Advanced Search
Volume 41 Issue 6
Dec.  2023
Turn off MathJax
Article Contents

PENG Yun, YU Qian, WAN JieYing, DU ZhiYun, WANG Li, WANG YunWei, GAO Shu. Gravity-driven Sediment Flows in the Shallow Water off Central Jiangsu Coast[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1755-1767. doi: 10.14027/j.issn.1000-0550.2023.091
Citation: PENG Yun, YU Qian, WAN JieYing, DU ZhiYun, WANG Li, WANG YunWei, GAO Shu. Gravity-driven Sediment Flows in the Shallow Water off Central Jiangsu Coast[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1755-1767. doi: 10.14027/j.issn.1000-0550.2023.091

Gravity-driven Sediment Flows in the Shallow Water off Central Jiangsu Coast

doi: 10.14027/j.issn.1000-0550.2023.091
Funds:

National Natural Science Foundation of China 41076081

National Natural Science Foundation of China 42076172

Natural Resources Development Special Funds of Jiangsu Province (Marine Science and Technology Innovation) JSZRHYKJ202115

  • Received Date: 2023-06-08
  • Accepted Date: 2023-10-24
  • Rev Recd Date: 2023-09-21
  • Available Online: 2023-10-24
  • Publish Date: 2023-12-10
  • Objective An enhanced understanding of the underlying physical mechanisms governing the dispersal of terrestrial sediments into the deep ocean, together with their accompanying nutrients and contaminants, has long been one of the most fundamental components of sediment source-to-sink studies. Over the past three decades, wave- and current-supported gravity flows (WCSGFs) have been recognized as the predominant physical mechanism responsible for the cross-shelf transport of fine-grained sediment and the morphological evolution of numerous coastal and continental shelves worldwide. Despite their significant impact, it has continued to be an ongoing challenge to quantify the transport dynamics of WCSGFs due to their localized, episodic and ephemeral nature. Inadequate in⁃situ observations have hindered a comprehensive understanding of the transport processes of WCSGFs. Methods To address this gap in knowledge, a field campaign was conducted by deploying an instrumented tripod system from 07:00 h on November 25, 2018, to 08:30 h on November 29, 2018, off the central Jiangsu coast, China. A cross-shore bathymetric profile, obtained from a multibeam echo-sounder survey conducted in August 2018, served as a baseline. The instrumented tripod system was deployed at a depth of 7.00 m relative to the mean sea level indicated by the cross-shore bathymetric profile. Results Analysis of the collected time-series data revealed multiple instances of intermittent high suspended sediment concentration (SSC) values exceeding 5 kg∙m-3, with durations ranging from 0.25 to 2.75 hours, indicative of fluid mud development. Notably, these fluid-mud events occurred during tidal slack water and exhibited a thickness of approximately 0.3 m. Vertical SSC gradients became prominent when SSCs reached around 5 kg∙m-3, establishing a critical threshold for distinguishing between overlying flow and the near-bed fluid-mud layer. The presence of anomalously large near-bottom, offshore-directed current velocities coinciding with thin fluid-mud events unequivocally confirmed the occurrence of WCSGF events. In total, eight fluid-mud events were identified, of which five gave rise to WCSGF events. The observed WCSGF events were subjected to parameterization using a buoyancy-friction model, yielding a depth-averaged suspended sediment concentration within the fluid-mud layer equivalent to an average mass concentration over the bottom meter of the water column. Conclusion During storm events, unconsolidated sediments could be re-suspended by strong wave-induced shear stress, forming a fluid-mud layer that subsequently moved downslope under the influence of gravity, manifested as WCSGFs. In weak wave conditions, sediment settling from the overlying fluid during low slack water also had the potential to create a near-bed fluid-mud layer. When the settling sediment reached a critical excess density, WCSGF initiation ensued. Maintenance of WCSGFs depended on either current-induced bed stress or a combination of wave- and current-induced bed stress. Importantly, the observed WCSGF events were of short duration and were not observed during peak ebb and peak flood phases when stronger near-bottom currents prevailed. This suggests that the upward dispersion of bottom sediment within the near-bed fluid-mud layer contributed to the cessation of WCSGFs. The observed WCSGF events in the shallow water off the central Jiangsu coast provides yet another case study in support of the use of the classical theoretical existing buoyancy-friction model.
  • [1] Wright L D, Friedrichs C T, Kim S C, et al. Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves[J]. Marine Geology, 2001, 175(1/2/3/4): 25-45.
    [2] Wright L D, Friedrichs C T. Gravity-driven sediment transport on continental shelves: A status report[J]. Continental Shelf Research, 2006, 26(17/18): 2092-2107.
    [3] Talling P J, Paull C K, Piper D J W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows[J]. Earth-Science Reviews, 2013, 125: 244-287.
    [4] 操应长,金杰华,刘海宁,等. 中国东部断陷湖盆深水重力流沉积及其油气地质意义[J]. 石油勘探与开发,2021,48(2):247-257.

    Cao Yingchang, Jin Jiehua, Liu Haining, et al. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China[J]. Petroleum Exploration and Development, 2021, 48(2): 247-257.
    [5] 王华,陈思,蒋恕. 浅海背景下大型重力流沉积体能堆积与发育吗?[J]. 地球科学,2022,47(10):3867-3868.

    Wang Hua, Chen Si, Jiang Shu. Can large gravity flow deposits accumulate and develop in shallow marine?[J]. Earth Science, 2022, 47(10): 3867-3868.
    [6] 杨仁超,李作福,张学才,等. 异重流沉积研究进展与展望[J/OL]. 沉积学报,doi:  10.14027/j.issn.1000-0550.2023.008 .

