Advanced Search
Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents

GUO YuanCao, GUO JianHua, YU Ye, HUANG YanRan, CAI LingHui, CHEN Guang. Sedimentary Characteristics and Environment of the Middle Ordovician Black Fine-Grained Rock Series in Central Hunan and Its Surrounding Areas[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1817-1831. doi: 10.14027/j.issn.1000-0550.2023.088
Citation: GUO YuanCao, GUO JianHua, YU Ye, HUANG YanRan, CAI LingHui, CHEN Guang. Sedimentary Characteristics and Environment of the Middle Ordovician Black Fine-Grained Rock Series in Central Hunan and Its Surrounding Areas[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1817-1831. doi: 10.14027/j.issn.1000-0550.2023.088

Sedimentary Characteristics and Environment of the Middle Ordovician Black Fine-Grained Rock Series in Central Hunan and Its Surrounding Areas

doi: 10.14027/j.issn.1000-0550.2023.088
Funds:

National Science and Technology Major Project 2016ZX05026-002

The External Cooperation Project of SINOPEC GSYKY-B09-33

  • Received Date: 2023-04-25
  • Accepted Date: 2023-10-20
  • Rev Recd Date: 2023-09-07
  • Available Online: 2023-10-20
  • Publish Date: 2024-10-10
  • Objective The Middle Ordovician Yanxi Formation is a recently identified set of marine organic rich black fine-grained rock series in central Hunan and its surrounding areas, with good shale gas exploration potential. The research on the sedimentary characteristics of this black fine-grained rock series urgently needs to be strengthened. Methods The lithology and lithofacies combination types of the Yanxi Formation were identified through field exploration and slice identification, and the sedimentary environment was determined through element testing. Basin analysis technology, combined with regional tectonic movement history, was used to identify the nature and morphology of the prototype basin, determining favorable sedimentary facies zones, spatiotemporal distribution, and sedimentary patterns of the black fine-grained rock series. Results The lithology of the Yanxi Formation is primarily siliceous rock and carbonaceous shale, followed by silty shale and siltstone. Siliceous rocks are mainly biogenic in shallow marine environments, and carbonaceous shale is formed in a quiet and anoxic deep water detention environment. Four types of lithofacies combinations can be identified within the Yanxi Formation: thick pure carbon shale, carbon shale and siliceous rock combination, silty shale and siliceous rock combination, and silty fine sandstone with thin layer shale combination. Based on different rock facies combinations, the Yanxi Formation can be vertically divided into three sections: upper, middle, and lower; the distribution thickness of the three sections in the region is relatively stable and has good comparability. The thick layer of carbonaceous shale in the middle section is the most important source rock series. The Yanxi Formation is characterized by a thick southeast and thin northwest distribution in the study area, and the types of sedimentary facies include deep water basins, deep water continental shelves, shallow water continental shelves, and turbidite fans. The distribution positions of each sedimentary facies zone varied in different periods of the Ordovician, with clear zoning and continuous changes. Conclusions The central and surrounding areas of Hunan were in a stagnant hypoxic water environment during the Middle Ordovician and were a stable depression basin within the block. The deep-water continental shelf facies and deep-water basin facies are favorable facies belts for the development of organic shale in the Yanxi Formation.
  • [1] 周小康,郭建华. 湘中涟源凹陷油气成藏与保存条件[J]. 地质力学学报,2014,20(3):222-229.

    Zhou Xiaokang, Guo Jianhua. Petroleum accumulation characteristics and preservation conditions of Lianyuan Sag in the central Hunan[J]. Journal of Geomechanics, 2014, 20(3): 222-229.
    [2] 敬乐,潘继平,徐国盛,等. 湘中拗陷海相页岩层系岩相古地理特征[J]. 成都理工大学学报(自然科学版),2012,39(2):215-222.

    Jing Le, Pan Jiping, Xu Guosheng, et al. Lithofacies-paleogeography characteristics of the marine shale series of strata in the Xiangzhong Depression, Hunan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 215-222.
    [3] 张琳婷,郭建华,焦鹏,等. 湘西北地区牛蹄塘组页岩气有利地质条件及成藏区带优选[J]. 中南大学学报(自然科学版),2015,46(5):1715-1722.

    Zhang Linting, Guo Jianhua, Jiao Peng, et al. Geological conditions and favorable exploration zones of shale gas in Niutitang Formation at northwest Hunan[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1715-1722.
    [4] 祝庆敏,卢龙飞,潘安阳,等. 湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J]. 石油实验地质,2021,43(5):797-809,854.

