩石中的游离烃量(mg/g);S2为岩石中的热解烃量(mg/g);S3为岩石热解产生的二氧化碳含量(mg/g);HI为氢指数(S2/TOC,mg/g);Tmax为岩石热解最高峰温度(℃);S1+S2为生烃潜量(mg/g);S2/S3为岩石热解类型指数;TOC为总有机碳含量(%);Ro为镜质体反射率(%)。

    Table 1.  Total organic carbon (TOC), vitrinite reflectance, and pyrolysis data of source rock samples from the Lucaogou Formation in well Malu 1, Santanghu Basin

  • 用二氯甲烷淋洗样品表面,除去可能存在的污染物,晾干后将样品粉碎至200目,称取样品30 g,然后在60 ℃恒温水浴锅中用精制后的氯仿索氏抽提72 h。抽提物在恒温箱中烘干后采用柱层析法(硅胶:氧化铝=3∶1,v/v)分离,分别用正己烷、二氯甲烷和甲醇洗脱饱和烃、芳烃和非烃组分。

    对饱和烃馏分进行气相色谱—质谱(GC-MS,安捷伦,6890N-5973N)分析。仪器检出限为10-6~10-9 g,色谱进样口温度为300 ℃。载气为99.999%高纯氦气,载气流量1.2 mL/min,色谱柱为KD-5(30 m×0.32mm×0.25 μm)弹性石英毛细管柱。程序升温条件:80 ℃起始以每分钟4 ℃升至290 ℃,保持30 min。质谱离子源为EI源,离子源温度为230 ℃。四极杆温度为150 ℃;离子源电子能量为70 eV。扫描方式为全扫描(Full scan),质谱与色谱接口温度为300 ℃,谱库为NIST14。

    热解采用ROCK-EVAL 6型岩石热解仪(测试标准为GB/T18602—2012)。镜质体反射率检测仪器为德国蔡司—显微光度计(Axio Scope A1 & J M,测试标准SY/T 5214—2012)。总有机碳(Total Organic Carbon,TOC)使用ELTRA CS-1进行测定(测试标准GB/T 19145—2022)。所有实验均在中国科学院西北生态环境资源研究院油气资源研究中心地球化学分析测试平台完成。

  • 总有机碳含量和生烃潜量(S1+S2)常被用来作为烃源岩有机质丰度评价的重要参数[33]。如表1所示,研究样品的TOC含量介于1.82%~9.31%,平均值为4.42%。S1+S2介于10.83~87.02 mg/g,平均值为32.48 mg/g,(表1图2),氢指数(HI,mg/g)介于449.45~917.40 mg/g,平均值为653.62 mg/g(表1),综合表明马芦1井芦草沟组烃源岩为优质烃源岩。有机质类型可以通过岩石热解类型指数(S2/S3)进行划分。整体上,样品的S2/S3介于19.48~284.70,平均值为94.35,指示有机质类型为Ⅰ~Ⅱ1型(表1)。镜质体反射率(Ro,%)和岩石热解最高峰温度(Tmax,℃)可以有效判识烃源岩中有机质的成熟度[3536]。研究样品的Tmax介于442 ℃~453 ℃,平均值为447 ℃。Ro值介于0.61%~1.02%,平均值为0.87%,表明马芦1井芦草沟组烃源岩正处于成熟阶段,即生油窗内(表1)。

    Figure 2.  Evaluation diagram of source rocks from well Malu 1 in Santanghu Basin[34]

  • 正构烷烃是马芦1井源岩样品饱和烃馏分中的优势组分。图3是本次研究中典型烃源岩样品饱和烃总离子流图(TIC)及m/z 191、m/z 217质量色谱图。烃源岩样品中正构烷烃系列的碳数分布在nC13~nC32,大多数样品中正构烷烃的主峰碳分布在nC16~nC21图3a~c)。一般来说,细菌和藻类主要产生低碳数正构烷烃(nC15~nC21),大型水生生物以nC21~nC25等为主[37],而陆生高等植物来源的正构烷烃以nC27~nC35等奇碳数为优势[22,37]。研究样品主峰碳均小于nC27图3a~c),表明陆源植物对于有机质贡献较小。不同有机质来源具有不同的正构烷烃组成,且正构烷烃系列的分布与组成受成熟度的影响显著。ΣnC21-nC22+指标常被用来判识水生生物和陆生高等植物的相对贡献,比值越大表明水生生物的贡献越大。研究样品的ΣnC21-nC22+介于0.37~4.59,平均值为1.89,说明马芦1井芦草沟组烃源岩有机质来源主要为细菌和藻类等低等水生生物,也有部分陆源高等植物的贡献。