    Yang Renchao, Li Zuofu, Zhang Xuecai, et al. Advances and perspectives in the study of hyperpycnal flow deposition[J/OL]. Acta Sedimentologica Sinica,doi:  10.14027/j.issn.1000-0550.2023.008 .
    [7] Kineke G C, Sternberg R W, Trowbridge J H, et al. Fluid-mud processes on the Amazon continental shelf[J]. Continental Shelf Research, 1996, 16(5/6): 667-696.
    [8] Sternberg R W, Cacchione D A, Paulso B, et al. Observations of sediment transport on the Amazon subaqueous delta[J]. Continental Shelf Research, 1996, 16(5/6): 697-715.
    [9] Ogston A S, Cacchione D A, Sternberg R W, et al. Observations of storm and river flood-driven sediment transport on the northern California continental shelf[J]. Continental Shelf Research, 2000, 20(16): 2141-2162.
    [10] Traykovski P, Geyer W R, Irish J D, et al. The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf[J]. Continental Shelf Research, 2000, 20(16): 2113-2140.
    [11] Traykovski P, Wiberg P L, Geyer W R. Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf[J]. Continental Shelf Research, 2007, 27(3/4): 375-399.
    [12] Ma Y X, Wright L D, Friedrichs C T. Observations of sediment transport on the continental shelf off the mouth of the Waiapu River, New Zealand: Evidence for current-supported gravity flows[J]. Continental Shelf Research, 2008, 28(4/5): 516-532.
    [13] Hale R P, Ogston A S. In situ observations of wave-supported fluid-mud generation and deposition on an active continental margin[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(11): 2357-2373.
    [14] Flores R P, Rijnsburger S, Meirelles S, et al. Wave generation of gravity-driven sediment flows on a predominantly sandy seabed[J]. Geophysical Research Letters, 2018, 45(15): 7634-7645.
    [15] Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268-294.
    [16] Nittrouer C A, Austin J A, Field M E, et al. Continental margin sedimentation: From sediment transport to sequence stratigraphy[M]. Malden: International Association of Sedimentologists, 2007.
    [17] 丁贤荣,康彦彦,茅志兵,等. 南黄海辐射沙脊群特大潮差分析[J]. 海洋学报,2014,36(11):12-20.

    Ding Xianrong, Kang Yanyan, Mao Zhibing, et al. Analysis of largest tidal range in radial sand ridges southern Yellow Sea[J]. Acta Oceanologica Sinica, 2014, 36(11): 12-20.
    [18] 任美锷. 江苏省海岸带与海涂资源综合调查报告[M]. 北京:海洋出版社,1986.

    Ren Mei’e. Comprehensive investigation of the coastal zone and tidal land resources of Jiangsu province[M]. Beijing: China Ocean Press, 1986.
    [19] 于谦,王韫玮,高抒. 潮汐与陆架环流作用下的悬沙输运:江苏新洋港海岸冬季观测结果[J]. 南京大学学报(自然科学版),2014,50(5):626-635.

    Yu Qian, Wang Yunwei, Gao Shu. Tide and continental shelf circulation induced suspended sediment transport on the Jiangsu coast: Winter observations out of Xinyanggang[J]. Journal of Nanjing University (Natural Sciences), 2014, 50(5): 626-635.
    [20] Peng Y, Yu Q, Du Z Y, et al. Gravity-driven sediment flows on the shallow sea floor of a muddy open coast[J]. Marine Geology, 2022, 445: 106759.
    [21] Yu Q, Wang Y W, Shi B W, et al. Physical and sedimentary processes on the tidal flat of central Jiangsu coast, China: Headland induced tidal eddies and benthic fluid mud layers[J]. Continental Shelf Research, 2017, 133: 26-36.
    [22] Scully M E, Friedrichs C T, Wright L D. Application of an analytical model of critically stratified gravity-driven sediment transport and deposition to observations from the Eel River continental shelf, northern California[J]. Continental Shelf Research, 2002, 22(14): 1951-1974.
    [23] Scully M E, Friedrichs C T, Wright L D. Numerical modeling of gravity-driven sediment transport and deposition on an energetic continental shelf: Eel River, northern California[J]. Journal of Geophysical Research: Oceans, 2003, 108(C4): 3120.
    [24] Ozdemir C E. Turbulence-resolving, two-phase flow simulations of wave-supported gravity flows: A conceptual study[J]. Journal of Geophysical Research: Oceans, 2016, 121(12): 8849-8871.
    [25] Han Z C, Horner-Devine A R, Ogston A S, et al. The role of sand in wave boundary layers over primarily muddy seabeds: Implications for wave-supported gravity flows[J]. Journal of Geophysical Research: Oceans, 2021, 126(5): e2020JC016621.
    [26] Peng Y, Yu Q, Du Z Y, et al. The dynamics of wave and current supported gravity flows: Evaluation of drag coefficient and bulk Richardson number[J]. Marine Geology, 2022, 454: 106947.
    [27] Wang X H, Qiao F L, Lu J, et al. The turbidity maxima of the northern Jiangsu shoal-water in the Yellow Sea, China[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 202-211.
    [28] Du Z Y, Yu Q, Peng Y, et al. The formation of coastal turbidity maximum by tidal pumping in well-mixed inner shelves[J]. Journal of Geophysical Research: Oceans, 2022, 127(4): e2022JC018478.
    [29] 杨阳. 江苏中部海岸晚第四纪沉积物来源及环境演化[D]. 南京:南京大学,2017.

