HTML
-
关于日本海古生产力的代用指标,前人主要采用了微量元素[20⁃21,66,90,120⁃124]、生物标志物(烯酮、甾醇等)[63,65,71,125⁃126]、生源组分(生物硅、碳酸钙及有机碳等)[7,20⁃21,61,64,67,90,105,127⁃128]、微体古生物化石种属特征(硅藻、放射虫、有孔虫及颗石藻等)[7,58⁃59,62,67,89,91,105,114,119,129⁃133]及相关指标的综合(表1),主要分析了晚第四纪(尤其末次冰期以来)轨道时间尺度的古海洋环境及古生产力变化[63⁃66,71,105,119,122,124,131,133⁃135]。目前,日本海构造尺度的古生产力研究相对较少[7,20⁃21,67]。生物硅的通量通常被认为是表层生产力的良好指标,早期ODP 127/128航次的研究根据生物硅等指标重建了日本海18.5 Ma以来的古生产力演化[7]。近年来,IODP 346航次的元素和同位素地球化学研究,进一步揭示了11 Ma以来的日本海古生产力演化[20⁃21,67]。以下将不同指标分类,按时间顺序简要总结。
指标 原理 应用条件及局限性 参考文献 微量元素 Cd、P、Ba、Cr、Cu、Mo、Ni、V和Zn等 水体中生物碎屑沉积到海底的过程中,会释放出这些微量元素,这些元素与古生产力有着密切的联系,通过确立沉积物中这些微量元素的物质堆积速率,由此来反映表层的初级生产力 需要明确微量元素的来源,并且Cd、Mo、V等会受氧化还原环境的影响,而Ba在匮乏硫酸盐的缺氧环境会损失 [20⁃21,66,90,120⁃124] 生物标志物 长链烯酮、菜子甾醇、甲藻甾醇等 生物标志物是浮游植物细胞膜的重要组成,在沉积物中保存良好,且具有相似的成岩性质,能较好地反映浮游植物群落结构及生产力变化。例如,菜子甾醇指示硅藻,而长链烯酮则代表颗石藻 边缘海陆源物质的输入对沉积物中生物标志物的含量有稀释效应;海底氧化还原环境会影响生物标志物的保存 [63,65,71,125⁃126] 生源组分 生物硅、碳酸钙、有机碳、有机氮及相关比值和同位素 沉积物中生源组分是海洋生物的残留,其组成特征在一定程度上能反映海洋的初级生产力 受到溶解作用、成岩作用、氧化还原环境及沉积速率等影响 [7,20-21,61,64,67,90,105,127-128] 硅藻化石 硅藻种属组合、化石丰度及壳体大小等 硅藻化石含量及个体大小能一定程度上指示古生产力,具有特定环境意义的种属能够反映过去的古海洋和古气候环境,约束影响古生产力的环境条件 适用于含硅藻化石的沉积物,硅藻个体相对有孔虫更小,系统鉴定较为复杂 [62,105,132⁃133] 有孔虫/放射虫/颗石藻 有孔虫/放射虫/颗石藻种属 具有环境指示意义的有孔虫/放射虫/颗石藻的种属及其丰度,能指示古环境条件,进而约束古生产力的演化 适用于含孔虫/放射虫/颗石藻的沉积物,需要准确鉴定 [7,58-59,67,89,91,114,119,129-131] C/O同位素 O同位素可以反映海水温度、盐度及海平面变化,C同位素可以指示海水营养盐梯度等,由此约束影响古生产力的环境条件 需要挑选足够的有孔虫/放射虫,其结果受生命效应、成岩作用及实验处理方法等因素影响 早期研究中,Piper et al.[122]基于ODP 128航次798站位样品,采用沉积物微量元素指标来研究日本海的表层生产力。结果表明,第四纪沉积物中微量元素组成不仅取决于它们的来源,也受控于表层初级生产力所主导的底层水通风状况,这些信号还具有41 ka的周期性。Cd、P和Ba与表层生产力有着密切的联系(表1),被广泛应用于古生产力的重建[120⁃121,123]。Zou et al.[66]及邹建军等[124]便采用多指标(TOC、CaCO3、P、过剩Ba和Cd含量等)的物质堆积速率以及氧化还原环境指标(Mo、U、Mn、C/S、自生U等),探究了48 ka以来日本海的古生产力和海底氧化还原环境变化。Ishiwatari et al.[63]、Xing et al.[65]及赵美训等[71]则通过生物标志物探究了日本海不同时期以来的古海洋与古生产力演化。生物标志物是浮游植物细胞膜的重要组成,在沉积物中保存良好,且具有相似的成岩性质,能较好地反映冰期—间冰期的浮游植物群落结构及生产力变化[63,125⁃126]。此外,硅藻种属及组合特征可以很好地反映古海洋及古气候条件(如对马暖流、东海沿岸水及上升流变化等),以此来约束古生产力的影响因素,如海水表层温度、盐度、营养盐条件等[42,133,136⁃144]。硅藻相关的同位素指标(C、N、O、Si等)也可以很好地反映古生产力的特征[45,145⁃150],但目前在日本海尚未利用硅藻同位素进行古环境及古生产力分析。基于IODP 346航次的岩心样品,Zhai et al.[20⁃21]综合沉积物主微量元素、TOC、TN、C/N比值、C和N同位素等的分析,探讨了晚中新世以来(11 Ma)日本海初级生产力及其对古海洋和古气候的响应。Das et al.[67]根据U1426站位的样品,采用底栖有孔虫、TOC、CaCO3和粗组分等指标,分析了更新世以来(2 Ma)日本海南部初级生产力的演化特征,并探究了中更新世气候转型(Mid Pleistocene climate Transition,MPT)前后的古生产力变化。
日本海具有特殊而明显的深—浅色沉积韵律,其形成与古环境和古生产力有着密切联系[12,105,114,116]。Tada et al.[105]和Watanabe et al.[118]综合硅藻化石、有机碳和黄铁矿硫等指标,分析了日本海晚第四纪沉积物的深浅韵律层变化,并区分了多种深色沉积层的类型及形成环境。Kido et al.[114]通过浮游有孔虫δ18O,首次建立了日本海640 ka以来高分辨率的轨道尺度年代框架,以此对深浅韵律中生源组分的演化及底层水氧化还原环境进行了分析。Usami et al.[119]则基于浮游有孔虫组合,探究了日本海160~15 ka不同类型深色层对应的表层生产力与古环境特征。沉积物颜色的亮度(lightness)也可以作为TOC含量的指标,但其中可能混杂了部分陆源有机碳,因此Seki et al.[151]基于日本海U1424岩心的研究,提出了Br含量作为海洋TOC替代指标的方法。最近研究中,Gorbarenko et al.[131,134⁃135]重建了日本海末次冰期以来更高分辨率(0.13 ka)的古环境与古生产力演化曲线,综合了岩相特征、亮度、TOC、氯、CaCO3、生源钡、Mo、U和浮游有孔虫δ18O等多种指标,这为进一步解读深—浅沉积韵律的形成机制和古环境意义提供了很好的参考。
-
在地质时间尺度,日本海表层初级生产力根本上取决于浮游生物生长所必需的主要营养盐(氮、磷和硅)和微量营养盐(铁、锰、钴、锌、铜等)[7,34,41]。在日本海,这些营养盐主要通过风尘输入[21,24]、火山活动[152⁃153]、表层和深层洋流[7,20⁃21,62⁃66,69⁃70,82⁃84,103,119,124,154⁃155]携带过来(表2)。其中,风尘输入受到亚洲内陆干旱程度和东亚冬季风/西风演化的影响,火山活动与日本海周边构造活动历史有关,而日本海表层和深层洋流则受到区域构造活动及海道开合演化、全球气候与海平面变化、东亚季风活动等因素的共同影响[7,9,20,54,154⁃156]。IODP 346航次的科学目标之一,便是探究东亚季风活动、冬季降温、对马暖流活动、日本海通风、表层生产力及底层水氧化性等的相互关系[10]。总体来看,日本海古生产力的影响因素十分复杂(表2),火山活动、东亚季风和西风、洋流演变等,都能够直接或间接地影响日本海营养盐的供应以及初级生产力的水平。并且,这些影响因素本身在地质时间尺度也不断变化,导致不同时间尺度日本海古生产力演化的影响因素显著不同。
影响因素 作用机制 外界营养盐输送 深层水体营养盐供给 对初级生产力的影响 参考文献 火山活动 火山铁肥作用,相关作用机制包括①铁假说,缓解HNLC区域铁限制;②促进海洋生物光合作用和固氮作用 + + [152-153] 季风/西风带演化 东亚冬季风和西风带来风尘,输入Fe、Si等营养盐,增强生物泵作用,主要包括①铁假说;②硅假说;③碱度泵假说;④硅溢漏假说;⑤促进海洋生物光合作用和固氮作用 + + [21,24] 东亚夏季风:①带来降水,增强东海沿岸流/对马暖流,输送营养盐;②但也会降低表层盐度,加剧水体层化,导致水体垂直交换和底层水通风下降 + - + [9,105,117,119,129,155] 东亚冬季风:①驱动上升流,促进深层营养盐向表层供应;②促进日本海北部海冰扩张,表层盐度增加,促进日本海深层水形成,增强水体垂直交换和底层水通风;③但也可能抑制黑潮/对马暖流活动 - + + [70-71,77,119,127,154] 洋流演变 东海沿岸水:①从对马海峡流入的低盐水体,输入营养盐;②但也会降低表层盐度,导致水体垂直交换和底层水通风下降,并改变生产者类型 + - +/- [7,63⁃66,119,124] 亲潮:①从津轻海峡流入的高盐、富营养水体;②同时增强水体垂直交换和底层水通风 + + + [62⁃66,124] 对马暖流:①从对马海峡流入的高温高盐水体,输入大量营养盐;②同时促进日本海深层水形成,增强水体垂直交换和底层水通风 +/- +/- +/- [62⁃66,69⁃70,124] 其他:①在构造时间尺度,富营养的太平洋表层以及OMZ水体从北侧海峡进入日本海;②NPDW进入,增强日本海水体垂直交换和底层水通风 + + + [7,20⁃21,82⁃84,103] 注: ‘+’代表促进作用,‘-’代表抑制作用。 -
现代观测表明,全球俯冲带和热点的火山灰为海洋提供了大量的溶解铁(每克火山灰含35~340 nmol铁),其数量范围甚至要高于风尘输送的铁(每克风尘含10~125 nmol铁)[152]。火山铁肥带来的大量铁元素,能够增强铁限制的HNLC区域的大洋浮游植物生产力,促进碳埋藏,从而在调节大洋碳循环和气候变化中可能有重要作用[56,153]。由于火山物质颗粒微细且孔隙率高,火山物质的铁能比风尘的更快溶解而更易被生物利用[157]。相关研究指出,环太平洋的火山活动与新生代全球气候变冷也有着密切的联系[158⁃161]。但也有研究认为,虽然火山铁肥能够刺激区域生产力增加,但其对于大气CO2浓度的影响十分微弱[162]。
IODP 346航次研究显示,中新世以来日本海的沉积剖面中有许多分散的火山灰层,火山碎屑占据了整个岩相的一小部分[10]。中中新世以来,日本海整个沉积剖面中总体硅藻丰度较高,含量介于20%~70%;而钙质生物主要出现在第四纪,第四纪以前缺乏钙质生物沉积[10]。通过对比硅藻沉积层位与火山沉积层位的关系[10],发现中中新世以来日本海的硅藻沉积与火山沉积在时间上不存在同时性,而与钙质浮游生物存在一定同时性(图3);此外,在火山沉积事件后,也并未发现大量的硅藻沉积,无法从时间上直接地得出两者间的成因联系[163]。例如,相比于前第四纪时期,日本海第四纪火山沉积更常见,这一时期反而明显缺失硅藻沉积[163](图3)。并且,沉积物涂片观察表明,同一层位的火山灰含量和硅藻含量也没有明显相关性[10]。
上述分析初步表明,在构造时间尺度上,日本海的火山活动对古生产力(尤其硅藻生产力)可能没有明显的促进作用,火山铁肥或许只是较为次要的影响因素。但是,由于目前并未深入分析具体沉积层位的火山事件和古生产力的关系,也并未考虑叠加其他环境因素对古生产力的影响。所以,火山铁肥对于日本海初级生产力的影响,仍有待于进一步的研究。火山沉积事件层本身具有很好的定年优势,有利于古环境的解译[164⁃166]。
-
风尘为海洋带来大量的铁和硅,但这些硅多为颗粒态,转化后的溶解态硅才易于被浮游生物利用,溶解态硅酸盐含量直接影响着浮游植物的种类组成及硅藻生产力[30,34]。Fe是海洋中重要的限制性营养盐,Fe参与了浮游生物叶绿素合成[34],并且会影响浮游植物对氮、磷和硅等主要营养盐的吸收[41]。风尘铁肥的供应能够激发HNLC浮游植物的生长,从而降低大气中的CO2浓度,Martin[22]由此提出了著名的“铁假说”。即风尘(气溶胶)向海洋供应Fe的变化,会影响冰期—间冰期的气候循环[51⁃52,167⁃169]。风尘铁肥效应被认为是末次冰期乃至第四纪大冰期大气CO2浓度降低的重要机制之一[21⁃22,38,56]。风尘铁肥除了作用于HNLC区域,也能激发海洋中的固氮作用等,从而提高海洋生物生产力,同样可以降低大气CO2浓度[170⁃171]。此外,Oba et al.[24]研究了日本海末次盛冰期(Last Glacial Maximum,LGM)的风尘碳酸盐沉积,认为碱性风尘的输入能够影响表层水的碱度,并强化区域的碱度泵和生物泵作用,从而促使大气中的CO2浓度降低。