    Figure 3.  Mass chromatograms of saturated hydrocarbon fraction total inorganic carbon (TIC), m/z 191 and m/z 217 in the Lucaogou Formation from well Malu 1 in Santanghu Basin

    姥鲛烷(Pr)和植烷(Ph)与相邻正构烷烃的比值(Pr/nC17和Ph/nC18)可以用来判断有机质的类型[38]。研究样品的Pr/nC17介于0.14~0.66,平均值为0.29,Ph/nC18介于0.30~0.66,平均值为0.46(表2)。Pr/nC17和Ph/nC18关系图表明,马芦1井芦草沟组烃源岩样品有机质类型为I~II1型(图4a),这与前文烃源岩热解参数中得出的结论较为一致。

    样品名称Pr/PhPr/nC17Ph/nC18ΣnC21-nC22+γ/Cmaxβ/Cmaxγ/βC19TT/(C19TT+C23TT)7-+8-MeC17/CmaxGIC29ββ/(αα+ββ)C2920S/(S+R)C27/%C28/%C29/%
    ML1-10.960.600.630.870.050.170.290.070.010.100.290.41204040
    ML1-20.600.660.660.370.080.180.420.070.040.140.310.43204040
    ML1-31.100.290.381.610.030.070.470.110.010.090.230.47263836
    ML1-40.670.280.482.120.260.360.730.140.200.250.330.50233641
    ML1-50.680.180.331.900.040.120.340.100.130.150.310.43233542
    ML1-60.800.200.302.070.080.240.350.170.110.150.300.46263737
    ML1-70.510.170.431.580.040.120.340.050.100.200.330.43233245
    ML1-80.660.350.572.250.100.370.270.130.180.310.400.43313237
    ML1-90.420.250.480.680.070.290.260.070.040.270.490.49292843
    ML1-100.460.140.411.790.060.100.610.170.120.240.440.49263242
    ML1-110.610.150.332.790.020.030.560.340.090.210.320.48223642
    ML1-120.730.220.484.590.020.100.230.160.080.370.410.44352639
    注:Pr为姥鲛烷;Ph为植烷;GI为伽马蜡烷/C30藿烷;γ/Cmax,γ为γ⁃胡萝卜烷,Cmax为正构烷烃主峰;β为β⁃胡萝卜烷;γ/β为γ⁃胡萝卜烷/β⁃胡萝卜烷;C19TT、C23TT分别为C19、C23 三环萜;7⁃+8⁃MeC17为7⁃和8⁃甲基C17;C27为C27ααα20R规则甾烷;C28为C28ααα20R规则甾烷;C29为C29ααα20R规则甾烷。

    Table 2.  Geochemical parameters of saturated hydrocarbons in source rocks of well Malu 1 in Santanghu Basin

    Figure 4.  (a) Source rock of the Lucaogou Formation, well Malu 1, Santanghu Basin, relationship between Pr/nC17 and Ph/nC18[38];(b) source rock of the Lucaogou Formation, well Malu 1, Santanghu Basin, distribution of C27, C28 and C29ααα20R steranes[45]

    规则甾烷的分布同样反映了有机质来源的差异[3941]。一般认为,C27和C28规则甾烷来源于水生藻类,C29规则甾烷与陆生高等植物的输入相关[42]。但近年来研究表明,C29规则甾烷也可能来源于浮游生物,比如Volkman[43]和Zeng et al.[44]均发现部分细菌和藻类等也能产生含量较高的C29甾醇。马芦1井芦草沟组烃源岩中孕甾烷和升孕甾烷含量较低,以C27、C28、C29规则甾烷为主(图3g~i),相对含量分别为27%~35%、26%~40%、36%~45%。由此可知,马芦1井芦草沟组烃源岩有机质主要来源于浮游生物和细菌,陆源植物对有机质贡献较小(图4b)。此外,样品总离子流图均出现“UCM”(未分辨复杂化合物)鼓包(图3a~c),产生这一现象的原因可能是在沉积过程和成岩初期阶段,原始有机质受到了细菌的改造[46],也可能是由研究样品中生物标志物丰富导致的。