    Yang Yang. Late Quaternary sediment provenance and environment evolution on the central Jiangsu coast[D]. Nanjing: Nanjing University, 2017.
    [30] Xing F, Wang Y P, Wang H V. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea[J]. Marine Geology, 2012, 291-294: 192-210.
    [31] Andersen T J, Fredsoe J, Pejrup M. In situ estimation of erosion and deposition thresholds by acoustic Doppler velocimeter (ADV)[J]. Estuarine, Coastal and Shelf Science, 2007, 75(3): 327-336.
    [32] Eidam E F, Ogston A S, Nittrouer C A. Formation and removal of a coastal flood deposit[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 1045-1062.
    [33] Wang Y W, Peng Y, Du Z Y, et al. Calibrations of suspended sediment concentrations in high-turbidity waters using different in situ optical instruments[J]. Water, 2020, 12(11): 3296.
    [34] Wiberg P L, Sherwood C R. Calculating wave-generated bottom orbital velocities from surface-wave parameters[J]. Computers & Geosciences, 2008, 34(10): 1243-1262.
    [35] Soulsby R. Dynamics of marine sands[M]. London: Thomas Telford Publishing, 1997.
    [36] Kim S C, Friedrichs C T, Maa J P Y, et al. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2000, 126(6): 399-406.
    [37] Parsons J D, Bush J W M, Syvitski J P M. Hyperpycnal plume formation from riverine outflows with small sediment concentrations[J]. Sedimentology, 2001, 48(2): 465-478.
    [38] Ayranci K, Lintern D G, Hill P R, et al. Tide-supported gravity flows on the upper delta front, Fraser River delta, Canada[J]. Marine Geology, 2012, 326-328: 166-170.
    [39] Kineke G C, Sternberg R W. Measurements of high concentration suspended sediments using the optical backscatterance sensor[J]. Marine Geology, 1992, 108(3/4): 253-258.
    [40] Haddadian S, Ozdemir C E, Goodlow B L, et al. Direct numerical simulations of miniature along-shelf current-supported turbidity currents: Conceptual investigation of velocity structure and drag coefficient[J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2020JC016736.
    [41] Trowbridge J H, Kineke G C. Structure and dynamics of fluid muds on the Amazon continental shelf[J]. Journal of Geophysical Research, 1994, 99(C1): 865-874.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(1)

Article Metrics

Article views(225) PDF downloads(53) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-06-08
  • Revised:  2023-09-21
  • Accepted:  2023-10-24
  • Published:  2023-12-10

Gravity-driven Sediment Flows in the Shallow Water off Central Jiangsu Coast

doi: 10.14027/j.issn.1000-0550.2023.091
Funds:

National Natural Science Foundation of China 41076081

National Natural Science Foundation of China 42076172

Natural Resources Development Special Funds of Jiangsu Province (Marine Science and Technology Innovation) JSZRHYKJ202115

Abstract: Objective An enhanced understanding of the underlying physical mechanisms governing the dispersal of terrestrial sediments into the deep ocean, together with their accompanying nutrients and contaminants, has long been one of the most fundamental components of sediment source-to-sink studies. Over the past three decades, wave- and current-supported gravity flows (WCSGFs) have been recognized as the predominant physical mechanism responsible for the cross-shelf transport of fine-grained sediment and the morphological evolution of numerous coastal and continental shelves worldwide. Despite their significant impact, it has continued to be an ongoing challenge to quantify the transport dynamics of WCSGFs due to their localized, episodic and ephemeral nature. Inadequate in⁃situ observations have hindered a comprehensive understanding of the transport processes of WCSGFs. Methods To address this gap in knowledge, a field campaign was conducted by deploying an instrumented tripod system from 07:00 h on November 25, 2018, to 08:30 h on November 29, 2018, off the central Jiangsu coast, China. A cross-shore bathymetric profile, obtained from a multibeam echo-sounder survey conducted in August 2018, served as a baseline. The instrumented tripod system was deployed at a depth of 7.00 m relative to the mean sea level indicated by the cross-shore bathymetric profile. Results Analysis of the collected time-series data revealed multiple instances of intermittent high suspended sediment concentration (SSC) values exceeding 5 kg∙m-3, with durations ranging from 0.25 to 2.75 hours, indicative of fluid mud development. Notably, these fluid-mud events occurred during tidal slack water and exhibited a thickness of approximately 0.3 m. Vertical SSC gradients became prominent when SSCs reached around 5 kg∙m-3, establishing a critical threshold for distinguishing between overlying flow and the near-bed fluid-mud layer. The presence of anomalously large near-bottom, offshore-directed current velocities coinciding with thin fluid-mud events unequivocally confirmed the occurrence of WCSGF events. In total, eight fluid-mud events were identified, of which five gave rise to WCSGF events. The observed WCSGF events were subjected to parameterization using a buoyancy-friction model, yielding a depth-averaged suspended sediment concentration within the fluid-mud layer equivalent to an average mass concentration over the bottom meter of the water column. Conclusion During storm events, unconsolidated sediments could be re-suspended by strong wave-induced shear stress, forming a fluid-mud layer that subsequently moved downslope under the influence of gravity, manifested as WCSGFs. In weak wave conditions, sediment settling from the overlying fluid during low slack water also had the potential to create a near-bed fluid-mud layer. When the settling sediment reached a critical excess density, WCSGF initiation ensued. Maintenance of WCSGFs depended on either current-induced bed stress or a combination of wave- and current-induced bed stress. Importantly, the observed WCSGF events were of short duration and were not observed during peak ebb and peak flood phases when stronger near-bottom currents prevailed. This suggests that the upward dispersion of bottom sediment within the near-bed fluid-mud layer contributed to the cessation of WCSGFs. The observed WCSGF events in the shallow water off the central Jiangsu coast provides yet another case study in support of the use of the classical theoretical existing buoyancy-friction model.

