[1]
|
祝庆敏,卢龙飞,潘安阳,等. 湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J]. 石油实验地质,2021,43(5):797-809, 854.
Zhu Qingmin, Lu Longfei, Pan Anyang, et al. Sedimentary environment and organic matter enrichment of the Lower Cambrian Niutitang Formation shale, western Hunan province, China[J]. Petroleum Geology & Experiment, 2021, 43(5): 797-809, 854. |
[2]
|
Ernst R E, Wingate M T D, Buchan K L, et al. Global record of 1600-700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents[J]. Precambrian Research, 2008, 160(1/2): 159-178. |
[3]
|
Ernst R E, Hamilton M A, Söderlund U, et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic[J]. Nature Geoscience, 2016, 9(6): 464-469. |
[4]
|
Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. |
[5]
|
赵彦彦,郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报,2011,27(2):545-565.
Zhao Yanyan, Zheng Yongfei. Record and time of Neoproterozoic glaciations on earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565. |
[6]
|
周航兵. 湘西北下寒武统底部黑色岩系地球化学特征及地质意义[D]. 南昌:东华理工大学,2019.
Zhou Hangbing. Geochemical characteristics and geological significance of the Lower Cambrian black rock series in northwestern Hunan[D]. Nanchang: East China University of Technology, 2019. |
[7]
|
刘忠宝,杜伟,高波,等. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版),2018,48(1):1-14.
Liu Zhongbao, Du Wei, Gao Bo, et al. Sedimentary model and distribution of organic-rich shale in the sequence stratigraphic framework: A case study of Lower Cambrian in Upper Yangtze region[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1): 1-14. |
[8]
|
Hemmesch N T, Harris N B, Mnich C A, et al. A sequence-stratigraphic framework for the Upper Devonian Woodford shale, Permian basin, West Texas[J]. AAPG Bulletin, 2014, 98(1): 23-47. |
[9]
|
Brett C E, Baird G C, Bartholomew A J, et al. Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(1/2): 21-53. |
[10]
|
Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the Barnett shale in East-Central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. |
[11]
|
Halgedahl S L, Jarrard R D, Brett C E, et al. Geophysical and geological signatures of relative sea level change in the Upper Wheeler Formation, Drum Mountains, west-central Utah: A perspective into exceptional preservation of fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 277(1/2): 34-56. |
[12]
|
吴靖,姜在兴,吴明昊. 细粒岩层序地层学研究方法综述[J]. 地质科技情报,2015,34(5):16-20.
Wu Jing, Jiang Zaixing, Wu Minghao. Summary of research methods about the sequence stratigraphy of the fine-grained rocks[J]. Geological Science and Technology Information, 2015, 34(5): 16-20. |
[13]
|
梅冥相,张海,孟晓庆,等. 上扬子区下寒武统的层序地层划分和层序地层格架的建立[J]. 中国地质,2006,33(6):1292-1304.
Mei Mingxiang, Zhang Hai, Meng Xiaoqing, et al. Sequence stratigraphic division and framework of the Lower Cambrian in the Upper Yangtze region[J]. Geology in China, 2006, 33(6): 1292-1304. |
[14]
|
Silva A F, Santos T P, Xavier P L A, et al. Constraining the duration of the southern Gondwana Irati-Whitehill Sea through cyclostratigraphy and its relation with deep-time astronomical solutions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 629: 111791. |
[15]
|
Zeebe R E, Lourens L J. Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy[J]. Science, 2019, 365(6456): 926-929. |
[16]
|
Hinnov L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734. |
[17]
|
Milankovitch M. Kanon der erdbestrahlungen und seine anwendung auf das eiszeitenproblem[M]. Belgrade: Royal Serbian Academy, 1941. |
[18]
|
Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[19]
|
Zhao Z F, Thibault N R, Dahl T W, et al. Synchronizing rock clocks in the Late Cambrian[J]. Nature Communications, 2022, 13(1): 1990. |
[20]
|
周杨,金思丁,刘岩,等. 川西南下寒武统筇竹寺组页岩旋回地层学研究[J]. 沉积学报,2024,42(1):142-157.