“铁假说”得到了许多研究的证实,既包括轨道时间尺度的沉积记录证据[36⁃39],也得到了现场Fe施肥实验及相关模型的支持[32⁃34,40⁃41]。比如,过去70万年的冰期—间冰期旋回中,风尘铁的输入显著影响着西菲律宾海的古生产力[39];赤道太平洋的研究也表明,在过去1 Ma,风尘铁的输入和生物硅的埋藏在冰期旋回中有着明显的联系[38]。晚更新世冰期旋回中,亚南极海域Fe施肥效应可能贡献了约40×10-6体积分数的大气CO2降低[172]。日本海研究也显示,随着2~3 Ma期间北极冰盖的扩张和全球的变冷,中亚干旱带来的风尘Fe通量显著增加,使得日本海初级生产力增加[21]。但是,一些研究不支持“铁假说”。例如,南大洋铁施肥实验虽然短期内刺激了硅藻生产力勃发,但反而降低了碳输出速率,因为解除铁限制后的硅藻细胞变得更轻,沉降也更慢[14]。铁施肥实验的碳输出效率仍然很难评估[35]。此外,末次冰期时,亚极地海区风尘Fe肥作用消耗了水体中的营养盐,导致输送到赤道太平洋区域的营养盐减少,尽管冰期时赤道太平洋的风尘通量增加了,但生产力反而降低了[47⁃50]。在2.8~0.9 Ma期间,亚北极太平洋水体的层化特征和上升流活动控制了长时期的硅藻生产力,而风尘铁由于活性低而难以溶解,仅在很少时间会对生产力产生影响[157]。但最新研究表明,80万年以来,风尘磁铁矿向北太平洋输送了高生物活性的Fe2+,极大地促进了初级生产力,并进而降低大气的CO2浓度[173]。总体来看,“铁假说”仍然需要更充分的、更长时间尺度的证据来检验。
日本海是来自亚洲大陆风尘的主要沉降区[51]。现今,日本海中风尘的沉积速率为0.7~4.3 g/cm2/ka,显著高于相邻的30°~40° N太平洋区域(0.1~0.2 g/cm2/ka)[108]。日本海沉积物中,风尘物质具有明显的冰期—间冰期旋回特征[108],其中深色和浅色的韵律层能够对应季风/西风带的变化[10,174],不过目前尚难以区分东亚冬季风和西风急流携带的风尘[9,54]。末次盛冰期时,日本海中具有高的风尘堆积速率(2.7~3.1 g/cm2/ka),显著高于全新世时期(0.7~1.0 g/cm2/ka)[108]。然而,晚第四纪日本海的古生产力研究表明,冰期时反而具有低的初级生产力,间冰期时却具有高的初级生产力[63,65]。其原因被认为是,冰期时低的海平面、有限的水体垂直交换及限制的营养盐条件,使得日本海的初级生产力较低;而间冰期海平面上升,水体垂直交换加强带来深部的营养盐,加之外界富营养水体的流入,则会增强初级生产力[63⁃64,66]。由此初步可见,晚第四纪水体环境起主导作用时,风尘铁肥对日本海初级生产力的贡献可能是有限的。但对于整个第四纪乃至日本海盆形成以来,风尘铁肥对日本海古生产力的影响,目前尚不清楚,仍有待于进一步的研究[51]。Shen et al.[54]重建了15 Ma以来亚洲输送到日本海构造时间尺度的风尘通量变化,Zhang et al.[175]建立了4 Ma以来日本海风尘通量的轨道时间尺度变化,Igarashi et al.[2]利用U1423钻孔孢粉分析了4.3 Ma以来东亚季风的演化,这些研究为比较日本海长时间尺度古生产力演化和风尘铁肥的联系,提供了很好的参考依据,并有助于检验“铁假说”在构造尺度、轨道尺度中对古生产力的影响。
-
日本海区域构造活动直接控制着海道位置和海槛深度,而全球气候及海平面变化同样会改变日本海与周围水体的交换程度,从而影响对马暖流、东海沿岸水、亲潮及太平洋OMZ等水体的流入,制约着日本海表层和深层水的营养盐条件[7,62,154]。例如,中—晚中新世(15.5~10.5 Ma),太平洋OMZ富营养水体的进入对日本海表层生产力有刺激作用,此后因海平面降低、北侧海槛变浅,使得太平洋OMZ水体对日本海的影响受限[7]。对马暖流输送的大量营养物质,对于维持日本海的初级生产力十分重要[63,69⁃71]。约2 Ma以后,对马暖流开始显著影响日本海[67,86]。1.2 Ma以来,海平面变化及对马暖流的周期性入侵被认为是影响日本海古生产力的主要因素[21]。并且,对马暖流在全新世时期也起着重要作用[124,154]。相关的暖水硅藻组合能较好地指示日本海中对马暖流的输入[132]。此外,东海沿岸水的输入对日本海生产力既有促进作用,也有抑制作用。一方面,在第四纪冰期的低水位时期,当高盐的对马暖流进入日本海受限时,东海沿岸水的流入会带来营养物质,会使表层生产力增加[65⁃66,105,119];另一方面,低盐度的东海沿岸水注入日本海,又会加剧海水层化,阻止日本海深层水形成,减弱上升流和垂直混合,从而减少深层水营养盐的向上输送,导致表层初级生产力降低[7,65]。具槽帕拉藻(Paralia sulcata)可以指示东海沿岸水的输入[105,133,140]。相关研究还表明,末次冰期之后,高盐富营养的亲潮会从津轻海峡进入日本海,也会促使日本海初级生产力提高[62⁃64,66]。
此外,日本海处在东亚季风气候区,东亚夏季风会影响日本海表层水体的层化特征,而东亚冬季风则控制着日本海西北部海冰的形成和深层水体的垂向通风[77,119,154]。东亚夏季风的降水增加时,低盐而富营养的东海沿岸水从对马海峡流入日本海,能够增强日本海的表层生产力[119],同时也降低底层水的通风,形成富有机质的深色沉积层[9,105]。而东亚冬季风的增强可能抑制黑潮活动,使得对马暖流减弱,营养盐的减少导致表层生产力的降低[71,154]。另一方面,当东亚冬季风增强时,日本海北部的海冰扩张,表层水盐度增加而下沉,有利于日本海深层水的产生,形成缺乏有机质的浅色沉积层[77]。并且,海洋的表层生产力以及沉积物中的生物硅含量和上升流强度密切相关,而东亚季风驱动上升流能将深部营养盐不断地输送到表层海水中[7,126,176]。现代观测显示,在日本海南部,朝鲜半岛沿岸的上升流和对马暖流输送的溶解无机氮维持着这里的初级生产力[70]。日本海沿岸除了秋冬季节发育风生上升流[177],在夏季台风时期也有短暂的上升流活动[80]。风生上升流区域提供了较多的溶解态硅酸盐,有利于硅质浮游生物的生长[34]。日本海沉积了丰富的菱形海线藻(Thalasssionema nitzschiodes),这种硅藻可以作为上升流活动的指标[42⁃45]。
3.1. 火山活动的铁肥效应
3.2. 风尘输入变化的铁肥效应
3.3. 洋流演变及营养盐变化
[1] | 李志国, 1993: 日本海自然环境特征及生物资源开发利用[J]. 人文地理, 8, 89-95. | Li Zhiguo. Characteristics of natural environment and the exploitation of biological resources in the sea of Japan[J]. Human Geography, 1993, 8(2): 89-95. |
[2] | Igarashi Y, Irino T, Sawada K, 2018: Fluctuations in the East Asian monsoon recorded by pollen assemblages in sediments from the Japan Sea off the southwestern coast of Hokkaido, Japan, from 4.3 Ma to the present[J]. Global and Planetary Change, 163, 1-9. | |
[3] | Zou J J, Shi X F, Zhu A M, 2021: Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern sea of Japan[J]. Marine Geology, 432, 106393-. | |
[4] | Yoshikawa Y, Awaji T, Akitomo K, 1999: Formation and circulation processes of intermediate water in the Japan Sea[J]. Journal of Physical Oceanography, 29, 1701-1722. | |
[5] | 崔琰琳, 吴德星, 兰健, 2006: 日本海环流研究综述[J]. 海洋科学进展, 24, 577-592. | Cui Yanlin, Wu Dexing, Lan Jian. Review of study on circulation in the Japan Sea[J]. Advances in Marine Science, 2006, 24(4): 577-592. |
[6] | Kim M, Hwang J, Kim G, 2022: Carbon cycling in the East Sea (Japan Sea): A review[J]. Frontiers in Marine Science, 9, 938935-. | |
[7] | Tada R, 1994: Paleoceanographic evolution of the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 487-508. | |
[8] | Gorbarenko S A, Shi X F, Bosin A A, 2023: Highly resolved East Asian monsoon changes inferred from sea of Japan sediments[J]. Global and Planetary Change, 220, 103996-. | |
[9] | 沈兴艳, 万世明, 2015: 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质, 35, 139-151. | Shen Xingyan, Wan Shiming. Research progress of Quaternary depositional records of the Japan Sea and its implications for the linkages to the Asian continent[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139-151. |
[10] | Tada R, Murray R W, Alvarez Zarikian C A, et al. Expedition 346 summary[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2015. | |
[11] | Tada R, Murray R W, Alvarez Zarikian C A, et al. Site U1424[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2015. | |
[12] | Tada R, Irino T, Ikehara K, 2018: High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346[J]. Progress in Earth and Planetary Science, 5, 19-. | |
[13] | Sigman D M, Boyle E A, 2000: Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 407, 859-869. | |
[14] | Chisholm S W, 2000: Stirring times in the Southern Ocean[J]. Nature, 407, 685-686. | |
[15] | Nelson D M, Tréguer P, Brzezinski M A, 1995: Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 9, 359-372. | |
[16] | Yamada K, Ishizaka J, Nagata H, 2005: Spatial and temporal variability of satellite primary production in the Japan Sea from 1998 to 2002[J]. Journal of Oceanography, 61, 857-869. | |
[17] | Joo H, Son S, Park J W, 2016: Long-term pattern of primary productivity in the East/Japan Sea based on ocean color data derived from MODIS-Aqua[J]. Remote Sensing, 8, 25-. | |