PENG Yun, YU Qian, WAN JieYing, DU ZhiYun, WANG Li, WANG YunWei, GAO Shu. Gravity-driven Sediment Flows in the Shallow Water off Central Jiangsu Coast[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1755-1767. doi: 10.14027/j.issn.1000-0550.2023.091
Citation: PENG Yun, YU Qian, WAN JieYing, DU ZhiYun, WANG Li, WANG YunWei, GAO Shu. Gravity-driven Sediment Flows in the Shallow Water off Central Jiangsu Coast[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1755-1767. doi: 10.14027/j.issn.1000-0550.2023.091
  • 重力流是一种高密度流体,由于其流体密度大于周围环境水体密度,能在重力的驱动下离岸下坡输运[13]。因触发机制与支撑机理的不同,重力流的类型多种多样,如浊流、碎屑流、异重流等[36]。本研究中的重力流,指的是波浪和潮流支撑的浮泥层运动[12]。波浪和潮流支撑的浮泥层运动是一种比较特殊的重力流,特殊在维持其输运的机理不是自悬浮,而是波浪和潮流提供的底部切应力。因此,相比于依靠自悬浮维持,需要较大坡度才能发生的浊流,波浪和潮流支撑的浮泥层运动在坡度很缓的海岸和陆架区域也能发生[12]

    过去30年间,在世界范围内的许多海岸和陆架区域都发现了波浪和潮流支撑的浮泥层运动,如中国黄河口渤海湾海域[1]、南美亚马逊陆架[78]、美国Eel河邻域陆架[910]、意大利Po河水下三角洲[11]、新西兰Waipaoa河邻域陆架[1213]、和荷兰莱茵河海岸[14]等。波浪和潮流支撑的浮泥层运动能输运大量的沉积物跨过陆架[12],对地貌演化产生重要影响,如大尺度水下三角洲和倾斜地层的演化[15],以及中部陆架泥质沉积的形成[16]。因此,研究波浪和潮流支撑的浮泥层运动这一重力流输运过程具有重要意义。

    然而,波浪和潮流支撑的浮泥层(重力流)的发生具有偶然性,其持续时间也很短暂[12]。重力流的这两个固有特性,导致在野外现场捕捉其输运过程一直以来都是一个巨大挑战。已有研究表明,充足的细颗粒沉积物物源供给和较强的水动力是触发重力流的必要条件[2],尽管最近在砂质海岸近岸海域也观测到了重力流[14]。江苏海岸中部近岸海域素以潮流强劲著称,最大潮差可达9.39 m[17]。自黄河1855年北归以后,江苏北部的废黄河三角洲遭受到严重侵蚀,侵蚀下来的沉积物在苏北沿岸流的作用下向南输运,为江苏海岸中部近岸海域提供了大量的沉积物供给[1819]。因此,江苏海岸中部近岸海域是研究沉积物重力流输运过程的绝佳场所。

    Peng et al.[20]在江苏海岸中部近岸海域,于不同季节实施了三次野外观测(2019年春季、2019年秋季和2020年秋季),均捕捉到多次(大于15次)重力流输运过程,其研究表明重力流发生的频率可能更高[20]。然而,Peng et al.[20]观测到的数次重力流的触发机制具有多样性,对重力流的维持和停止机理也没有进行详细的介绍。长久以来,触发、维持和停止重力流的准确机理,一直都是重力流研究的难点和热点之一[2,13]。因此,有必要依靠更多的观测数据,更加细致地研究重力流的触发、维持和停止机理。

    Peng et al.[20]的研究表明重力流可能有着更加复杂的动力行为。最普遍用于描述重力流动力行为的理论分析模型是由Wright et al.[1]首次提出的浮力—阻力模型。过去二十年间,不论是对重力流野外观测数据的分析[1114,21],还是对重力流数值模拟[2224],以及水槽实验[25]研究,Wright et al.[1]的浮力—阻力模型被多次运用,模型中的参数也被多次验证。Peng et al.[26]继续分析了Peng et al.[20]中2020年秋季的观测数据,运用在2020年秋季观测到的23次重力流事件,对Wright et al.[1]的浮力—阻力模型中的两个关键参数(底部拖曳系数CD和整体理查德森数Rib)进行了验证。结果显示,CD明显大于前人研究报道的0.001~0.006的区间范围,Rib接近于模型给出的临界值0.25。然而,也有关于重力流的研究表明,Rib不一定是0.25,而是维持在0.01附近,比0.25要小一个数量级[11,14]。因此,有必要基于重力流的野外观测数据,对Wright et al.[1]的浮力—阻力模型中的重要参数(CDRib)进行验证。

    研究的主要目的:(1)展示2018年秋季在江苏海岸中部近岸海域观测到的重力流事件;(2)基于现场观测到的重力流事件,分析重力流的形成、维持和停止机理;(3)基于重力流观测数据,对重力流进行参数化,检验重力流浮力—阻力模型中重要参数(CDRib)的敏感性。

  • 研究区域位于江苏海岸中部近岸海域(图1)。1128—1855年,黄河在700多年的时间里从江苏北部入海,黄河携带的巨量沉积物造就了广阔的水下三角洲(向海延伸到40 m水深)和江苏沿岸的滨海平原[18]。自1855年黄河北归以后,由于沉积物供应急剧减少,1128—1855年由黄河输运而来的沉积物所形成的三角洲遭受到强烈的侵蚀,开始急剧后退,形成废黄河三角洲。不断受侵蚀的苏北废黄河三角洲提供了巨量的沉积物,在苏北沿岸流的作用下向南输运,为江苏中部海岸近岸海域提供了大量的沉积物供给[1819]

    Figure 1.  Map of observation area

    由于沉积物供给丰富,研究区是中国最浑浊的海岸之一[2728]。研究区悬沙浓度在冬季最高,夏季最低。自潮滩向岸外浅水区,悬沙浓度不断减小[28]。研究区近岸10 m水深范围内,底质类型主要是砂和砂质粉砂,平均粒径介于50.8~133.9 μm[29]