    Zhu Qingmin, Lu Longfei, Pan Anyang, et al. Sedimentary environment and organic matter enrichment of the lower Cambrian Niutitang Formation shale, western Hunan province, China[J]. Petroleum Geology & Experiment, 2021, 43(5): 797-809, 854.
    [5] 王河锦,周健,徐庆生,等. 湘中北黄土店—仙溪中新元古界—下古生界的甚低级变质作用[J]. 中国科学(D辑):地球科学,2002,32(9):742-750.

    Wang Hejin, Zhou Jian, Xu Qingsheng, et al. Very low-grade metamorphism of the Meso-Neoproterozoic and the Lower Paleozoic along the profile from Huangtu-Dian to Xianxi in the central-northern part of Hunan province, China[J]. Science China (Seri. D): Earth Sciences, 2002, 32(9): 742-750.
    [6] 朱明新,王河锦. 长沙—澧陵—浏阳一带冷家溪群及板溪群的甚低级变质作用[J]. 岩石学报,2001,17(2):291-300.

    Zhu Mingxin, Wang Hejin. Very low-grade metamorphism of the Lengjiaxi and Banxi Groups around the area of Changsha- Liling-Liuyang, Hunan province, China[J]. Acta Petrologica Sinica, 2001, 17(2): 291-300.
    [7] 罗薇,何幼斌,蒋金晶,等. 湘南地区奥陶系岩石组合及其沉积环境[J]. 地质通报,2012,31(7):1105-1114.

    Luo Wei, He Youbin, Jiang Jinjing, et al. An analysis of Ordovician rock association and sedimentary environment in southern Hunan province[J]. Geological Bulletin of China, 2012, 31(7): 1105-1114.
    [8] 葛祥英,牟传龙,周恳恳,等. 湖南奥陶纪沉积演化特征[J]. 中国地质,2013,40(6):1829-1841.

    Ge Xiangying, Mu Chuanlong, Zhou Kenken, et al. Characteristics of Ordovician sedimentary evolution in Hunan province[J]. Geology in China, 2013, 40(6): 1829-1841.
    [9] 葛祥英,牟传龙,周恳恳,等. 湖南晚奥陶世凯迪晚期—赫南特期沉积相及岩相古地理[J]. 沉积学报,2014,32(1):8-18.

    Ge Xiangying, Mu Chuanlong, Zhou Kenken, et al. Sedimentary facies and lithofacies palaeogeography in the Late Katian-Hirnantian of Late Ordovician in Hunan province[J]. Acta Sedimentologica Sinica, 2014, 32(1): 8-18.
    [10] 吴诗情,郭原草,郭建华,等. 湘中南中奥陶统烟溪组页岩地球化学特征及有机质富集机理[J]. 中南大学学报(自然科学版),2020,51(5):1255-1267.

    Wu Shiqing, Guo Yuancao, Guo Jianhua, et al. Geochemistry and organic enrichment mechanism of shale in Yanxi Formation of Middle Ordovician in central-south Hunan[J]. Journal of Central South University (Science and Technology), 2020, 51(5): 1255-1267.
    [11] 李杰,郭建华,王宗秀,等. 湘中地区中奥陶统烟溪组富有机质页岩地质特征[J]. 中南大学学报(自然科学版),2018,49(11):2776-2786.

    Li Jie, Guo Jianhua, Wang Zongxiu, et al. Geological characteristics of organic-rich shale in Yanxi Formation of Middle Ordovician in central Hunan[J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2776-2786.
    [12] 蔡灵慧,余烨,郭建华,等. 湘中南地区中奥陶统烟溪组页岩气勘探潜力[J]. 天然气地球科学,2021,32(8):1247-1260.

    Cai Linghui, Yu Ye, Guo Jianhua, et al. Shale gas exploration potential of Middle Ordovician Yanxi Formation in central-southern Hunan province[J]. Natural Gas Geoscience, 2021, 32(8): 1247-1260.
    [13] 刘辰生,王辉,李想,等. 湘中—湘南烟溪组沉积特征及页岩气勘探潜力[J]. 沉积学报,2020,38(1):218-230.

    Liu Chensheng, Wang Hui, Li Xiang, et al. Sedimentary characteristics and exploration potential for shale gas in Yanxi Formation, central and southern Hunan[J]. Acta Sedimentologica Sinica, 2020, 38(1): 218-230.
    [14] 张国伟,郭安林,王岳军,等. 中国华南大陆构造与问题[J]. 中国科学(D辑):地球科学,2013,43(10):1553-1582.

    Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China (Seri. D): Earth Sciences, 2013, 43(10): 1553-1582.
    [15] Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3/4): 213-232.
    [16] Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes[J]. Sedimentary Geology, 1987, 52(1/2): 65-108.
    [17] 郑宁,李廷栋,程木伟. 湘赣中、上奥陶统烟溪组、对耳石组硅质岩成因[J]. 地学前缘, 2018, 25(4): 86-98.

    Zheng Ning, Li Tingdong, Cheng Muwei. Origin of siliceous rocks in the Middle-Upper Ordovician Yanxi Formation, Hunan province and Dui'ershi Formation, Jiangxi province in South China[J]. Earth Science Frontiers, 2018, 25(4): 86-98.
    [18] 何垚砚. 湘桂地区中—晚奥陶世之交黑色岩系沉积特征及构造意义[D]. 北京: 中国地质大学(北京), 2016: 31-41.

    He Yaoyan. Sedimentary characteristics and tectonic implication of black rock series at the turn of Middle to Late Ordovician in Hunan-Guangxi area[D]. Beijing: China University of Geo-sciences Beijing, 2016: 31-41.
    [19] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
    [20] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography and Paleoclimatology, 2006, 21(1): PA1016.
    [21] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
    [22] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [23] 杨雨,罗冰,张本健,等. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J]. 石油实验地质,2021, 43(4): 611-619.

    Yang Yu, Luo Bing, Zhang Benjian, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 611-619.
    [24] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation: Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58.
    [25] Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482.
    [26] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
    [27] 张国伟,郭安林,董云鹏,等. 大陆地质与大陆构造和大陆动力学[J]. 地学前缘,2011,18(3):1-12.

    Zhang Guowei, Guo Anlin, Dong Yunpeng, et al. Continental geology, tectonics and dynamics[J]. Earth Science Frontiers, 2011, 18(3): 1-12.
    [28] 关义立,袁超,龙晓平,等. 华南地块东部早古生代的陆内造山作用:来自I型花岗岩的启示[J]. 大地构造与成矿学,2013,37(4):698-720.

    Guan Yili, Yuan Chao, Long Xiaoping, et al. Early Paleozoic intracontinental orogeny of the eastern South China Block: Evidence from I-type granitic plutons in the SE Yangtze Block[J]. Geotectonica et Metallogenia, 2013, 37(4): 698-720.
    [29] 舒良树. 华南构造演化的基本特征[J]. 地质通报,2012,31(7):1035-1053.

    Shu Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053.
    [30] Chen X, Rong J Y, Mitchell C E, et al. Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation[J]. Geological Magazine, 2000, 137(6): 623-650.
    [31] Tan J Q, Weniger P, Krooss B, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, part II: Methane sorption capacity[J]. Fuel, 2014, 129: 204-218.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(2)

Article Metrics

Article views(201) PDF downloads(35) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-04-25
  • Revised:  2023-09-07
  • Accepted:  2023-10-20
  • Published:  2024-10-10

Sedimentary Characteristics and Environment of the Middle Ordovician Black Fine-Grained Rock Series in Central Hunan and Its Surrounding Areas

doi: 10.14027/j.issn.1000-0550.2023.088
Funds:

National Science and Technology Major Project 2016ZX05026-002

The External Cooperation Project of SINOPEC GSYKY-B09-33

Abstract: Objective The Middle Ordovician Yanxi Formation is a recently identified set of marine organic rich black fine-grained rock series in central Hunan and its surrounding areas, with good shale gas exploration potential. The research on the sedimentary characteristics of this black fine-grained rock series urgently needs to be strengthened. Methods The lithology and lithofacies combination types of the Yanxi Formation were identified through field exploration and slice identification, and the sedimentary environment was determined through element testing. Basin analysis technology, combined with regional tectonic movement history, was used to identify the nature and morphology of the prototype basin, determining favorable sedimentary facies zones, spatiotemporal distribution, and sedimentary patterns of the black fine-grained rock series. Results The lithology of the Yanxi Formation is primarily siliceous rock and carbonaceous shale, followed by silty shale and siltstone. Siliceous rocks are mainly biogenic in shallow marine environments, and carbonaceous shale is formed in a quiet and anoxic deep water detention environment. Four types of lithofacies combinations can be identified within the Yanxi Formation: thick pure carbon shale, carbon shale and siliceous rock combination, silty shale and siliceous rock combination, and silty fine sandstone with thin layer shale combination. Based on different rock facies combinations, the Yanxi Formation can be vertically divided into three sections: upper, middle, and lower; the distribution thickness of the three sections in the region is relatively stable and has good comparability. The thick layer of carbonaceous shale in the middle section is the most important source rock series. The Yanxi Formation is characterized by a thick southeast and thin northwest distribution in the study area, and the types of sedimentary facies include deep water basins, deep water continental shelves, shallow water continental shelves, and turbidite fans. The distribution positions of each sedimentary facies zone varied in different periods of the Ordovician, with clear zoning and continuous changes. Conclusions The central and surrounding areas of Hunan were in a stagnant hypoxic water environment during the Middle Ordovician and were a stable depression basin within the block. The deep-water continental shelf facies and deep-water basin facies are favorable facies belts for the development of organic shale in the Yanxi Formation.

