HTML
-
沉积成岩动力学,即有关盆地沉积物埋藏成岩(或流体—岩石作用)过程与驱动机制的分支学科,是盆地动力学的重要内容[1],至今方兴未艾。另一方面,化石能源及诸多矿产资源的形成分布与成岩过程密切相关,尤以油气资源最为典型,相关研究吸引了大量成岩学家(diageneticist)的关注和投入,这不仅开拓了成岩作用研究的新领域,并由此促使分别始于20世纪70年代中期的“现代成岩作用”和20世纪90年代的“流体—成岩动力学”研究的兴起[2⁃3]。
近二十年来,盆地深层—超深层愈来愈多的发现展现出了极好的油气及相关资源勘探潜力[4⁃8],并已成为中国油气勘探开发的重要战场[9⁃12]。然而,深层—超深层涉及大量成岩动力学未知领域,理论认识滞后,勘探风险加剧。换言之,与成岩相关的成烃—成储—成藏等油气形成分布的理论认识问题已经成为进一步深层勘探的瓶颈[13]。为此,近年来相关研究持续投入,进展显著,但任重道远。在《沉积学报》创刊40周年之际,就(油气)盆地深层—超深层沉积成岩作用研究作一分析和评述,探讨研究对策及发展趋向,这无疑具有学术和应用意义。应该指出,在深层—超深层沉积成岩领域,近年来的研究工作是多方面的,以下主要结合作者及合作者的工作,针对具有深层—超深层(具体界定参见文献[13]和表1)特色的、与动力学研究和认识密切相关的领域进行梳理,并对前沿问题即深层—超深层专属性问题提出我们的思考。
类型 稳定低热流深埋型 低热流深埋型 中热流深埋型 高热流深埋型 平均深度/m 深层4 500~6 000超深层≥6 000 深层4 500~6 000超深层≥6 000 深层3 500~5 000超深层≥5 000 深层2 500~3 500超深层≥3 500 上构造层 克拉通 陆内挠曲 陆内挠曲/裂陷 裂陷/被动陆缘 中构造层 克拉通 克拉通/挠曲 克拉通/裂陷 弱伸展/弱挠曲 下构造层 克拉通 克拉通/被动陆缘/前陆 克拉通/被动陆缘/前陆 克拉通/被动陆缘 构造—流体 活动效应 垂向隆凹构造活动为主,应变较弱,深层次构造—流体活动不发育 中晚期侧向构造应变活跃, 构造—流体活动发育 中晚期侧向构造应变活跃, 构造—流体活动发育 中晚期垂向构造活动为主, 深层次热流体活动发育 热体制与深层—超深层成储—成藏 持续低热流(≤50 mW/m2)、慢速沉降,成储—成藏有利,但少见实例 基本为低热流(35~50 mW/m2),晚期快速沉降深埋,油气成储—成藏最有利 早中期渐进深埋,中期达中—高热流 (50~65 mW/m2),弱沉降或抬升,气藏为主 中晚期高热流(≥65 mW/m2)并较快沉降深埋,气藏为主 注: ①下构造层一般指新元古界—下古生界,中构造层指上古生界,上构造层指中生界和/或新生界;②深层—超深层平均深度定义在此主要针对中下构造层古老层系,更广义的界定应考虑时间温度指数。
[1] | National Research Council. The dynamics of sedimentary basins[M]. Washington: National Academy of Sciences, 1997: 1-43. | |
[2] | Wolf K H, Chilingar G V. Diagenesis Ⅳ[M]. Amsterdam: Elsevier, 1994: 1-519. | |
[3] | 李忠, 刘嘉庆, 2009: 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J]. 沉积学报, 7, 837-848. | Li Zhong, Liu Jiaqing. Key problems and research trend of diagenetic geodynamic mechanism and spatio-temporal distribution in sedimentary basins[J]. Acta Sedimentologica Sinica, 2009, 7(5): 837-848. |
[4] | Meyer D, Zarra L, Rains D, 2005: Emergence of the Lower Tertiary Wilcox trend in the deepwater gulf of Mexico[J]. World Oil, 226, 72-77. | |
[5] | Mcdonnell A, Loucks R G, Galloway W E, 2008: Paleocene to Eocene deep-water slope canyons, western gulf of Mexico: Further insights for the provenance of deep-water offshore Wilcox Group plays[J]. AAPG Bulletin, 92, 1169-1189. | |
[6] | Mancini E A, Li P, Goddard D A, 2008: Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain[J]. AAPG Bulletin, 92, 283-308. | |
[7] | Ehrenberg S N, Nadeau P H, Steen Ø, 2009: Petroleum reservoir porosity versus depth: Influence of geological age[J]. AAPG Bulletin, 93, 1281-1296. | |
[8] | Ehrenberg S N, Nadeau P H, 2005: Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 89, 435-445. | |
[9] | 马永生, 蔡勋育, 赵培荣, 2011: 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 18, 181-192. | Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192. |
[10] | 孙龙德, 邹才能, 朱如凯, 2013: 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 40, 641-649. | Sun Longde, Zou Caineng, Zhu Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649. |
[11] | 赵文智, 胡素云, 刘伟, 2014: 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业, 34, 1-9. | Zhao Wenzhi, Hu Suyun, Liu Wei, et al. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion[J]. Natural Gas Industry, 2014, 34(4): 1-9. |