    研究区主要受两大潮波系统的影响,分别是来自南黄海的旋转潮波和来自东海的前进波[15,30]。研究区域的潮汐类型为正规半日潮,平均潮差介于3.9~5.5 m。潮流以涨潮流为主导,最大流速超过1.5 m/s,沿岸流速相对于跨岸流速占据主导地位。研究区余流较为复杂,大小潮变化较大,余流值介于0.007~0.370 m/s,余流方向变化趋势不明显。受岸外辐射沙脊群的阻挡,研究区波浪相对较弱,有效波高大于2 m的出现频率仅为5%[18]

  • 野外观测时间为2018年11月25号7点00分至2018年11月29号8点30分,覆盖8个潮周期。观测站位位于江苏中部海岸岸外水下岸坡(33.415° N,120.748° E),该观测站位附近,沿岸方向上的地形起伏不大,而垂直于海岸的跨岸方向上的地形有明显坡度变化。近岸6 km,平均水深小于13 m的范围内,没有发育明显的沟槽。观测站位附近潮滩上的潮沟尺度均相对较小,并没有延伸到岸外水下岸坡[18]。2018年8月4日,在江苏海岸中部斗龙潮滩岸外水下岸坡区域,利用多波束随机测量了一条跨岸地形剖面(图1c),结果显示,近岸5 km,平均水深小于12 m的范围内,跨岸方向上的地形有明显坡度变化,但并没有发育明显的沟槽。

    野外观测采用底基三脚架进行,三脚架放置在由多波束于2018年8月4日测量到的跨岸海底地形上,平均水深约7 m(图1b,c)。海底三脚架具有能够搭载多种水文仪器,长期、连续、稳定和自容进行几乎无干扰原位观测的优点。三脚架上搭载一系列水文仪器,用于长时间原位连续观测水体的流速和浊度等信息。

    在距底1.25 m处放置1个上视声学多普勒流速剖面仪(ADP,1 MHz),用于测量上覆水体的流速剖面,采样分辨率为0.2 m一层,采样频率为2 Hz。在距底0.3 m处放置1个声学多普勒流速仪(ADV),用于测量近底三维高频(16 Hz)流速,每15 min的采样间隔内测量128 s。水深由ADV的压力记录经过压力校正后得到。底床高度变化由ADV换能器与底床之间的相对高程得到[3132]

    水体浊度由AQUAlogger 310 TY和光学后向散射仪(OBS-3A)这两种浊度仪器测量,在距底0.1 m处放置1个AQUAlogger 310 TY,在距底0.3 m和1 m处分别放置一个OBS-3A。三个浊度仪器的采样参数均设置为以1 Hz频率每3 min测量30 s。浊度仪器的详细标定流程见Wang et al.[33]。三脚架上搭载的所有仪器的采样参数设置详情见表1。观测时间段内风场信息选自欧洲中期天气预报中心(ECMWF)第五代全球大气再分析资料(ERA5)再分析近地面10 m风速数据。ERA5再分析风速数据具有时空分辨率高的特点,时间分辨率为1 h,空间分辨率达到0.25°×0.25°,能够较好地提供研究区域的背景风场信息。

    观测平台仪器采样参数仪器距底高度/m
    三脚架上视ADP2 Hz;层厚:0.2 m1.25
    ADV16 Hz;每15 min测128 s0.3
    AQUAlogger 310 TY1 Hz;每3 min测30 s0.1
    OBS-3A1 Hz;每3 min测30 s0.3, 1
  • 基于ADV的压力记录,通过谱分析方法[34],计算得到有效波高(Hs),波浪谱峰周期(Tp),按照线性波理论,计算得到波浪轨道速度(Uw)。

    浪致底部切应力的计算方法如下[35]

    τw=12ρwfwUw2 (1)

    式中:τw是浪致底部切应力,ρw是海水密度,fw是波浪摩擦系数,计算方式为[35]

    fw=1.39(AZ0)-0.52 (2)

    式中:A=UwTp/2π是波浪的半轨道偏移量(semi-orbital excursion),Z0是摩阻高度。

    将ADV和ADP测量的流速分解到沿岸和跨岸方向,正方向分别为沿岸向南和跨岸向海(图1b),沿岸正方向为从正北顺时针旋转157°。海上实测的水流,包括周期性潮流和余流两部分,余流是指从实际海流中去掉周期性潮流后的剩余部分,对水体各层的沿岸和跨岸流速的调和分析得到的非周期项即为余流,对垂向上各个层位的余流流速进行平均即得这些层位的垂向余流平均值。

    潮致底部切应力可以由雷诺应力法得到[31,36]

    τcx=ρw-u'w'¯ (3)
    τcy=ρw-v'w'¯ (4)

    式中:τcxτcy分别是平行和垂直于主流向方向的切应力,u′,v′和w′是距底某一高度处水平(平行和垂直于主流向方向)和竖直流速的瞬时湍流部分,可以表示为测量的瞬时流速与测量间隔平均流速之差(比如:u= ͞u + u′),上横线表示测量间隔的时间平均。由此:

    τc=τcx2+τcy2 (5)

    式中:τc是潮致底部切应力。

  • 观测得到的时间序列数据如图2所示。水深在4.43~8.86 m范围变化,平均水深为6.94 m(图2a)。风速最大值小于5.00 m/s,平均风速为2.82 m/s,主要风向为西北(NW)(图2b)。距底0.1 m、0.3 m和1 m处悬沙浓度的变化范围分别为1.17~15.75 kg/m3、0.73~7.88 kg/m3和0.67~3.78 kg/m3图2c)。距底0.3 m处的沿岸流速介于-0.47~0.87 m/s(图2e),而距底0.3 m处的跨岸流速介于-0.24~0.22 m/s(图2d),说明沿岸流速相对于跨岸流速占据主导地位。距底0.3 m处的沿岸余流和跨岸余流流速分别为0.07 m/s和-0.01 m/s,上覆水体(>1.25 m)垂向平均的沿岸余流和跨岸余流流速分别为0.13 m/s和-0.04 m/s。在观测中发生了一次强度相对较小的波浪事件,持续时间约31 h(图2f中的黑色矩形)。波浪事件前,有效波高小于0.25 m(图2f),波浪轨道速度小于0.05 m/s(图2d),浪致底部切应力小于0.15 Pa(图2g)。随着波浪事件的发生,有效波高、波浪轨道速度和浪致底部切应力均先增大后减小,它们的最大值分别为0.89 m、0.16 m/s和0.68 Pa(图2e~g)。波浪谱峰周期介于3.46~9.33 s,平均值为5.10 s(图2f)。潮致底部切应力变化范围为0.03~3.02 Pa,最小值大致出现在涨憩和落憩相位,最大值大致出现在涨急和落急相位,且涨急相位附近的最大值通常要比落急相位附近的最大值更大(图2g)。底床高度在0.03~0.13 m范围变化(图2h)。