GUO YuanCao, GUO JianHua, YU Ye, HUANG YanRan, CAI LingHui, CHEN Guang. Sedimentary Characteristics and Environment of the Middle Ordovician Black Fine-Grained Rock Series in Central Hunan and Its Surrounding Areas[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1817-1831. doi: 10.14027/j.issn.1000-0550.2023.088
Citation: GUO YuanCao, GUO JianHua, YU Ye, HUANG YanRan, CAI LingHui, CHEN Guang. Sedimentary Characteristics and Environment of the Middle Ordovician Black Fine-Grained Rock Series in Central Hunan and Its Surrounding Areas[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1817-1831. doi: 10.14027/j.issn.1000-0550.2023.088
  • 20世纪90年代以来,湖南省在下古生界与上古生界油气勘探均取得重要突破。目前湖南上古生界油气勘探主要聚焦于湘中石炭系[12],下古生界页岩气勘探主要集中在湘西北寒武系牛蹄塘组与志留系龙马溪组[34]。而湘中地区下古生界多年来一直被认为是一个变质基底,其油气勘探潜力长期不被看好。近年研究表明,湘中及周缘地区下古生界并非是一个简单的变质基底,其变质程度具有很强的非均质性[56],在变质程度轻微地区有利于油气保存。烟溪组是近年在湘中地区下古生界中奥陶统新查明的一套海相富有机质页岩层系,其沉积范围广,厚度大,有机质含量高,热演化程度也较高,生烃潜力大,是湖南省内又一套重要的烃源岩。前人对烟溪组沉积特征、有机地球化学特征、储集特征及勘探潜力等开展了相关研究。罗薇等[7]归纳出湘南烟溪组两种岩相组合,根据相标志识别出四种沉积相类型,初步建立了烟溪组沉积模式并研究了沉积演化过程。葛祥英等[89]将湖南奥陶纪构造沉积演化划分成早奥陶世镶边型碳酸盐台地—陆棚—深水盆地、中奥陶世碳酸盐缓坡—陆棚—深水盆地、晚奥陶世早期碳酸盐缓坡—陆棚—深水盆地—陆棚边缘、晚奥陶世晚期局限浅海—深水盆地—陆棚边缘四个沉积阶段。吴诗情等[10]认为烟溪组碳质页岩生烃潜力较好,沉积时期气候温暖,沉积环境具有中等生产力,水体贫氧—缺氧,提出了“深水滞留盆地”的有机质富集模式;并通过野外地质调查及分析测试系统研究了烟溪组富有机质泥页岩沉积、有机地化、含气性、储层等特征,证实烟溪组碳质页岩分布广、厚度大、有机碳含量较高、热演化程度较高、物性良好[11],具有较好的勘探潜力[1213]

    然而,湘中及周缘地区下古生界烃源岩热演化程度偏高,区内构造复杂,勘探难度较大。目前,该区页岩气勘探程度总体较低,地震资料缺乏,钻井偏少,研究工作尚局限于地表。烟溪组发育在扬子和华夏地块结合处,构造沉积背景复杂,针对烟溪组沉积特征及原型盆地的认识不够深入,影响了湘中下古生界页岩气勘探。尽管前人已开展了湖南奥陶纪沉积的相关研究,但研究范围较广,时间跨度大,侧重点不同,且针对湘中烟溪组沉积演化的研究较少。由于沉积相控制富有机质页岩展布,页岩展布决定有利勘探区,故有必要对研究区烟溪组沉积特征及沉积演化开展进一步研究。本文通过研究烟溪组黑色细粒岩系的沉积特征、沉积环境及沉积模式,查明湘中及周缘地区原型盆地格架、盆地对黑色细粒岩系展布及有机质富集的控制。