[18] | Lee J S, Han J H, An S U, 2019: Sedimentary organic carbon budget across the slope to the basin in the southwestern Ulleung (Tsushima) Basin of the East (Japan) Sea[J]. Journal of Geophysical Research: Biogeosciences, 124, 2804-2822. | |
[19] | Park G H, Lee K, Tishchenko P, 2006: Large accumulation of anthropogenic CO2[J]. Global Biogeochemical Cycles, 20, -. | |
[20] | Zhai L N, Wan S M, Colin C, 2021: Deep-water formation in the North Pacific during the Late Miocene global cooling[J]. Paleoceanography and Paleoclimatology, 36, E2020PA003946-. | |
[21] | Zhai L N, Wan S M, Tada R, 2020: Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago[J]. Geological Magazine, 157, 818-828. | |
[22] | Martin J H, 1990: Glacial-interglacial CO2[J]. Paleoceanography, 5, 1-13. | |
[23] | Harrison K G, 2000: Role of increased marine silica input on paleo-p2[J]. Paleoceanography, 15, 292-298. | |
[24] | Oba T, Pedersen T F, 1999: Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum[J]. Paleoceanography, 14, 34-41. | |
[25] | Nozaki Y, Yamamoto Y, 2001: Radium 228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced "alkalinity pump" hypothesis[J]. Global Biogeochemical Cycles, 15, 555-567. | |
[26] | Brzezinski M A, Pride C J, Franck V M, 2002: A switch from Si(OH)43-[J]. Geophysical Research Letters, 29, 1564-. | |
[27] | Matsumoto K, Sarmiento J L, Brzezinski M A, 2002: Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric p2[J]. Global Biogeochemical Cycles, 16, 1031-. | |
[28] | Matsumoto K, Sarmiento J L, 2008: A corollary to the silicic acid leakage hypothesis[J]. Paleoceanography, 23, -. | |
[29] | 汪品先, 翦知湣, 刘志飞, 2006: 地球圈层相互作用中的深海过程和深海记录(II):气候变化的热带驱动与碳循环[J]. 地球科学进展, 21, 338-345. | Wang Pinxian, Jian Zhimin, Liu Zhifei. Interactions between the earth spheres: Deep-sea processes and records (II) tropical forcing of climate changes and carbon cycling[J]. Advances in Earth Science, 2006, 21(4): 338-345. |
[30] | 熊志方, 李铁刚, 2017: 海洋纹层硅藻席古海洋学与生物地球化学研究进展[J]. 海洋与湖沼, 48, 1244-1256. | Xiong Zhifang, Li Tiegang. Marine laminated diatom mats in palaeoceanography and biogeochemistry: Retrospective and prospective[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1244-1256. |
[31] | Ruddiman W F. Earth's climate: Past and future[M]. 3rd ed. New York: W. H. Freeman and Company, 2014: 413-431. | |
[32] | Moore J K, Doney S C, Glover D M, 2001: Iron cycling and nutrient-limitation patterns in surface waters of the world ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 463-507. | |
[33] | Kim T J, Hong G H, Kim D G, 2019: Iron fertilization with enhanced phytoplankton productivity under minimal sulfur compounds and grazing control analysis in HNLC region[J]. American Journal of Climate Change, 8, 14-39. | |
[34] | 陈敏. 化学海洋学[M]. 北京:海洋出版社,2009:143-200. | Chen Min. Chemical oceanography[M]. Beijing: China Ocean Press, 2009: 143-200. |
[35] | de Baar H J W, Boyd P W, Coale K H, 2005: Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment[J]. Journal of Geophysical Research: Oceans, 110, C09-16. | |
[36] | Kumar N, Anderson R F, Mortlock R A, 1995: Increased biological productivity and export production in the glacial Southern Ocean[J]. Nature, 378, 675-680. | |
[37] | Paytan A, Kastner M, Chavez F P, 1996: Glacial to interglacial fluctuations in productivity in the equatorial pacific as indicated by marine barite[J]. Science, 274, 1355-1357. | |
[38] | Murray R W, Leinen M, Knowlton C W, 2012: Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean[J]. Nature Geoscience, 5, 270-274. | |
[39] | Xu Z K, Li T G, Clift P D, 2015: Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-Late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 16, 3182-3196. | |
[40] | Watson A J, Bakker D C E, Ridgwell A J, 2000: Effect of iron supply on Southern Ocean CO22[J]. Nature, 407, 730-733. | |
[41] | Takeda S, 1998: Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters[J]. Nature, 393, 774-777. | |
[42] | Dean W E, Gardner J V, Piper D Z, 1997: Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta, 61, 4507-4518. | |
[43] | Brunelle B G, Sigman D M, Cook M S, 2007: Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the Last Ice Age and a link to North Pacific denitrification changes[J]. Paleoceanography, 22, -. | |
[44] | Piotrowski A M, Banakar V K, Scrivner A E, 2009: Indian Ocean circulation and productivity during the last glacial cycle[J]. Earth and Planetary Science Letters, 285, 179-189. | |
[45] | Kim S, Khim B K, 2017: Estimate of glacial silicic acid reduction over the last 600 ka in the Bering Sea using δ30[J]. Geochemical Journal, 51, 347-357. | |
[46] | Zhao D B, Wan S M, Lu Z Y, 2021: Delayed collapse of the North Pacific intermediate water after the glacial termination[J]. Geophysical Research Letters, 48, E2021GL092911-. | |
[47] | Beucher C P, Brzezinski M A, Crosta X, 2007: Silicic acid dynamics in the glacial sub-Antarctic: Implications for the silicic acid leakage hypothesis[J]. Global Biogeochemical Cycles, 21, -. | |
[48] | Anderson R F, Barker S, Fleisher M, 2014: Biological response to millennial variability of dust and nutrient supply in the subantarctic South Atlantic Ocean[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130054-. | |
[49] | Martínez-García A, Sigman D M, Ren H J, 2014: Iron fertilization of the subantarctic ocean during the last ice age[J]. Science, 343, 1347-1350. | |
[50] | Costa K M, McManus J F, Anderson R F, 2016: No iron fertilization in the equatorial Pacific Ocean during the last ice age[J]. Nature, 529, 519-522. | |