[12] | 李阳, 薛兆杰, 程喆, 2020: 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 25, 45-57. | Li Yang, Xue Zhaojie, Cheng Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57. |
[13] | 李忠, 2016: 盆地深层流体—岩石作用与油气形成研究前沿[J]. 矿物岩石地球化学通报, 35, 807-816. | Li Zhong. Research frontiers of fluid-rock interaction and oil-gas formation in deep-buried basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 807-816. |
[14] | Evenick J C, 2021: Glimpses into Earth’s history using a revised global sedimentary basin map[J]. Earth-Science Reviews, 215, 103564-. | |
[15] | 李忠. 盆地深层—超深层沉积成岩作用与油气储层形成分布[M]. 北京:科学出版社,2022:1-558. | Li Zhong. Sedimentary diagenesis and formation distribution of oil- gas reservoirs in deeply-ultra deeply buried basins, China[M]. Beijing: Science Press, 2022: 1-558. |
[16] | Loucks R G, 1999: Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 83, 1795-1834. | |
[17] | Loucks R G, Reed R M, Ruppel S C, 2012: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 96, 1071-1098. | |
[18] | Schieber J, 2016: Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 331, 162-169. | |
[19] | Hall C D. Compositional and diagenetic controls on brittleness in organic siliceous mudrocks[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. AAPG Memoir, 2019, 120: 103-120. | |
[20] | Peng J W, Milliken K L, Fu Q, 2020: Grain assemblages and diagenesis in organic-rich mudrocks, Upper Pennsylvanian Cline shale (Wolfcamp D), Midland Basin, Texas[J]. AAPG Bulletin, 104, 1593-1624. | |
[21] | Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks[M]. AAPG Memoir, 2019, 120: 33-224. | |
[22] | Munnecke A, Wright V P, Nohl T, 2023: The origins and transformation of carbonate mud during early marine burial diagenesis and the fate of aragonite: A stratigraphic sedimentological perspective[J]. Earth-Science Reviews, 239, 104366-. | |
[23] | Ghabezloo S, Sulem J, Guédon S, 2009: Effective stress law for the permeability of a limestone[J]. International Journal of Rock Mechanics and Mining Sciences, 46, 297-306. | |
[24] | Zhou X J, Zeng Z W, Liu H. Stress-dependent permeability of carbonate rock and its implication to CO2 sequestration[C]//Proceedings of the 45th U.S. rock mechanics / geomechanics symposium. San Francisco: ARMA, 2011. | |
[25] | Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity[M]//McDonald D A, Surdam R C. Clastic diagenesis. Oklahoma, USA: American Association of Petroleum Geologists, 1984: 127-149. | |
[26] | Mazzullo S J, 2004: Overview of porosity evolution in carbonate reservoirs[J]. Kansas Geological Society Bulletin, 79, 22-29. | |
[27] | Borgund A E, Barth T, 1994: Generation of short-chain organic acids from crude oil by hydrous pyrolysis[J]. Organic Geochemistry, 21, 943-952. | |
[28] | Seewald J S, 2001: Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta, 65, 1641-1664. | |
[29] | Seewald J S, 2001: Model for the origin of carboxylic acids in basinal brines[J]. Geochimica et Cosmochimica Acta, 65, 3779-3789. | |