  • 湘中及周缘地区位于华南加里东褶皱带西北部,雪峰东缘隆起带的西南缘,南接桂中坳陷,主要由晚古生代地层组成,其间穿插有新元古代—早古生代地层组成穹隆和短轴背斜,其上叠加中—新生代构造盆地。湘中地区经历了加里东运动、印支运动、燕山运动、喜马拉雅运动等构造演化阶段,形成了一个南北贯穿、向西突出的祁阳弧形褶皱带,具有“三隆两坳”的构造格局。研究区由五个二级构造单元组成,从北至南依次为雪峰东缘隆起带、湘中坳陷(湘潭坳陷、沩山隆起、涟源凹陷、龙山凸起、邵阳凹陷、关帝庙凸起和零陵凹陷)、衡山隆起带(包括衡阳盆地)、湘东南坳陷(湘东凹陷、宁江凸起和道县凹陷)和华夏褶皱带[12]图1)。

    Figure 1.  Division of structural units in central Hunan and its surrounding areas

  • 湘中及周缘中奥陶统烟溪组岩性以碳质页岩和硅质岩为主,粉砂质页岩、粉砂岩和细砂岩等次之。碳质页岩以黑色薄层状为主,具有明显的页理构造(图2a),可见水平纹层,在层面上常见笔石发育(图2b)。碳质页岩在显微镜下呈碳泥质结构(图2c),泥质成分主要为云母质及碎屑杂基,碳质较均匀混杂,少量长石、石英等分布不均匀,多数被硅质充填。研究区内碳质页岩厚20~50 m,在中南部厚达70 m,向北东方向逐渐减薄。

    Figure 2.  Field photos and micrographs of the Middle Ordovician Yanxi Formation in central Hunan and its surrounding areas

    硅质岩呈黑色,氧化后表面一般呈灰褐色(图2d),以薄层状为主,单层厚2~10 cm,硅质岩质地坚硬,常与碳质页岩呈薄互层沉积;在高倍显微镜下可见隐晶质玉髓和微细石英颗粒呈稀疏分散分布,常含有放射虫,指示深水沉积特征(图2e)。研究区内硅质岩厚10~50 m,以硅质岩夹薄层碳质页岩、粉砂质页岩及薄—中层状纯硅质岩沉积为主;在研究区南部发育较厚,向北东方向呈减薄趋势。

    粉砂质页岩呈灰色、灰绿色薄层状,碎屑结构,可见页理构造(图2f)与水平纹层。薄片鉴定显示泥质主要为高岭土类及碎屑杂基,其中粉细砂具有明显的陆源碎屑特征,常与硅质岩上下接触。

    浊积岩以灰色、灰绿色中—厚层状为主,岩性主要为泥质粉砂岩和极细砂岩,中—粗砂岩较少发育复理石构造(图2g)。底面通常发育沟模、槽模构造(图2h),岩石颗粒以石英和长石为主,分选差—中等,磨圆度中等。

  • 烟溪组内部可识别出四类岩相组合:第一类是厚层较纯碳质页岩,主要发育在深水还原性环境,是最重要的烃源层系。第二类是碳质页岩与硅质岩组合,包括硅质岩夹碳质页岩,及硅质岩与碳质页岩互层(图2i)。硅质岩通常含有极少量陆源碎屑,指示相对较浅的沉积水体,该组合表现为海平面波动引起的沉积环境频繁变化,主要发育在烟溪组中上段和研究区中南部。第三类是粉砂质页岩和硅质岩组合,粉砂质页岩中粉—细砂以陆源碎屑来源为主,硅质岩中硅以隐晶质玉髓和生物硅为主,陆源碎屑少见,指示出浅水环境与深水环境交替变化之特征。第四类是粉—细砂岩夹薄层泥页岩的组合,通常具复理石构造,磨圆、分选较差,具有重力流沉积的特征。该组合主要发育在研究区东部及上覆天马山组,反映了烟溪组在南东方向上的相变。根据岩相组合,烟溪组在垂向上可分为三段;下段为硅质岩与碳质页岩不等厚互层,中段为一套厚层较纯碳质页岩,上段为硅质岩夹薄层碳质页岩。