    Figure 2.  Time⁃series data during field observation

  • 时间序列的悬沙浓度清楚地揭示了浮泥层事件的存在(图2c)。波浪事件前和波浪事件期间,均观测到近底高悬沙浓度(>10 kg/m3)现象。在研究观测区域,已有研究报道过浮泥层的存在,并将区分近底高浓度浮泥层和上覆低浓度水体的悬沙浓度临界值取为5 kg/m3[20]。以5 kg/m3为临界值,观测期间一共出现了8次短暂的浮泥层事件,持续时间为0.25~2.75 h,按出现的时间顺序,依次标记为E1~E8(图2)。其中,发生在波浪事件前的4次浮泥层事件均出现在低水位时段(E1~E4)。而发生在波浪事件期间的4次浮泥层事件,有2次出现在低水位时段(E5,E7),2次出现在高水位时段(E6,E8)。发生在低水位和高水位时段的浮泥层事件分别用黄色和绿色阴影区域表示(图2)。发生在低水位时段的浮泥层事件(E1~E5,E7)包含晚落潮和始涨潮相位,发生在高水位时段的浮泥层事件(E6,E8)仅包含始落潮相位。

    距底0.3 m处的沿岸流速(UA0.3)具有明显的潮变化特征,涨潮时流向向南,落潮时流向向北(图2e)。距底0.3 m处的跨岸流速(UC0.3)和深度平均的上覆水体跨岸流速(UCU>1.25 m)也具有明显的潮变化特征,涨潮时流向向陆,落潮时流向向海(图2d)。然而,对应于浮泥层事件发育期间的某些时段,UC0.3会出现异常(图2d),具体时间段为:E2和E5的始涨潮相位(early flood,缩写为ef),E6和E8的始落潮相位(early ebb,缩写为ee),E7的晚落潮相位(late ebb,缩写为le),详细解释如图3所示。

    Figure 3.  Vertical profiles of cross⁃shore current velocity (UC) and suspended sediment concentration (SSC)

    在浮泥层事件E2和E5的始涨潮相位(ef),上覆水体的跨岸流速符合潮变化,流向向陆,但UC0.3的方向却是离岸向海的,大小约0.02 m/s(图3a,b,f,g)。在浮泥层事件E6的始落潮(ee)、E7的晚落潮(le)、和E8的始落潮(ee)相位,上覆水体的跨岸流速和UC0.3均符合潮变化,流向向海,但是,UC0.3值却非常大,约0.2 m/s,明显大于上覆水体整个剖面的跨岸流速(图3c~e,h~j)。区别于上覆水体的异常离岸流速和浮泥层事件同时发生,是重力流发生最明显和最直接的证据[11,14,20,32]。因此,在浮泥层事件E2的始涨潮(ef)、E5的始涨潮(ef)、E6的始落潮(ee)、E7的晚落潮(le)、和E8的始落潮(ee)相位,基于现场观测的流速和悬沙浓度证据直接显示了重力流的存在。

  • 研究观测到8次短暂的浮泥层事件(图2c),仅在其中5次发现了重力流输运过程(近底异常离岸流速和浮泥层同时发生)(图2c,d)。而且,近底异常离岸流速(UC0.3)并不是在浮泥层持续时间段内均有,而是发生在浮泥层发育时间段内的某个相位,如E2事件的始涨潮相位(图3)。

    在E1、E3和E4事件发育期间,均未观测到类似E2事件期间的异常离岸流速(图2c,d)。可能的解释是,E1和E4事件的持续时间太短,约半小时(图2c),重力流离岸流速不容易被观测到,或是浮泥层还无法形成重力流,就已经被潮流的作用停止[1,32]。而在E3事件的始涨潮相位,虽然没有观测到如E2事件始涨潮相位UC0.3一般的离岸流速,但此阶段的UC0.3具有类似E2事件始涨潮相位UC0.3的特征,即存在微小的凸起(图2c,d)。同样地,在E7事件始涨潮相位也没有观测到异常的UC0.3,但此阶段的UC0.3也存在微小的凸起(图2c,d)。由此推测,在E3和E7事件的始涨潮相位,也可能发生了重力流,但由于重力流流速所处的垂向区间小于0.3 m,从而没有被捕捉到[1,32]

    在E6和E8事件的始落潮相位,均观测到异常离岸流速(图3c,e,h,j),且均发生在SSC0.3大于5 kg/m3期间(图2中的绿色阴影区域)。由此推测,在E6和E8事件发育期间,重力流持续的时间可能更久,但由于其厚度小于0.3 m而未被观测到[1,32]

    在研究观测区域,已有研究报道过发生在低水位和高水位时段的重力流事件[20,26],近底高分辨率流速剖面(距底0.3 m,分辨率为0.01 m一层)显示,近底异常离岸流速并不是仅发生在浮泥层发育期间的某一个相位,而是在浮泥层发育的整个时间段均有(见Peng et al.[20]中的图5和Peng et al.[26]中的图3)。因此,在研究观测到的浮泥层事件发育期间,极有可能均发生了重力流输运过程,只不过由于重力流厚度小于0.3 m,导致在浮泥层事件发育期间的某些时段未观测到重力流流速。