[30] | Xiao Y T, Whitaker F, Xu T F, et al. Reactive transport modeling: Applications in subsurface energy and environmental problems[M]. Hoboken: John Wiley & Sons, Inc., 2018. | |
[31] | Allen P A, Armitage J J. Cratonic basins[M]//Busby C J, Azor A. Tectonics of sedimentary basins: Recent advances. Hoboken: Wiley, 2011: 602-620. | |
[32] | Allen P A, Allen J R. Basin analysis: Principles and application to petroleum play assessment[M]. 3rd ed. Chichester: Wiley-Blackwell, 2013. | |
[33] | Suppe J, 2014: Fluid overpressures and strength of the sedimentary upper crust[J]. Journal of Structural Geology, 69, 481-492. | |
[34] | Davies G R, Smith L B, 2006: Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 90, 1641-1690. | |
[35] | Moretti M, Owen G, Tropeano M, 2011: Soft-sediment deformation induced by sinkhole activity in shallow marine environments: A fossil example in the Apulian foreland (southern Italy)[J]. Sedimentary Geology, 235, 331-342. | |
[36] | Richard J, Sizun J P, 2011: Pressure solution-fracturing interactions in weakly cohesive carbonate sediments and rocks: Example of the synsedimentary deformation of the Campanian chalk from the Mons Basin (Belgium)[J]. Journal of Structural Geology, 33, 154-168. | |
[37] | Petracchini L, Antonellini M, Billi A, 2012: Fault development through fractured pelagic carbonates of the Cingoli anticline, Italy: Possible analog for subsurface fluid-conductive fractures[J]. Journal of Structural Geology, 45, 21-37. | |
[38] | Mangenot X, Gasparrini M, Rouchon V, 2018: Basin-scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47) -Middle Jurassic carbonates of the Paris Basin depocentre[J]. Sedimentology, 65, 123-150. | |
[39] | 李忠, 罗威, 曾冰艳, 2018: 盆地多尺度构造驱动的流体—岩石作用及成储效应[J]. 地球科学, 43, 3498-3510. | Li Zhong, Luo Wei, Zeng Bingyan, et al. Fluid-rock interactions and reservoir formation driven by multiscale structural deformation in basin evolution[J]. Earth Science, 2018, 43(10): 3498-3510. |
[40] | Chen W, Ghaith A, Partk A, et al. Diagenesis through coupled processes: Modeling approach, self-organization, and implications for exploration[M]//Meshri I D, Ortoleva P J. Prediction of reservoir quality through chemical modeling. Tulsa: AAPG Memoir, 1990: 103-130. | |
[41] | Bachu S, 1997: Flow of formation waters, aquifer characteristics, and their relation to hydrocarbon accumulations, northern Alberta Basin[J]. AAPG Bulletin, 81, 712-733. | |
[42] | Kendrick M A, Burgess R, Leach D, 2002: Hydrothermal fluid origins in mississippi valley-type ore districts: Combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the illinois-kentucky fluorspar district, viburnum trend, and tri-state districts, midcontinent United States[J]. Economic Geology, 97, 453-469. | |
[43] | Loucks R G, 2007: A review of coalesced, collapsed-paleocave systems and associated suprastratal deformation[J]. Acta Carsologica, 36, 121-132. | |
[44] | Bjørlykke K, Jahren J, 2012: Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 96, 2193-2214. | |
[45] | Surdam Ronald C, Crossey L J, Hagen E S, 1989: Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 73, 1-23. | |