  • 页岩厚度是评价页岩气资源潜力的首要指标,页岩只有具备足够的有效厚度,才能形成工业规模的气藏。烟溪组主要分布在湘中分区和湘南—湘东南分区(湘中南地区),沉积范围基本局限于古湘桂海盆中。受区域构造运动和局部岩体的影响,烟溪组在区内整体表现为东南厚、西北薄的特征(图3);以桃江—新化一带最薄,厚度不超过40 m;在桂北—零陵—祁东—衡阳一带厚度介于90~160 m,在零陵—宁远—衡阳一带地层厚100 m以上,在永州双牌何家洞地区最厚,达160 m以上;往南在道县—桂阳—桂东一带页岩厚度减薄至尖灭,相变为粉—细砂岩及泥质粉砂岩。由于涟源凹陷与邵阳凹陷被厚层上古生界覆盖,湘中地区缺乏针对下古生界的钻探资料,湘南地区还存在大面积地层缺失。据地表露头推测,中奥陶世古湘桂海盆的沉积中心位于全州—零陵—衡阳一带以南,陆源碎屑物质来源于华夏地块。

    Figure 3.  Residual thickness of the Middle Ordovician Yanxi Formation in central Hunan and its surrounding areas

  • 烟溪组沉积类型丰富,经野外剖面观察、岩相组合分析及薄片鉴定等,主要识别出深水盆地相、深水陆棚、浅水陆棚和浊积扇四种沉积相类型(图4),以深水陆棚和深水盆地相分布最广。

    Figure 4.  Comprehensive histogram of the Middle Ordovician Yanxi Formation from the Mianhuaping outcrop in central Hunan and its surrounding areas

    深水盆地相以黑色碳质页岩沉积为主(图2a),受海平面波动影响常发育碳质页岩夹硅质岩沉积。该相由于水体较深,大量浮游生物(如笔石类)(图2b)与泥质碎屑沉积到海底得以保存,形成富有机质页岩。

    深水陆棚相主要发育黑色碳质页岩夹灰黑色薄层硅质岩沉积(图2d),但碳质页岩中陆源硅质碎屑明显增多。

    浅水陆棚相主要发育硅质岩、碳质粉砂质页岩沉积。硅质岩中含有较丰富的放射虫化石(图2e)及少量陆源硅质碎屑,代表水体变浅、靠近物源的沉积特征。硅质岩与碳质粉砂质页岩呈等厚互层状、不等厚互层状及碳质粉砂质页岩夹层状(图2f)。

    浊积扇相岩性以粉—细砂岩为主,可见鲍马序列(图2g),砂岩底部可见沟模、槽模(图2h),颗粒磨圆、分选较差,反映重力流沉积特征,主要发育在烟溪组上段和研究区东南部华夏褶皱带附近。

  • 通过沉积相剖面对比发现,烟溪组垂向三段在区域上具有良好的对比性;下段以深水陆棚沉积为主;中段受海平面快速上升的影响,主要发育深水盆地相沉积的黑色碳质页岩,且黑色碳质页岩在区域上分布厚度相对稳定;上段主要发育浅水陆棚、深水陆棚沉积。通过南北向对比剖面可知,沉积水体由北向南逐渐变深,沉积物粒度逐渐变细(图5)。通过东西向对比剖面可以看出,沉积水体自西向东逐渐变浅,研究区东部蒲陇村受华夏地块物源供给的影响出现显著的相变特征,开始发育浊积扇沉积(图6)。

    Figure 5.  Sedimentary facies correlation section of the Middle Ordovician Yanxi Formation in Dawucun, Lengshuichong, and Shazitang in central Hunan and its surrounding areas

    Figure 6.  Sedimentary facies correlation section of the Middle Ordovician Yanxi Formation in Daqiaocun, Hejiadong, and Pulongcun in central Hunan and its surrounding areas

  • 中奥陶世早期即烟溪组下段沉积时期,海平面逐渐上升,湖南地势整体呈西北高、东南低格局,研究区西北部(扬子地块南缘)主要发育镶边型碳酸盐岩台地,往东南方向依次发育浅水陆棚、深水陆棚和深水盆地相(图7a),湘中南地区普遍发育深水陆棚相硅质页岩、硅质岩夹碳质页岩。这一时期华南板块分为扬子地块与华夏地块[14],扬子台地水体明显加深,台缘浅滩亚相消失,表现出沉没碳酸盐岩台地的特征。古华南海在湘中地区大致以洪江—溆浦—安化为界可识别出两个亚相,其西北侧为浅水陆棚相,可见以笔石为主的生物化石,偶见三叶虫和腕足类、底栖生物化石。界线东南侧则为深水陆棚相,以黑色碳质页岩、硅质页岩沉积为主;水平微细层理发育,生物以笔石为主,偶见三叶虫。在新化炉观一带还发现放射虫和硅质海绵骨针,其沉积特征与华南沉积单元的盆地相并无差异。