Zhou Yang, Jin Siding, Liu Yan, et al. Cyclostratigraphy research on well-logging of the Lower Cambrian Qiongzhusi Formation in southwestern Sichuan Basin[J]. Acta Sedimentological Sinica, 2024, 42(1): 142-157. |
[21]
|
Zhang T, Li Y F, Fan T L, et al. Orbitally-paced climate change in the Early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters, 2022, 583: 117420. |
[22]
|
Scotese C R. Atlas of Cambrian and Early Ordovician Paleogeographic Maps (Mollweide Projection), maps 81-88, volumes 5. The Early Paleozoic, PALEOMAP Atlas for ArcGIS[M]. PALEOMAP Project, Evanston, IL, 2014, doi: 10.13140/2.1.4756.7369. |
[23]
|
Ye Y T, Wang H J, Wang X M, et al. Tracking the evolution of seawater Mo isotopes through the Ediacaran–Cambrian transition[J]. Precambrian Research, 2020, 350: 105929. |
[24]
|
Liu Z B, Gao B, Hu Z Q, et al. Pore characteristics and formation mechanism of high-maturity organic-rich shale in Lower Cambrian Jiumenchong Formation, southern Guizhou[J]. Petroleum Research, 2018, 3(1): 57-65. |
[25]
|
牛杏. 湘鄂西下寒武统牛蹄塘组石英成因类型及其对页岩储层物性的影响[D]. 武汉:中国地质大学(武汉),2019.
Niu Xing. Genetic types of quartz and its influence on shale reservoir physical properties of the Lower Cambrian Niutitang Formation in western Hunan and Hubei[D]. Wuhan: China University of Geosciences (Wuhan), 2019. |
[26]
|
Shu L S, Faure M, Yu J H, et al. Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia[J]. Precambrian Research, 2011, 187(3/4): 263-276. |
[27]
|
付勇,周文喜,王华建,等. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报,2021,95(2):536-548.
Fu Yong, Zhou Wenxi, Wang Huajian, et al. The relationship between environment and geochemical characteristics of black rock series of Lower Cambrian in northern Guizhou[J]. Acta Geologica Sinica, 2021, 95(2): 536-548. |
[28]
|
梁小聪,牛杏,胡明毅,等. 湘鄂西下寒武统牛蹄塘组黑色页岩发育特征及沉积环境[J]. 岩性油气藏,2023,35(4):102-114.
Liang Xiaocong, Niu Xing, Hu Mingyi, et al. Development characteristics and sedimentary environment of black shale of Lower Cambrian Niutitang Formation in western Hunan and Hubei[J]. Lithologic Reservoirs, 2023, 35(4): 102-114. |
[29]
|
李海,陈孝红,彭中勤,等. 湘鄂西地区下寒武统牛蹄塘组页岩气储层特征[J]. 地质学报,2022,96(4):1421-1433.
Li Hai, Chen Xiaohong, Peng Zhongqin, et al. Shale gas reservoir characteristics of the Lower Cambrian Niutitang Formation in the western Hunan and Hubei areas[J]. Acta Geologica Sinica, 2022, 96(4): 1421-1433. |
[30]
|
杨传. 华南埃迪卡拉系上部:寒武系下部高精度地质年代学[D]. 北京:中国科学院地质与地球物理研究所,2017.
Yang Chuan. High precision geochronology of the Upper Ediacaran-Lower Cambrian in South China[D]. Beijing: Institute of Geology and Geophysics, 2017. |
[31]
|
Compston W, Zhang Z C, Cooper J A, et al. Further SHRIMP geochronology on the Early Cambrian of South China[J]. American Journal of Science, 2008, 308(4): 399-420. |
[32]
|
Zhu R X, Li X H, Hou X G, et al. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary[J]. Science in China Series D: Earth Sciences, 2009, 52(9): 1385-1392. |
[33]
|
Sawaki Y, Nishizawa M, Suo T, et al. Internal structures and U-Pb ages of zircons from a tuff layer in the Meishucunian Formation, Yunnan province, South China[J]. Gondwana Research, 2008, 14(1/2): 148-158. |
[34]
|
Jenkins R J F, Cooper J A, Compston W. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China[J]. Journal of the Geological Society, 2002, 159(6): 645-658. |
[35]
|
吴怀春,张世红,黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘,2008,15(4):159-169.
Wu Huaichun, Zhang Shihong, Huang Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of northeast China[J]. Earth Science Frontiers, 2008, 15(4): 159-169. |
[36]
|
Huang C J, Hinnov L. Astronomically forced climate evolution in a saline lake record of the Middle Eocene to Oligocene, Jianghan Basin, China[J]. Earth and Planetary Science Letters, 2019, 528: 115846. |
[37]
|
Schnyder J, Ruffell A, Deconinck J F, et al. Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining Late Jurassic-Early Cretaceous palaeoclimate change (Dorset, U.K.)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 303-320. |
[38]
|
Li M S, Huang C J, Hinnov L, et al. Obliquity-forced climate during the Early Triassic hothouse in China[J]. Geology, 2016, 44(8): 623-626. |
[39]
|
Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. |
[40]
|
Li M S, Hinnov L A, Huang C J, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9(1): 1004. |
[41]
|
Waltham D. Milankovitch period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research, 2015, 85(8): 990-998. |
[42]
|
朱茂炎,杨爱华,袁金良,等. 中国寒武纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):26-65.