[51] | 万世明, 徐兆凯, 2017: 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 48, 1208-1219. | Wan Shiming, Xu Zhaokai. Research progress on eolian dust records in the West Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219. |
[52] | Wan S M, Sun Y B, Nagashima K, 2020: Asian dust from land to sea: Processes, history and effect from modern observation to geological records[J]. Geological Magazine, 157, 701-706. | |
[53] | Zachos J, Pagani M, Sloan L, 2001: Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292, 686-693. | |
[54] | Shen X Y, Wan S M, France-Lanord C, 2017: History of Asian eolian input to the sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 474, 296-308. | |
[55] | Holbourn A E, Kuhnt W, Clemens S C, 2018: Late Miocene climate cooling and intensification of Southeast Asian winter monsoon[J]. Nature Communications, 9, 1584-. | |
[56] | 靳华龙, 万世明, 2019: 新生代气候变冷机制研究进展[J]. 海洋地质与第四纪地质, 39, 71-86. | Jin Hualong, Wan Shiming. The mechanism of Cenozoic cooling: A review of research progress[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 71-86. |
[57] | Westerhold T, Marwan N, Drury A J, 2020: An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 369, 1383-1387. | |
[58] | Matsuzaki K M, Suzuki N, Tada R, 2020: An intensified East Asian winter monsoon in the Japan Sea between 7.9 and 6.6 Ma[J]. Geology, 48, 919-923. | |
[59] | Matsuzaki K M, Ikeda M, Tada R, 2022: Weakened pacific overturning circulation, winter monsoon dominance and tectonism re-organized Japan Sea paleoceanography during the Late Miocene global cooling[J]. Scientific Reports, 12, 11396-. | |
[60] | Wen Y X, Zhang L M, Holbourn A E, 2023: CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, -. | |
[61] | Westacott S, Planavsky N J, Zhao M Y, 2021: Revisiting the sedimentary record of the rise of diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, -. | |
[62] | Oba T, Kato M, Kitazato H, 1991: Paleoenvironmental changes in the Japan Sea during the last 85,000 years[J]. Paleoceanography, 6, 499-518. | |
[63] | Ishiwatari R, Yamada K, Matsumoto K, 1999: Organic molecular and carbon isotopic records of the Japan Sea over the past 30 kyr[J]. Paleoceanography, 14, 260-270. | |
[64] | Lee K E, Bahk J J, Narita H, 2003: Temporal variations in productivity and planktonic ecological structure in the East Sea (Japan Sea) since the last glaciation[J]. Geo-Marine Letters, 23, 125-129. | |
[65] | Xing L, Zhang R P, Liu Y G, 2011: Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews, 30, 2666-2675. | |
[66] | Zou J J, Shi X F, Liu Y G, 2012: Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (sea of Japan) over the last 48 ka[J]. Journal of Quaternary Science, 27, 891-900. | |
[67] | Das M, Singh R K, Holbourn A, 2021: Paleoceanographic evolution of the Japan Sea during the Pleistocene:A benthic foraminiferal perspective[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 566, 110238-. | |
[68] | Ludwig W J, Murauchi S, Houtz R E, 1975: Sediments and structure of the Japan Sea[J]. GSA Bulletin, 86, 651-664. | |
[69] | Water Yanagi T., 2002: phosphorus and nitrogen budgets of the Japan Sea[J]. Journal of Oceanography, 58, 797-804. | |
[70] | Onitsuka G, Yanagi T, Yoon J H, 2007: A numerical study on nutrient sources in the surface layer of the Japan Sea using a coupled physical-ecosystem model[J]. Journal of Geophysical Research: Oceans, 112, C05042-. | |
[71] | 赵美训, 张荣平, 邢磊, 2009: 末次冰盛期以来日本海浮游植物生产力和群落结构变化[J]. 中国海洋大学学报, 39, 1093-1099. | Zhao Meixun, Zhang Rongping, Xing Lei, et al. The changes of phytoplanktonic productivity and community structure in the Japan Sea since the Last Glacial Maximum[J]. Periodical of Ocean University of China, 2009, 39(5): 1093-1099. |
[72] | Katsunobu N, Satoshi K, Hideyuki S, 1990: The Japan Sea proper water and the Japan Sea warm eddy[J]. Bulletin of the Kobe Marine Observatory, , 1-10. | |
[73] | Talley L D, Min D H, Lobanov V B, 2006: Japan/East Sea water masses and their relation to the sea’s circulation[J]. Oceanography, 19, 32-49. | |
[74] | Senjyu T, Shiota K, 2023: Revisit the upper portion of the Japan Sea proper water: A recent structural change and freshening in the formation area[J]. Journal of Geophysical Research: Oceans, 128, E2022JC019094-. | |
[75] | Gamo T, Horibe Y, 1983: Abyssal circulation in the Japan Sea[J]. Journal of the Oceanographical Society of Japan, 39, 220-230. | |
[76] | Gamo T, Nozaki Y, Sakai H, 1986: Spacial and temporal variations of water characteristics in the Japan Sea bottom layer[J]. Journal of Marine Research, 44, 781-793. | |
[77] | Ikehara K, Fujine K, 2012: Fluctuations in the Late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J]. Journal of Quaternary Science, 27, 866-872. | |
[78] | Takata H, Kuma K, Iwade S, 2005: Comparative vertical distributions of iron in the Japan Sea, the Bering Sea, and the western North Pacific Ocean[J]. Journal of Geophysical Research: Oceans, 110, C07004-. | |
[79] | Takata H, Kuma K, Isoda Y, 2008: Iron in the Japan Sea and its implications for the physical processes in deep water[J]. Geophysical Research Letters, 35, -. | |
[80] | Park K A, Kim K R, 2010: Unprecedented coastal upwelling in the East/Japan Sea and linkage to long-term large-scale variations[J]. Geophysical Research Letters, 37, -. | |
[81] | Kaizuka S, 1980: Late Cenozoic palaeogeography of Japan[J]. GeoJournal, 4, 101-109. | |
[82] | Itaki T, 2016: Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events[J]. Progress in Earth and Planetary Science, 3, 11-. | |
[83] | Itoh Y, Nakajima T, Takemura A, 1997: Neogene deformation of the back-arc shelf of southwest Japan and its impact on the palaeo- environments of the Japan Sea[J]. Tectonophysics, 281, 71-82. | |