    三环萜系列的相对含量同样可以判别生物来源。C19或C20三环萜烷在陆源有机质中相对丰富[47],而C23三环萜烷的优势通常是存在于海相或咸水湖相沉积的烃源岩及其原油[20,4849],因此C19TT/(C19TT+C23TT)是判断沉积物陆相有机质输入的有效参数[34]。研究样品的C19TT/(C19TT+C23TT)参数介于0.05~0.34,平均值为0.13,说明陆源有机质贡献较低,主要为细菌和藻类的贡献。

    正构烷烃、类异戊二烯烷烃、甾烷和萜烷的相关生物标志化合物结果,共同表明马芦1井芦草沟组烃源岩的有机质主要为细菌和藻类的贡献,有少量陆源植物的输入。

  • Pr和Ph是重要的类异戊二烯烷烃化合物。植醇在缺氧状态下形成Ph,有氧状态下形成Pr[5051],氧化还原条件的不同会导致二者相对丰度的变化,因此Pr/Ph可以用来反映烃源岩原始有机质的沉积环境。一般认为,Pr/Ph>3.00指示富氧环境,Pr/Ph<0.80指示缺氧环境,Pr/Ph介于0.80~3.00指示贫氧环境[5051]。研究样品的Pr/Ph值介于0.40~1.10,平均值为0.68,小于0.80,指示马芦1井芦草沟组烃源岩发育于还原环境,沉积水体较深(图4a),与Ma et al.[52]和Ding et al.[34]的研究观点一致。

    伽马蜡烷来源于原生动物,其含量的高低可以指示咸水环境、水体分层以及古盐度[53]。伽马蜡烷的相对含量能够用伽马蜡烷指数(GI,伽马蜡烷/C30藿烷)衡量[54],该值越大表明水体盐度越高且水体分层显著。研究样品的GI值介于0.09~0.37,平均值为0.21,说明马芦1井芦草沟组烃源岩沉积于微咸水—半咸水环境,并且有一定程度的水体分层(图5a)。

    Figure 5.  (a) Relationship between Gammacerane Index (GI )and Pr/Ph in source rocks of the Lucaogou Formation from well Malu 1, Santanghu Basin[55]; (b) relationship diagram of sterane maturity parameters in source rocks of the Lucaogou Formation from well Malu 1, Santanghu Basin[45]

  • 甾烷和藿烷的立体异构体会随着成熟度的增加发生立体构型转化,因此其异构化参数可以用来指示有机质的热演化程度。C295α,14α,17α(H)-甾烷在C-20上的异构化作用使得C29S/(S+R)比值与成熟度呈正相关关系,从大于0的低值逐渐增加到约0.5的高值(0.52~0.55为平衡值)[5657]。研究样品的C29S/(S+R)比值介于0.41~0.50,平均值为0.46,C29ββ/(ββ+αα)介于0.23~0.49,平均值为0.35。相比于C29S/(S+R),C29ββ/(ββ+αα)参数不仅受成熟度的影响,而且生物降解也会影响该参数的变化,导致该参数偏低[22]。根据图5b判断,无论是C29S/(S+R)还是C29ββ/(ββ+αα)指标,均指示研究样品处于成熟阶段(表2)。

    有机质生烃作用实际上是干酪根在热作用下发生的侧链断裂的降解过程,同时促使生物标志物分子向更稳定的结构转化[58]。生物成因的藿烷前驱物其C-22位上的H原子为R构型,随着热演化程度的增加,该H原子从生物构型R型会逐渐向稳定的地质构型S型转化[59]。C31藿烷22S/(22S+22R)这一参数仅适用于低演化阶段,所以不再适用于本次研究。