[46] | Worden R H, Benshatwan M S, Potts G J, 2016: Basin-scale fluid movement patterns revealed by veins: Wessex Basin, UK[J]. Geofluids, 16, 149-174. | |
[47] | Cai C F, Hu G Y, Li H X, 2015: Origins and fates of H2[J]. Marine and Petroleum Geology, 67, 408-418. | |
[48] | Alexandrov E N, Kuznetsov N M, Brusova G P, 2011: Supercritical fluid state of hydrocarbon-water fluids in a porous medium and optimization of fluid release from pores[J]. Russian Journal of Physical Chemistry B, 5, 1240-1244. | |
[49] | Miller Q R S, Kaszuba J P, Schaef H T, 2014: Experimental study of organic ligand transport in supercritical CO2[J]. Energy Procedia, 63, 3225-3233. | |
[50] | Jobe T D, Csutak S, Eichman S L, et al. High-resolution multispectral analysis of organic-rich mudstones[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. AAPG Memoir,2019, 120: 19-32. | |
[51] | Valentine B J, Hackley P C. Applications of correlative light and electron microscopy (CLEM) to organic matter in the North American shale petroleum systems[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. AAPG Memoir, 2019, 120: 1-18. | |
[52] | Gasparrini M, Morad D, Mangenot X, 2023: Dolomite recrystallization revealed by Δ47/U-Pb thermochronometry in the Upper Jurassic Arab Formation, United Arab Emirates[J]. Geology, 51, 471-475. | |
[53] | Balitsky V S, Pironon J, Penteley S V, 2011: Phase states of water-hydrocarbon fluid systems at elevated and high temperatures and pressures: Evidence from experimental data[J]. Doklady Earth Sciences, 437, 383-386. | |
[54] | Shanley K W, Cluff R M, 2015: The evolution of pore-scale fluid-saturation in low-permeability sandstone reservoirs[J]. AAPG Bulletin, 99, 1957-1990. | |
[55] | Connolly J A D, Podladchikov Y Y, 2000: Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins[J]. Tectonophysics, 324, 137-168. | |
[56] | Tigert V, Al-Shaieb Z, 1990: Pressure seals: Their diagenetic banding patterns[J]. Earth-Science Reviews, 29, 227-240. | |
[57] | Laubach S E, Eichhubl P, Hilgers C, 2010: Structural diagenesis[J]. Journal of Structural Geology, 32, 1866-1872. | |
[58] | 李忠, 王清晨, 王道轩, 2003: 晚新生代天山隆升与库车坳陷构造转换的沉积约束[J]. 沉积学报, 21, 38-45. | Li Zhong, Wang Qingchen, Wang Daoxuan, et al. Depositional record constraints on Late Cenozoic uplift of tianshan and tectonic transformation in Kuqa Depression, west China[J]. Acta Sedimentologica Sinica, 2003, 21(1): 38-45. |
[59] | 中国矿物岩石地球化学学会沉积学专业委员会,中国地质学会沉积地质专业委员会. 中国沉积学若干领域的回顾与展望:庆祝《沉积学报》创刊二十周年[J]. 沉积学报,2003,21(1):1-7. | The Committee of Sedimentology Branch, MPGSC, The Committee of Sedimentary Geology Branch, GSC. Review and prospect for some research fields of sedimentology in China[J]. Acta Sedimentologica Sinica, 2003, 21(1): 1-7. |
[60] | 李忠, 徐建强, 高剑, 2013: 盆山系统沉积学:兼论华北和塔里木地区研究实例[J]. 沉积学报, 31, 757-772. | Li Zhong, Xu Jianqiang, Gao Jian. Basin-range system sedimentology and case studies in North China and Tarim areas, China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 757-772. |