[84] | Kozaka Y, Horikawa K, Asahara Y, 2018: Late Miocene-mid-Pliocene tectonically induced formation of the semi-closed Japan Sea, inferred from seawater Nd isotopes[J]. Geology, 46, 903-906. | |
[85] | Sato H, 1994: The relationship between Late Cenozoic tectonic events and stress field and basin development in northeast Japan[J]. Journal of Geophysical Research: Solid Earth, 99, 22261-22274. | |
[86] | Gallagher S J, Kitamura A, Iryu Y, 2015: The Pliocene to recent history of the Kuroshio and Tsushima currents: A multi-proxy approach[J]. Progress in Earth and Planetary Science, 2, 17-. | |
[87] | Zheng J Y, Guo X Y, Yang H Y, 2023: Low sea surface salinity event of the Japan Sea during the last glacial maximum[J]. Paleoceanography and Paleoclimatology, 38, E2022PA004486-. | |
[88] | Lee K E, 2007: Surface water changes recorded in Late Quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 18-31. | |
[89] | 李铁刚, 孙荣涛, 张德玉, 2007: 晚第四纪对马暖流的演化和变动:浮游有孔虫和氧碳同位素证据[J]. 中国科学(D辑):地球科学, 37, 660-669. | Li Tiegang, Sun Rongtao, Zhang Deyu, et al. Evolution and variation of the Tsushima warm current during the Late Quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes[J]. Science China (Seri. D): Earth Sciences, 2007, 37(5): 660-669. |
[90] | Lim D, Xu Z K, Choi J, 2011: Paleoceanographic changes in the Ulleung Basin, East (Japan) Sea, during the last 20,000 years: Evidence from variations in element composition of core sediments[J]. Progress in Oceanography, 88, 101-115. | |
[91] | Matsuzaki K M, Itaki T, Tada R, 2018: Paleoceanographic history of the Japan Sea over the last 9.5 million years inferred from radiolarian assemblages (IODP Expedition 346 Sites U1425 and U1430)[J]. Progress in Earth and Planetary Science, 5, 54-. | |
[92] | Tamaki K, Suyehiro K, Allan J, et al. Tectonic synthesis and implications of Japan Sea ODP drilling[M]//Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 1333-1348. | |
[93] | Jolivet L, Tamaki K, Fournier M, 1994: Japan Sea, opening history and mechanism: A synthesis[J]. Journal of Geophysical Research: Solid Earth, 99, 22237-22259. | |
[94] | Yang G, Zhao L F, Xie X B, 2022: “Double door” opening of the Japan Sea inferred by Pn attenuation tomography[J]. Geophysical Research Letters, 49, E2022GL099886-. | |
[95] | Tsoy I B, Usoltseva M V, 2016: Miocene freshwater diatoms from the eastern slope of the submarine Ulleung Plateau (Krishtofovich Rise) in the sea of Japan[J]. Stratigraphy and Geological Correlation, 24, 276-293. | |
[96] | Tsoy I, 2017: Early Miocene freshwater diatom flora from the Yamato Rise, the sea of Japan[J]. Diatom Research, 32, 277-293. | |
[97] | Tsoy I B, Vashchenkova N G, Vasilenko L N, 2020: Age and Formation conditions of Cenozoic sedimentary cover of the Yamato Rise in the sea of Japan[J]. Stratigraphy and Geological Correlation, 28, 202-229. | |
[98] | Kimura S, Shikazono N, Kashiwagi H, 2004: Middle Miocene-Early Pliocene paleo-oceanic environment of Japan Sea deduced from geochemical features of sedimentary rocks[J]. Sedimentary Geology, 164, 105-129. | |
[99] | Martizzi P, Chiyonobu S, Hibi Y, 2021: Middle-Late Miocene paleo-environment of the Japan Sea inferred by sedimentological and geochemical characterization of coeval sedimentary rocks[J]. Marine and Petroleum Geology, 128, 105059-. | |
[100] | Iijima A, Tada R, 1992: Evolution of Tertiary sedimentary basins of Japan in reference to opening of the Japan Sea[J]. Journal of the Japanese Association for Petroleum Technology, 57, 171-179. | |
[101] | Ingle J C, Jr. Subsidence of the Japan Sea: Stratigraphic evidence from ODP sites and onshore sections[M]//Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 1197-1218. | |
[102] | Jolivet L, Tamaki K. Neogene kinematics in the Japan Sea region and volcanic activity of the northeast Japan arc[M]//Tamaki K, Suyehiro K, Allan J, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 1311-1331. | |
[103] | Koizumi I. Biostratigraphy and paleoceanography of the Japan Sea based on diatoms: ODP Leg 127[M]//Tsuchi R, Ingle J C, Jr. Pacific Neogene: Environment, evolution, and events. Tokyo: University of Tokyo Press, 1992: 15-24. | |
[104] | Haq B U, Hardenbol J, Vail P R, 1987: Chronology of fluctuating sea levels since the Triassic[J]. Science, 235, 1156-1167. | |
[105] | Tada R, Irino T, Koizumi I, 1999: Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea[J]. Paleoceanography, 14, 236-247. | |
[106] | Irino T, Tada R, 2003: High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka[J]. Global and Planetary Change, 35, 143-156. | |
[107] | Nagashima K, Tada R, Tani A, 2007: Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 8, Q02Q04-. | |
[108] | Irino T, Tada R, 2000: Quantification of aeolian dust (Kosa) contribution to the Japan Sea sediments and its variation during the last 200 ky[J]. Geochemical Journal, 34, 59-93. | |
[109] | Nagashima K, Tada R, Matsui H, 2007: Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 144-161. | |
[110] | Anderson C H, Murray R W, Dunlea A G, 2020: Aeolian delivery to Ulleung Basin, Korea (Japan Sea), during development of the East Asian monsoon through the last 12 Ma[J]. Geological Magazine, 157, 806-817. | |
[111] | Aoki S, Oinuma K, Sudo T, 1974: The distribution of clay minerals in the recent sediments of the Japan Sea[J]. Deep Sea Research and Oceanographic Abstracts, 21, 299-310. | |
[112] | Cha H J, Choi M S, Lee C B, 2007: Geochemistry of surface sediments in the southwestern East/Japan Sea[J]. Journal of Asian Earth Sciences, 29, 685-697. | |