    Figure 4.  Observed time⁃series of fluid⁃mud events E2 and E5

    Figure 5.  Observed time⁃series of fluid⁃mud event E7

  • 浮泥层形成最可能的两种机制是波浪导致的底床沉积物再悬浮[2,814],和落憩或涨憩时段上覆水体沉积物沉降[2,3738]。波浪事件前,对发生在低水位时段的浮泥层事件E2,波浪轨道速度(Uw)小于0.03 m/s(图4e),说明波浪对底床沉积物的再悬浮作用是可以忽略的[1]。因此,潮的作用是首要考虑因素。落憩相位前,当距底0.3 m处的沿岸流速(UA0.3)减小到约-0.17 m/s时(图4左边列子图的第一条黑色竖直虚线),距底0.1 m处的SSCSSC0.1)开始快速增大(大于5 kg/m3),而距底0.3 m(SSC0.3)和1 m(SSC1)处的SSC却不断减小(图4a,c)。落憩相位前后,即UA0.3从-0.17 m/s变化到0.20 m/s期间(图4左边列子图的第一条和第二条黑色竖直虚线之间),SSC0.1增大到15.75 kg/m3的最大值后几乎保持不变,SSC0.3先减小后增大,SSC1一直减小,且SSC0.3SSC1均小于5 kg/m3,说明上覆水体的沉积物沉降形成了约0.1 m厚的浮泥层[3738]

    UA0.3>0 m/s时,SSC0.3开始增大,SSC1仍在减小。当UA0.3 >0.20 m/s时,SSC0.3SSC1均不断增大(图4a,c),说明潮流不断悬浮近底浮泥层内的沉积物向上扩散[12]SSC0.3增大到大于5 kg/m3且一直大于5 kg/m3的时间范围内,UC0.3发生异常,具有约0.02 m/s的离岸流速(图4左边列子图的黄色阴影区域),说明潮流导致的再悬浮触发了重力流,并维持其运动[1114,20]。当UA0.3 增加且大于0.40 m/s后(图4左边列子图的第三条黑色竖直虚线),SSC0.1SSC0.3SSC1均快速降低(图4a,c),指示了在潮流的作用下,浮泥层内沉积物不断向上扩散,直至浮泥层消亡[12,12]

    需要指出的是,针对E2事件期间SSC0.1不随时间变化的区间(图4a),最可能的原因是真实浊度值超过了浊度仪的量程,从而导致浊度仪测量到的浊度一直维持在量程最大值附近[39]。因此,真实的SSC0.1可能更高。

    浮泥层事件E1、E3和E4也发生在波浪明显变大前的低水位时段,且这些事件发育期间的近底SSC的变化情况同E2事件发育期间的近底SSC的变化情况类似(图2c)。因此,可以认为,对发生于波浪事件前低水位时段的浮泥层事件E1到E4,形成机理均为上覆水体的沉积物沉降[3738]

    与发生在波浪事件前的E1到E4事件相比,E5和E7事件也发生在低水位前后,但E5和E7发生在波浪事件期间(图2)。与E2事件相比,在E5事件落憩相位前后,即UA0.3从-0.17 m/s变化到0.20 m/s期间(图4右边列子图的第一条和第二条竖直虚线之间),SSC0.1同样是先急剧增大到最大值15.75 kg/m3后几乎保持不变,SSC1不断减小,然而,SSC0.3却是先增大后减小(图4b),且E5事件期间的Uw大于0.04 m/s(图4f)。因此,除了上覆水体的沉积物沉降这一触发机理外,波浪再悬浮对E5事件的形成也有影响[912,16]。在E5事件的始涨潮相位,即UA0.3从0.20 m/s变化到0.40 m/s期间,近底SSC的变化情况同E2事件始涨潮相位近底SSC的变化情况类似,且观测到了约0.02 m/s的异常离岸流速(图4b,d)。而且,在E5事件始涨潮相位,Uw从0.04 m/s增大到大于0.10 m/s(图4f)。因此,E5事件始涨潮相位的重力流是由潮流和波浪共同导致的底部切应力维持[12,914]

    虽然均是发生在波浪事件期间的低水位前后,但与E5事件相比,在E7事件的UA0.3从-0.15 m/s变化到0.15 m/s期间(图5的第一条和第二条竖直虚线之间),SSC0.1不断增大,SSC0.3SSC1均是先增大后减小(图5a),显现出很强的再悬浮特征。此阶段的Uw大于0.05 m/s(图5c),且SSC0.1SSC0.3SSC1增大期间,Uw大于0.08 m/s(图5)。因此,对E7事件,波浪导致的底床沉积物再悬浮是其形成的主要机理,上覆水体的沉积物沉降是次要机理[913]。E7事件始涨潮相位的近底SSC变化情况与E2和E5事件始涨潮相位的近底SSC变化情况大致相似,即随着UA0.3不断增加,潮流不断地悬浮近底约0.1 m厚的浮泥层内沉积物,并致其向上扩散,浮泥层因而消亡(图5a,b)[32]

    波浪事件期间,浮泥层事件不仅发生在低水位时段,也发生在高水位时段,即E6和E8(图2)。在E6和E8发育期间,SSC0.1SSC0.3均是先增大后减小(图6a,b),呈明显的再悬浮特征。E6事件期间的Uw均大于0.09 m/s(图6e),E7事件期间的Uw均大于0.05 m/s(图6f)。因此,E6和E8均是由波浪再悬浮底床沉积物而形成[911,13]。在E6和E8事件的始落潮相位,近底SSC的变化情况与E2、E5和E7事件始涨潮相位的近底SSC变化情况大致相似,即随着UA0.3不断增加,潮流不断地悬浮近底0.1~0.2 m厚的浮泥层内的沉积物,并致其向上扩散,浮泥层因而消亡(图6[32]