Zhu Maoyan, Yang Aihua, Yuan Jinliang, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 62(1): 26-65. |
[43]
|
刘忠宝,高波,胡宗全,等. 高演化富有机质页岩储层特征及孔隙形成演化:以黔南地区下寒武统九门冲组为例[J]. 石油学报,2017,38(12):1381-1389.
Liu Zhongbao, Gao Bo, Hu Zongquan, et al. Reservoir characteristics and pores formation and evolution of high maturated organic rich shale: A case study of Lower Cambrian Jiumenchong Formation, southern Guizhou area[J]. Acta Petrolei Sinica, 2017, 38(12): 1381-1389. |
[44]
|
侯东壮,吴湘滨,邓鑫楠. 贵州铜仁地区九门冲组黑色页岩地球化学特征及成岩环境研究[J]. 地质与勘探,2019,55(3):779-788.
Hou Dongzhuang, Wu Xiangbin, Deng Xinnan. Geochemical characteristics and diagenetic setting of the Jiumenchong Formation black shale in the Tongren area of Guizhou province[J]. Geology and Exploration, 2019, 55(3): 779-788. |
[45]
|
Wei X S, Deng Y, Yan D T, et al. Organic matter enrichment in Asia’s palaeolake controlled by the early and Middle Eocene global warming and astronomically driven precessional climate[J]. Marine and Petroleum Geology, 2023, 154: 106342. |
[46]
|
Barclay R S, McElwain J C, Sageman B B. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2[J]. Nature Geoscience, 2010, 3(3): 205-208. |
[47]
|
Kuypers M M M, Pancost R D, Nijenhuis I A, et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the Late Cenomanian oceanic anoxic event[J]. Paleoceanography, 2002, 17(4): 1051. |
[48]
|
Schoepfer S D, Shen J, Wei H Y, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52. |
[49]
|
Tyson R V. The genesis and palynofacies characteristics of marine petroleum source rocks[J]. Geological Society, London, Special Publications, 1987, 26(1): 47-67. |
[50]
|
Batenburg S J, de Vleeschouwer D, Sprovieri M, et al. Orbital control on the timing of oceanic anoxia in the Late Cretaceous[J]. Climate of the Past, 2016, 12(10): 1995-2009. |
[51]
|
Meyers S R, Sageman B B, Arthur M A. Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2[J]. Paleoceanography, 2012, 27(3): PA3212. |
[52]
|
Rachold V, Brumsack H J. Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: Palaeoenvironmental constraints and orbital cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 174(1/2/3): 121-143. |
[53]
|
Gambacorta G, Menichetti E, Trincianti E, et al. Orbital control on cyclical primary productivity and benthic anoxia: Astronomical tuning of the Telychian Stage (Early Silurian)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 152-162. |
[54]
|
Lu M, Lu Y H, Ikejiri T, et al. Periodic oceanic euxinia and terrestrial fluxes linked to astronomical forcing during the Late Devonian Frasnian–Famennian mass extinction[J]. Earth and Planetary Science Letters, 2021, 562: 116839. |
[55]
|
Ma W T, Tian J, Li Q Y, et al. Simulation of long eccentricity (400-kyr) cycle in ocean carbon reservoir during Miocene climate optimum: Weathering and nutrient response to orbital change[J]. Geophysical Research Letters, 2011, 38(10): L10701. |
[56]
|
Zhang J G, Jiang Z X, Liang C, et al. Astronomical forcing of meter-scale organic-rich mudstone–limestone cyclicity in the Eocene Dongying Sag, China: Implications for shale reservoir exploration[J]. AAPG Bulletin, 2022, 106(8): 1557-1579. |
[57]
|
Jin S D, Deng H C, Zhu X, et al. Orbital control on cyclical organic matter accumulation in Early Silurian Longmaxi Formation shales[J]. Geoscience Frontiers, 2020, 11(2): 533-545. |
[58]
|
Wichern N M A, Bialik O M, Nohl T, et al. Astronomically-paced climate and carbon-cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis[J]. Climate of the Past, 2023, doi: 10.5194/cp-2023-58. |
[59]
|
刘晓东,石正国. 岁差对亚洲夏季风气候变化影响研究进展[J]. 科学通报,2009,54(20):3097-3107.
Liu Xiaodong, Shi Zhengguo. Effect of precession on the Asian summer monsoon evolution: A systematic review[J]. Chinese Science Bulletin, 2009, 54(20): 3097-3107. |
[60]
|
Feulner G. Formation of most of our coal brought Earth close to global glaciation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11333-11337. |