    综合C29S/(S+R)和Ro指示结果,并结合热解Tmax指标,表明马芦1井芦草沟组源岩样品处于成熟阶段。

  • 在马芦1井芦草沟组烃源岩样品中检出了丰富的γ-和β-胡萝卜烷,二者在色谱图中相继出现(图6)。β-胡萝卜烷有两个紫罗兰酮环,结构稳定,而γ-胡萝卜烷只有一个紫罗兰酮环,结构相对不稳定。β-胡萝卜烷的基峰是69,分子离子峰是558,γ-胡萝卜烷的基峰是57,分子离子峰是560[60]图7)。γ-和β-胡萝卜烷指数(γ-胡萝卜烷/Cmax,β-胡萝卜烷/Cmax;Cmax为正构烷烃主峰)常用来衡量二者的相对含量。研究样品的β-胡萝卜烷指数介于0.02~0.26,平均值为0.07,γ-胡萝卜烷指数介于0.03~0.37,平均值为0.18。考虑到γ-和β-胡萝卜烷相关性较强(图8b),所以二者的母质来源以及沉积环境可能是相似的。有学者用二者比值来衡量成熟度[6061],研究样品中γ-和β-胡萝卜烷比值(γ/β)介于0.23~0.73,该比值与Ro相关性较弱(图8c),说明用γ/β指示成熟度不够可靠。

    Figure 6.  Mass chromatogram of m/z 125 carotenoids series of typical source rocks in the Lucaogou Formation from well Malu 1, Santanghu Basin

    Figure 7.  Mass spectra of carotenoids in source rocks from well Malu 1 in Santanghu Basin

    Figure 8.  Relationship between β⁃carotene and other parameters in source rocks from the Lucaogou Formation, well Malu 1, Santanghu Basin

    细菌是样品中γ-和β-胡萝卜烷可能的母质来源[2122,34,62]。蓝藻(cyanobacteria)又被称为蓝细菌,它的典型生物标志化合物为中链单甲基烷烃,即7-和8-甲基取代的十七烷[1213,15,63]。样品7-和8-甲基取代的十七烷明显高于其位置取代的单甲基十七烷(图9)。7-和8-甲基十七烷指数[(7-+8-)MeC17/Cmax]可以衡量7-和8-甲基十七烷相对含量,样品中该参数介于0.01~0.20,平均值为0.09,略低于吉木萨尔凹陷中二叠统芦草沟组的烃源岩(0.01~0.35,平均值为0.14)[34],暗示两套湖相烃源岩中有机质来源可能略有差别。γ-和β-胡萝卜烷含量高的样品中,(7-+8-甲基十七烷)/Cmax比值较高,显示较好的相关性(图8a)。不仅如此,国内外众多学者也曾提出中链单甲基烷烃与蓝藻来源有关[34,44,62,6466]。此外,准噶尔盆地二叠系烃源岩蓝藻对有机质贡献的相关报道已有很多。如Xia et al.[67]在玛湖凹陷二叠系烃源岩样品中发现中链单甲基烷烃,认为该化合物指示有机质来源存在蓝藻的贡献。Ding et al.[34]研究了准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组半咸水湖相沉积物中的高丰度胡萝卜烷,提出尽管高等植物和微藻都是胡萝卜素的可能前体,但7-和8-甲基十七烷的检出指示蓝藻可能是芦草沟组胡萝卜烷类化合物的主要生物来源。支东明等[6870]认为准噶尔盆地芦草沟组在石炭纪—二叠纪为统一的沉积盆地,具有相似的沉积环境和沉积建造。因此,三塘湖盆地的芦草沟组有机质也可能来源于蓝藻等水生生物,即胡萝卜烷化合物可能来自蓝藻。

    Figure 9.  Mass chromatogram of TIC and 7⁃+8⁃ methyl heptadecane in typical source rocks of the Lucaogou Formation from well Malu 1, Santanghu Basin