[113] | Singh R K, Sahu B, Vats N, 2023: Sediment depositional pattern in the northern Japan Sea over the last 1200 ka and its linkages to orbital forcing[J]. Geological Journal, 58, 2777-2789. | |
[114] | Kido Y, Minami I, Tada R, 2007: Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 32-49. | |
[115] | Yokoyama Y, Kido Y, Tada R, 2007: Japan Sea oxygen isotope stratigraphy and global sea-level changes for the last 50,000 years recorded in sediment cores from the Oki Ridge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 5-17. | |
[116] | Tada R, Koizumi I, Cramp A, et al. Correlation of dark and light layers, and the origin of their cyclicity in the Quaternary sediments from the Japan Sea[M]//Pisciotto K A, Ingle J C, Jr, von Breymann M T, et al. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 1992: 577-601. | |
[117] | Tada R. Onset and evolution of millennial-scale variability in the Asian monsoon and its impact on paleoceanography of the Japan Sea[M]//Clift P, Kuhnt W, Wang P, et al. Continent-ocean interactions within East Asian marginal seas. Washington, DC: American Geophysical Union, 2004: 283-298. | |
[118] | Watanabe S, Tada R, Ikehara K, 2007: Sediment fabrics, oxygenation history, and circulation modes of Japan Sea during the Late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 50-64. | |
[119] | Usami K, Ohi T, Hasegawa S, 2013: Foraminiferal records of bottom-water oxygenation and surface-water productivity in the southern Japan Sea during 160-15ka: Associations with insolation changes[J]. Marine Micropaleontology, 101, 10-27. | |
[120] | Dymond J, Suess E, Lyle M, 1992: Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 7, 163-181. | |
[121] | Filippelli G M, Delaney M L, Garrison R E, 1994: Phosphorus accumulation rates in a Miocene low oxygen basin: The Monterey Formation (Pismo Basin), California[J]. Marine Geology, 116, 419-430. | |
[122] | Piper D Z, Isaacs C M, 1995: Minor elements in Quaternary sediment from the Sea of Japan: A record of surface-water productivity and intermediate-water redox conditions[J]. GSA Bulletin, 107, 54-67. | |
[123] | Elderfield H, Rickaby R E M, 2000: Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean[J]. Nature, 405, 305-310. | |
[124] | 邹建军, 石学法, 刘焱光, 2010: 48ka以来日本海古生产力和古氧化还原环境变化的地球化学记录[J]. 海洋学报, 32, 98-109. | Zou Jianjun, Shi Xuefa, Liu Yanguang, et al. The geochemical records of paleoproductivity and paleoredox in the sea of Japan since 48ka[J]. Acta Oceanologica Sinica, 2010, 32(4): 98-109. |
[125] | Schubert C J, Villanueva J, Calvert S E, 1998: Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years[J]. Nature, 394, 563-566. | |
[126] | Hinrichs K U, Schneider R R, Müller P J, 1999: A biomarker perspective on paleoproductivity variations in two Late Quaternary sediment sections from the southeast Atlantic Ocean[J]. Organic Geochemistry, 30, 341-366. | |
[127] | Leinen M, Cwienk D, Heath G R, 1986: Distribution of biogenic silica and quartz in recent deep-sea sediments[J]. Geology, 14, 199-203. | |
[128] | Black H D, Anderson W T, Alvarez Zarikian C A, et al. Data report: Organic matter, carbonate, and stable isotope stratigraphy from IODP Expedition 346 Sites U1426, U1427, and U1429[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2018. | |
[129] | Gallagher S J, Sagawa T, Henderson A C G, 2018: East Asian monsoon history and paleoceanography of the Japan Sea over the last 460,000 years[J]. Paleoceanography and Paleoclimatology, 33, 683-702. | |
[130] | Saavedra-Pellitero M, Baumann K H, Gallagher S J, 2019: Paleoceanographic evolution of the Japan Sea over the last 460 kyr :A coccolithophore perspective[J]. Marine Micropaleontology, 152, 101720-. | |
[131] | Gorbarenko S A, Shi X F, Bosin A A, 2022: Relative sea level changes during the last glacial maximum and deglaciation (33-15 ka) inferred from the δ18[J]. Quaternary Science Reviews, 279, 107386-. | |
[132] | Koizumi I, Ekeda A. The Plio-Pleistocene diatom record from ODP site 797 of the Japan Sea[M]//Wang N W, Remane. Stratigraphy: Proceedings of the 30th international geological congress. London: CRC Press, 1998: 213-230. | |
[133] | 黄玥. 末次冰期以来南海及日本海硅藻及其古环境变化[D]. 上海:华东师范大学,2009:84-104. | Huang Yue. Diatom response to changes in palaeoenvironments of the South China Sea and the East Sea (sea of Japan) since the last glacial maximum[D]. Shanghai: East China Normal University, 2009: 84-104. |
[134] | Gorbarenko S A, Shi X F, Bosin A A, 2021: Timing and mechanisms of the formation of the dark layers in the sea of Japan during the last 40 kyr[J]. Frontiers in Earth Science, 9, 647495-. | |
[135] | Gorbarenko S A, Shi X F, Rybiakova Y, 2015: Fine structure of dark layers in the central Japan Sea and their relationship with the abrupt climate and sea level changes over the last 75 ka inferred from lithophysical, geochemical and pollen results[J]. Journal of Asian Earth Sciences, 114, 476-487. | |
[136] | Koizumi I, Tada R, Narita H, 2006: Paleoceanographic history around the Tsugaru Strait between the Japan Sea and the Northwest Pacific Ocean since 30 cal kyr BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 36-52. | |
[137] | 黄玥, 刘焱光, Boo-KeumK, 2010: 从UB-2孔硅藻记录看末次冰期至早全新世日本海古海洋环境[J]. 古地理学报, 12, 432-443. | Huang Yue, Liu Yanguang, Boo-Keum K, et al. Palaeoceanographical environment of Japan Sea during the last glacial and Early Holocene: An evidence from diatom record in core UB-2[J]. Journal of Palaeogeography, 2010, 12(4): 432-443. |