    Figure 7.  Sedimentary facies distribution in different sections of the Middle Ordovician Yanxi Formation in central Hunan and its surrounding areas

    烟溪组中段沉积时期,湘中南地区整体明显处于挤压收缩构造背景之下,海平面加速上升并达到最大,湘中南地区深水盆地面积不断扩大,碳质页岩和硅质页岩沉积范围达到最大;同时华南海自东南向西北不断褶皱成陆,盆地的沉积中心自东南向西北迁移。研究区西北部以碳酸盐岩台地、浅水陆棚和深水陆棚沉积为主,在研究区东南部发育深水陆棚、浅水陆棚以及浊积扇沉积(图7b)。

    烟溪组上段沉积时期,受加里东运动影响,海平面快速下降,西北部碳酸盐岩台地、浅水陆棚和深水陆棚发育范围向东南方向明显增大,湘中南地区广泛发育的深水盆地转化为深水陆棚。受华夏地块碎屑物持续供给的影响,湘东南地区浅水陆棚和浊积扇逐渐向西北发育,沉积范围明显增大(图7c)。湘南地区华夏地块不断隆起,古陆区域扩展到武夷山区,古华南海范围明显缩小。

  • 研究表明,硅质岩可形成于不同的沉积环境,硅质可来源于地下深部具热液作用的深海裂谷盆地,或是形成于稳定地块背景下具生物活动特征的浅海盆地。研究区硅质岩发育,硅质来源及成因对区内沉积环境分析具有重要意义。根据硅质岩的化学成分及元素的分析结果(表1),在相应散点图中,湘中及周缘地区烟溪组硅质岩样品基本位于稳定的克拉通盆地内,或大陆边缘盆地区[15]图8a)。通常采用w(Al)+w(Fe)+w(Mn)三角图判别硅质岩中SiO2来源,当w(Al)/[w(Al)+w(Fe)+w(Mn)]比值达到0.4以上时,表示硅质岩形成受控于陆源物质影响;当该比值增大至0.6以上时,表示硅质岩成因为生物成因[16]。与湘中烟溪组对应的江西中上奥陶统耳石组硅质岩样品该比值均大于0.65[17],研究区烟溪组硅质岩样品该比值介于0.51~0.80,反映硅质岩为陆源输入及生物作用成因[18],未见来源于地下深部热液成因的硅质样品[19]图8b,c)。

    样品编号SiO2Al2O3Fe2O3CaOMgOK2ONa2OTiO2MnOTOCw(Al)/[w(Al)+w(Fe)+w(Mn)]
    DWC-565.4815.153.740.131.513.640.310.680.032.100.75
    DWC-772.2411.203.420.211.322.930.250.500.032.750.71
    NJK-273.4311.244.340.071.782.870.110.530.021.120.66
    NJK-358.7613.476.750.230.973.870.520.730.023.400.60
    SMS-389.924.320.780.070.241.310.030.190.062.410.80
    SMS-489.083.242.340.080.250.880.200.130.061.320.51
    MDq-388.183.632.380.050.260.940.150.150.051.450.53
    MDq-489.893.271.330.840.240.840.070.130.051.260.64
    MDq-580.577.762.280.060.552.260.220.380.020.570.72

    Table 1.  Major element mass fractions of samples from the Yanxi Formation (%)

    Figure 8.  Determination of the formation environment of siliceous rocks in the Middle Ordovician Yanxi Formation in central Hunan and its surrounding areas