    考虑到γ-胡萝卜烷和β-胡萝卜烷结构相似,可能有相近的母质来源,推测γ-胡萝卜烷也可能来源于蓝藻[34]。此外,Wang et al.[71]在准噶尔盆地吉木萨尔凹陷东南部二叠系芦草沟组岩心样品中发现了Microcystis(微囊藻,一种绿色浮游蓝藻),认为在地质时期发生过蓝藻的藻华,支持了γ-和β-胡萝卜烷蓝藻来源的观点。不仅如此,大量研究表明芦草沟组沉积于区域火山活动频繁时期。例如,Zhang et al.[72]通过成因矿物学以及X射线衍射等方法证明三塘湖盆地二叠系芦草沟组沉积时期发生过火山和热液活动。火山活动会带来大量的营养元素(如Fe和Mg等微量元素)[73],能够促进蓝藻的繁殖,进而导致高丰度的胡萝卜烷形成[73]。一些学者还在蓝藻中检出了系列2-甲基藿烷类化合物(2-甲基藿烷,2-甲基藿多醇)[21,34,74],认为该系列化合物是蓝藻的另一个重要生物标志化合物。但也有学者研究表明,蓝藻的种类较多,并非所有的种属都可以产生2-甲基藿烷类化合物[74]。在本次研究中同样未检出该系列化合物,可能是因为蓝藻的种属不同而导致的[74]。因此,胡萝卜烷是否来源于蓝藻还需更多更深入的研究。

    通常认为β-胡萝卜烷存在于缺氧咸化湖相的沉积环境[75]。本次研究中β-胡萝卜烷指数高的样品,其GI值和Pr/Ph值指示了微咸水—半咸水和还原环境(图8e,f),其他学者的研究数据也有这样的特点[1112,34],说明适当的咸水和还原环境有利于蓝藻的繁殖,并进一步导致β-胡萝卜烷含量偏高。然而,研究样品中β-胡萝卜烷指数和TOC之间没有非常明显的正相关关性(图8e),说明烃源岩中的有机质是混合输入来源,这与本次的研究结果一致。

    值得注意的是,在马芦1井芦草沟组12个烃源岩样品中均检出了丰富的低碳数类胡萝卜烷系列化合物(系统命名为1,1,3-三甲基-2-类异戊二烯烷基环己烷),其碳数范围为C13~C25,其中C12、C17、C23、C28、C32、C37类胡萝卜烷化合物缺失。此外,样品大多数以C18和C19类胡萝卜烷为主峰[5,60]

    根据前文描述,研究样品以细菌和藻类为主要母质,UCM鼓包指示样品发生了一定程度的微生物降解,所以马芦1井芦草沟组低碳数类胡萝卜烷系列化合物可能是有机质受微生物改造而形成的。Xie et al.[76]曾在准噶尔盆地二叠系芦草沟组油页岩中发现了完整的微生物化石,这两种微生物化石在结构上与甲烷营养古菌和硫酸盐还原菌的细胞类型相似,但大小不同。此外,马芦1井芦草沟组出现类胡萝卜烷系列化合物也有可能是热演化导致的,因为芦草沟组沉积于区域火山活动频繁时期[7778],且烃源岩正处于成熟阶段,热演化可能让高分子量的类胡萝卜烷发生烷基侧链断裂,进而向低分子量类胡萝卜烷转化。Jiang et al.[60]曾经在克拉玛依油样中发现了丰富的类胡萝卜烷系列化合物,提出热演化可能是该系列化合物形成原因。因此,马芦1井芦草沟组烃源岩中的低碳数类胡萝卜烷系列化合物,可能是γ-和β-胡萝卜烷受微生物或热演化作用的产物。

  • (1) 三塘湖盆地马朗凹陷马芦1井芦草沟组烃源岩中有机质以细菌和藻类低等水生生物为主,有机质类型为Ⅰ~Ⅱ1型,沉积于微咸水—半咸水还原的湖相环境。烃源岩有机质丰度高且类型好,目前正处于成熟阶段,属于优质烃源岩。

    (2) 三塘湖盆地芦草沟组烃源岩中普遍含有较高丰度的γ-和β-胡萝卜烷。7-和8-甲基十七烷的分析表明,γ-和β-胡萝卜烷可能来源于包括蓝藻在内的细菌和藻类等水生生物。三塘湖盆地二叠系芦草沟组烃源岩沉积期间火山活动频发,而火山活动会带来大量的营养元素,促进这些水生生物的生长,产生了较多的胡萝卜素,进而导致高丰度β-胡萝卜烷的形成。

    (3) 综合生物标志化合物、岩石热解参数以及Ro分析,马芦1井芦草沟组烃源岩中低碳数类胡萝卜烷系列化合物(C13~C25)的形成可能与微生物或热演化作用有关。

Reference (78)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return