[138] | Vashchenkova N G, Gorovaya M T, Mozherovskii A V, 2011: Sedimentary cover and Late Cenozoic history of the Okushiri Ridge (sea of Japan)[J]. Stratigraphy and Geological Correlation, 19, 663-678. | |
[139] | Koizumi I, Yamamoto H, 2016: Diatom records in the Quaternary marine sequences around the Japanese Islands[J]. Quaternary International, 397, 436-447. | |
[140] | Ventura C P L, Lopes C. Freshwater monsoon related inputs in the Japan Sea: A diatom record from IODP core U1427[C]//AGU (American Geophysical Union) fall meeting. San Francisco: American Geophysical Union, 2016. | |
[141] | Yun S M, Lee T, Jung S W, 2017: Fossil diatom assemblages as paleoecological indicators of paleo-water environmental change in the Ulleung Basin, East Sea, Republic of Korea[J]. Ocean Science Journal, 52, 345-357. | |
[142] | Yi S, Yun H, Park B, 2020: Biostratigraphy of the Ulleung Basin, East Sea (Japan Sea)[J]. Marine and Petroleum Geology, 122, 104697-. | |
[143] | Evstigneeva T A, Cherepanova M V, 2022: Environmental changes clarified by pollen and diatom proxy records in the sedimentary archive of the northwestern Japan Sea during last 21.0 kyr[J]. Palaeoworld, 31, 733-748. | |
[144] | Lopes C, Mix A C, Abrantes F, 2006: Diatoms in northeast Pacific surface sediments as paleoceanographic proxies[J]. Marine Micropaleontology, 60, 45-65. | |
[145] | 李铁刚, 熊志方, 2010: 海洋硅藻稳定同位素研究进展[J]. 海洋与湖沼, 41, 645-656. | Li Tiegang, Xiong Zhifang. A review of diatom stable isotopes in palaeoceanography[J]. Oceanologia et Limnologia Sinica, 2010, 41(4): 645-656. |
[146] | Andersen M B, Vance D, Archer C, 2011: The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater[J]. Earth and Planetary Science Letters, 301, 137-145. | |
[147] | Sun X L, Andersson P S, Humborg C, 2013: Silicon isotope enrichment in diatoms during nutrient-limited blooms in a eutrophied river system[J]. Journal of Geochemical Exploration, 132, 173-180. | |
[148] | Xiong Z F, Li T G, Algeo T, 2015: The silicon isotope composition of Ethmodiscus rex[J]. Paleoceanography, 30, 803-823. | |
[149] | Doering K, Ehlert C, Grasse P, 2016: Differences between mono-generic and mixed diatom silicon isotope compositions trace present and past nutrient utilisation off Peru[J]. Geochimica et Cosmochimica Acta, 177, 30-47. | |
[150] | Meyerink S, Ellwood M J, Maher W A, 2017: Iron availability influences silicon isotope fractionation in two Southern Ocean diatoms (Proboscia inermisEucampia antarcticaThalassiosira pseudonana[J]. Frontiers in Marine Science, 4, 217-. | |
[151] | Seki A, Tada R, Kurokawa S, 2019: High-resolution Quaternary record of marine organic carbon content in the hemipelagic sediments of the Japan Sea from bromine counts measured by XRF core scanner[J]. Progress in Earth and Planetary Science, 6, 1-. | |
[152] | Olgun N, Duggen S, Croot P L, 2011: Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean[J]. Global Biogeochemical Cycles, 25, -. | |
[153] | Takeda S, 2011: Iron and phytoplankton growth in the subarctic North Pacific[J]. Aqua-BioScience Monographs, 4, 41-93. | |
[154] | 石学法, 邹建军, 姚政权, 2019: 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 39, 1-11. | Shi Xuefa, Zou Jianjun, Yao Zhengquan, et al. Sedimentation and environment evolution of the sea of Japan since the last glaciation and its driving forces[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 1-11. |
[155] | Fujine K, Tada R, Yamamoto M, 2009: Paleotemperature response to monsoon activity in the Japan Sea during the last 160 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 280, 350-360. | |
[156] | Horozal S, Kim G Y, Cukur D, 2017: Sedimentary and structural evolution of the eastern South Korea Plateau (ESKP), East Sea (Japan Sea)[J]. Marine and Petroleum Geology, 85, 70-88. | |
[157] | Chen T, Liu Q S, Roberts A, 2020: A test of the relative importance of iron fertilization from aeolian dust and volcanic ash in the stratified high-nitrate low-chlorophyll subarctic Pacific Ocean[J]. Quaternary Science Reviews, 248, 106577-. | |
[158] | Kennett J P, Thunell R C, 1975: Global increase in Quaternary explosive volcanism[J]. Science, 187, 497-503. | |
[159] | Prueher L M, Rea D K, 2001: Volcanic triggering of Late Pliocene glaciation: Evidence from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 173, 215-230. | |
[160] | Cather S M, Dunbar N W, McDowell F W, 2009: Climate forcing by iron fertilization from repeated ignimbrite eruptions: The icehouse-silicic large igneous province (SLIP) hypothesis[J]. Geosphere, 5, 315-324. | |
[161] | Jicha B R, Scholl D W, Rea D K, 2009: Circum-Pacific arc flare-ups and global cooling near the Eocene-Oligocene boundary[J]. Geology, 37, 303-306. | |
[162] | Hamme R C, Webley P W, Crawford W R, 2010: Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific[J]. Geophysical Research Letters, 37, -. | |
[163] | Tada R, Murray R W, Alvarez Zarikian C A, et al. Site U1430[M]//Tada R, Murray R W, Alvarez Zarikian C A, et al. Proceedings of the integrated ocean drilling program, 346. College Station, TX: Integrated Ocean Drilling Program, 2015. | |
[164] | Park M H, Kim J H, Kim I S, 2005: Tephrostratigraphy and paleo-environmental implications of Late Quaternary sediments and interstitial water in the western Ulleung Basin, East/Japan Sea[J]. Geo-Marine Letters, 25, 54-62. | |
[165] | Park M H, Kim J H, Kil Y W, 2007: Identification of the Late Quaternary tephra layers in the Ulleung Basin of the East Sea using geochemical and statistical methods[J]. Marine Geology, 244, 196-208. | |