    Figure 6.  Observed time⁃series of fluid⁃mud events E6 and E8

    综上,对观测到的浮泥层与重力流的形成、维持和停止机理总结如下:低水位时段上覆水体的沉积物沉降会形成约0.1 m厚的高浓度浮泥层(E1~E4),波浪再悬浮和上覆水体沉积物沉降的共同作用也会导致浮泥层事件在低水位时段形成(E5,E7),厚约0.1 m,波浪的再悬浮作用会导致浮泥层事件在高水位时段形成(E6,E8),厚度为0.1~0.2 m。浮泥层事件一旦形成后,能在重力的作用下离岸下坡输运,依靠潮致的底部切应力(E2),或波浪和潮流共同导致的底部切应力维持(E5~E8)。随着沿岸流速的增大,近底0.1~0.2 m厚的浮泥层会被冲淡,直至消亡。以上基于研究观测数据的推论,与重力流数值模拟研究得到的结果类似[40]

  • 对于波浪和潮流支撑浮泥层这一比较特殊的重力流类型,Wright et al.[1]基于观测数据,首次提出了理论分析模型。近20年来,该理论分析模型被广泛用于重力流参数化和动力行为研究[1114,2125]。Wright et al.[1]的理论分析提出,重力流所受的重力驱动的离岸下坡梯度力和底部阻力处于平衡态,可表示为:

    Bsin a=CDUgUmax (6)

    式中:左边和右边分别代表浮力异常项和阻力项;B=gsCH是浮力异常;g是重力加速度;s是沉积物相对于海水的比重,取值为1.6;C=Cs/ρs是基于浮泥层厚度平均的体积浓度;Cs是基于浮泥层厚度平均的质量浓度;ρs=2 650 kg/m3是沉积物密度;H是浮泥层的厚度;sin a是底床坡度。CD是底部拖曳系数,取值0.003,Umax =Uw2+ Vc2+Ug2,其中,UwVcUg分别为波浪轨道速度、浮泥层顶部的沿岸流速和重力流流速。

    整体理查德森数Rib是Wright et al.[1]理论分析模型的另一种描述方式:

    Rib=BUmax2 (7)

    一般来说,BUg难以在现场观测中直接获得,尤其是在早期的野外观测中。因此,通常假定沉积物物源供给是无限的,以Rib等于0.25的临界值作为重力流处于平衡态的边界[1,41]。反馈机制如下:如果Rib<0.25,增加的湍流将会悬浮更多的沉积物,Rib增大到0.25。反之,如果Rib>0.25,悬沙浓度梯度导致的沉积物分层将会抑制湍流,沉积物沉降,从而Rib降低到0.25[1,12,2023]

    研究中,近底可获得的最低层流速是距底0.3 m处的,可获得的近底悬沙浓度是距底0.1 m、0.3 m和1 m处的。因此,对观测到的重力流事件(距底0.3 m处的异常离岸流速和浮泥层同时发生),根据图3~6,取浮泥层厚度H=0.3 m,Ug=0.2 m/s,Vc=0.24 m/s,Uw=0.09 m/s,观测站位的坡度为0.007 2(图1c)。

    重写公式(6)得到:

    Cs=ρsCDUgUmaxgshsin a (8)

    将上述基于观测数据选取好的参数代入公式(8),得到Cs=15.26 kg/m3。重力流发育期间,实测距底0.1 m处的悬沙浓度约为15 kg/m3图3)。因此,由理论模型得到的距底0.3 m内深度平均的质量悬沙浓度与实测结果高度吻合。

    或者,对观测到的重力流事件,假设湍流混合和沉积物分层之间的反馈达到平衡,即Rib=0.25。重写公式(7)得到:

    Cs=ρsRibUmax2gsh (9)

    Rib=0.25的临界值和其他上述基于观测数据选取好的参数代入公式(9),得到Cs=14.88 kg/m3,同样与观测结果高度吻合。

    拖曳系数(CD)和整体理查德森数(Rib)是重力流参数化研究中的关键参数[1114,2225]。近底高浓度浮泥层内的高分辨率悬沙浓度和流速剖面的野外观测,一直以来都是重力流研究的难点之一,尤其是在早期的野外观测中,从而浮力异常B和重力流流速Ug难以从野外观测中直接获得[12]。因此,许多重力流参数化的研究,假设沉积物的供给是无限的,以保证重力流始终处于临界分层状态,从而将Rib等于0.25的临界值用于实现模型闭合[910,1920]。模型给的CD等于0.003的参考值,也是当Wright et al.[1]的理论浮力—阻力模型被用于重力流野外观测数据分析[1213,21]和数值模拟研究[2224]时,最常运用的CD值。

    基于江苏海岸重力流观测数据,对重力流进行参数化后,不仅提供了又一个野外观测实例支持理论模型给的CD等于0.003和Rib等于0.25的假设,也说明当Wright et al.[1]的理论浮力—阻力模型被用于野外重力流参数化[1,1213,21]和重力流数值模拟[2224]研究时,Rib取值0.25和CD取值0.003的合理性。

  • (1) 2018年秋季,在江苏海岸中部近岸海域实施的野外观测中,捕捉到了8次高浓度浮泥层事件,其中5次发生了短暂的重力流输运过程。

    (2) 重力流由上覆水体沉积物沉降或波浪再悬浮底床沉积物形成,由潮致底部切应力或波浪与潮流共同导致的底部切应力维持,近底高浓度浮泥层内的沉积物在潮流的作用下,会不断向上扩散,重力流从而消亡。

    (3) 研究区域观测到的重力流的动力行为支持经典重力流浮力—阻力模型的使用。

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return