[166] | Ikehara K, 2015: Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology[J]. Progress in Earth and Planetary Science, 2, 36-. | |
[167] | Harrison S P, Kohfeld K E, Roelandt C, 2001: The role of dust in climate changes today, at the last glacial maximum and in the future[J]. Earth-Science Reviews, 54, 43-80. | |
[168] | Wan S M, Yu Z J, Clift P D, 2012: History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328, 152-159. | |
[169] | Conway T M, John S G, 2014: Quantification of dissolved iron sources to the North Atlantic Ocean[J]. Nature, 511, 212-215. | |
[170] | Falkowski P G, 1997: Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2[J]. Nature, 387, 272-275. | |
[171] | Broecker W S, Henderson G M, 1998: The sequence of events surrounding termination II and their implications for the cause of glacial-interglacial CO2[J]. Paleoceanography, 13, 352-364. | |
[172] | Martínez-Garcia A, Rosell-Melé A, Jaccard S L, 2011: Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 476, 312-315. | |
[173] | Zan J B, Maher B A, Yamazaki T, 2023: Mid-Pleistocene links between Asian dust, Tibetan glaciers, and Pacific iron fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, -. | |
[174] | Tada R, Murray R W, Zarikian C A, et al. An overview of IODP Expedition 346: Asian monsoon[C]//Japan Geoscience Union meeting. Kanagawa: Japan Geoscience Union, 2014. | |
[175] | Zhang W F, De Vleeschouwer D, Shen J, 2018: Orbital time scale records of Asian eolian dust from the sea of Japan since the Early Pliocene[J]. Quaternary Science Reviews, 187, 157-167. | |
[176] | 冉莉华, 郑玉龙, 陈建芳, 2011: 南海北部和中部硅藻通量季节性变化及其对季风气候的响应[J]. 海洋学报, 33, 139-145. | Ran Lihua, Zheng Yulong, Chen Jianfang, et al. The influence of monsoon on seasonal changes of diatom fluxes in the northern and central South China Sea[J]. Acta Oceanologica Sinica, 2011, 33(5): 139-145. |
[177] | Zhabin I A, Dmitrieva E V, Kil’matov T R, 2017: Wind effects on the upwelling variability in the coastal zone of Primorye (the northwest of the sea of Japan)[J]. Russian Meteorology and Hydrology, 42, 181-188. | |
[178] | Zhao D B, Wan S M, Zhai L N, 2022: Tectonic and orbital imprints in the redox history of Japan Sea since the Pliocene[J]. Paleoceanography and Paleoclimatology, 37, E2021PA004333-. | |
[179] | Ruddiman W F, Raymo M E, Martinson D G, 1989: Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 4, 353-412. | |
[180] | Beny F, Toucanne S, Skonieczny C, 2018: Geochemical provenance of sediments from the northern East China Sea document a gradual migration of the Asian Monsoon belt over the past 400,000 years[J]. Quaternary Science Reviews, 190, 161-175. | |
[181] | Hayashi R, Sagawa T, Irino T, 2021: Orbital-scale vegetation-ocean-atmosphere linkages in western Japan during the last 550 ka based on a pollen record from the IODP site U1427 in the Japan Sea[J]. Quaternary Science Reviews, 267, 107103-. | |
[182] | Felder S, Sagawa T, Greaves M, 2022: Palaeoceanography of the Japan sea across the mid-Pleistocene transition: Insights from IODP exp. 346, site U1427[J]. Paleoceanography and Paleoclimatology, 37, E2021PA004236-. | |
[183] | Waelbroeck C, Labeyrie L, Michel E, 2002: Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 21, 295-305. | |
[184] | Berger A L, 1978: Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 35, 2362-2367. | |
[185] | Wang Y J, Cheng H, Edwards R L, 2001: A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 294, 2345-2348. | |
[186] | Yuan D X, Cheng H, Edwards R L, 2004: Timing, duration, and transitions of the Last Interglacial Asian Monsoon[J]. Science, 304, 575-578. | |
[187] | Xu Z K, Lim D, Choi J, 2014: Sediment provenance and paleoenvironmental change in the Ulleung Basin of the East (Japan) Sea during the last 21 kyr[J]. Journal of Asian Earth Sciences, 93, 146-157. | |
[188] | Wu Y H, Shi X F, Gong X, 2020: Evolution of the upper ocean stratification in the Japan Sea since the last glacial[J]. Geophysical Research Letters, 47, E2020GL088255-. | |
[189] | 刘焱光, 邹建军, 李朝新, 2009: 日本海的末次盛冰期[J]. 海洋地质与第四纪地质, 29, 53-63. | Liu Yanguang, Zou Jianjun, Li Chaoxin, et al. The last glaciation maximum in the sea of Japan/East Sea[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 53-63. |
[190] | 邹建军, 宗娴, 朱爱美, 2022: 37ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 29, 123-135. | Zou Jianjun, Zong Xian, Zhu Aimei, et al. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the sea of Japan since 37 ka: Paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4): 123-135. |
[191] | 刘焱光, 石学法, 吕海龙, 2004: 日本海、鄂霍次克海和白令海的古海洋学研究进展[J]. 海洋科学进展, 22, 519-530. | Liu Yanguang, Shi Xuefa, Hailong Lü. Advances in paleoceanographic studies on the Japan Sea, Okhotsk Sea and Bering Sea[J]. Advances in Marine Science, 2004, 22(4): 519-530. |
[192] | 姚政权, 刘焱光, 王昆山, 2010: 日本海末次冰期千年尺度古环境变化的地球化学记录[J]. 矿物岩石地球化学通报, 29, 119-126. | Yao Zhengquan, Liu Yanguang, Wang Kunshan, et al. Millennial-scale paleoenvironment change during the last glacial period recorded by geochemical variations in the Japan Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2): 119-126. |
[193] | 葛淑兰, 刘建兴, 石学法, 2012: 日本海南部48ka以来的环境磁学记录及其反映的千年尺度环境变化[J]. 第四纪研究, 32, 641-654. | Ge Shulan, Liu Jianxing, Shi Xuefa, et al. Millennial environmental and post-depositional changes of the last 48ka recorded by environmental magnetic parameters in southern Japan Sea[J]. Quaternary Sciences, 2012, 32(4): 641-654. |
[194] | Itaki T, Komatsu N, Motoyama I, 2007: Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 kyrs in the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 115-130. |