  • 沉积岩形成环境对有机质富集起重要作用,缺氧环境为有机质保存提供了良好条件[20]。古海水氧化还原程度可通过相关敏感元素定量评价,如V、Cr、Ni、Co、U、Th等元素质量分数及其比值(V/Cr、V/(V+Ni)、Ni/Co、U/Th)。多数微量元素的富集机制和来源不同,在不同氧化还原条件下富集程度差别较大,但这些元素通常富集于缺氧环境下,因此均可用来识别水体氧化还原程度[21]。V、U在富氧水体中均呈可溶状态,在缺氧条件下可被还原为难溶价态保存于沉积物中[22],其富集程度可作为水体氧化还原程度的判别依据。V/(V+Ni)比值则反映沉积水体分层性和氧化还原性,V/(V+Ni)>0.46指示水体分层弱的厌氧环境,表2显示烟溪组沉积时期古水体整体为贫氧还原状态,沿零陵凹陷、衡阳盆地的NE—SW方向还原性更强,说明该位置水体相对较深(图9a)。Th的地球化学性质相对稳定,不受氧化还原条件的影响,属于难迁移元素,因此U/Th值常作为判别氧化还原环境的一个指标。其中U/Th小于0.125代表有氧环境,U/Th介于0.125~0.500代表贫氧环境,U/Th大于0.500代表缺氧环境[23]。棉花坪烟溪组泥页岩U/Th介于0.59~0.93,平均为0.71,表明其形成于缺氧环境。沙子塘烟溪组泥页岩U/Th介于0.60~0.81,平均为0.73,表明总体形成于缺氧环境。Mo元素在开放流通的水体中含量充足,沉积物中Mo/TOC值相应较高。在局限封闭的环境中Mo元素补给缓慢甚至停止,造成底层水体中Mo浓度降低,因而Mo/TOC值也较低[24]。研究区中奥陶世北西部和南东部为开放水体,而沿零陵凹陷、衡阳盆地的NE—SW方向的条带区域为局限性水体,该区域与水体相对较深的还原环境区域一致(图9b)。从V/Cr、V/(V+Ni)、Ni/Co和U/Th等指标看,研究区中奥陶世整体处于缺氧沉积环境(图4)。

    样品编号VNiCuZnMOBaThUSrU/ThV/(V+Ni)
    MHP-233.122.1416.08153.513.65146.152.311.3627.300.590.94
    MHP-413.081.921.761.411.3176.240.560.536.470.930.87
    MHP-529.323.2013.793.972.36151.981.641.0221.910.630.90
    MHP-656.144.393.565.835.42244.633.252.2333.760.680.93
    SZT-122.337.661.982.681.6097.540.800.6413.510.810.74
    SZT-226.593.281.423.622.3261.940.600.468.600.760.89
    SZT-89.783.411.060.800.9140.540.630.387.390.60.74
    SZT-920.785.6635.352.401.2896.190.780.609.120.760.79

    Table 2.  Trace element mass fractions of samples from the Yanxi Formation (×10-6)

    Figure 9.  Plane distribution map of trace elements from the Middle Ordovician Yanxi Formation in central Hunan and its surrounding areas

  • 本次采集的烟溪组黑色页岩样品稀土总质量分数ΣREE介于52.92×10-6~297.85×10-6,平均为171.66×10-6,低于北美页岩ΣREE的200.21×10-6[25]。从稀土分布特征看,研究区西部到盆地中心ΣREE呈现高—低变化。棉花坪露头ΣREE介于16.17×10-6~134.17×10-6,马杜桥露头ΣREE介于52.74×10-6~281.93×10-6。研究区ΣLREE/ΣHREE介于8.59~18.34,La/Yb介于1.04~3.40,反映轻稀土富集、重稀土相对亏损的特点,其中棉花坪露头相较于马杜桥露头轻稀土富集特征更明显。研究区δCe均大于0.9,无明显Ce异常。稀土元素标准化曲线呈现右倾较平缓特征,马杜桥和棉花坪样品呈弱—中等程度Eu异常。以上特征类似于被动大陆边缘型沉积物稀土元素特征[26]图10)。

    Figure 10.  Standardized curves of rare earth elements from the Middle Ordovician Yanxi Formation in central Hunan and its surrounding areas

  • 湘中及周缘地区华南洋早在新元古代初期就已经关闭消失,早古生代华南板块内部只发生了陆内造山运动,不存在板块碰撞俯冲及洋壳消失[2729]。奥陶纪古湘桂海盆构造格局发生重大转变,盆地由重力沉降转变为构造沉降,构造作用影响显著增强,华夏地块碎屑岩沉积范围不断向西北扩大[3031]图11)。

    Figure 11.  Evolution of Ordovician sedimentary structures in central Hunan and its surrounding areas

    湘中地区早奥陶世岩相古地理基本继承了寒武纪晚期格局,研究区总体为开阔性浅海环境,处于华夏浊积扇外扇扇缘部。湘西北上扬子台地区以碳酸盐岩沉积为主,台地边缘区主要沉积泥页岩。湘中地区主要发育斜坡与深水陆棚相,以泥质、含粉砂质泥质和粉砂岩沉积为主。湘东南地区为深水盆地和斜坡相,以浊积成因砂质、泥质沉积为主(图11a)。

    进入中奥陶世,古湘桂海盆进入前陆盆地早期阶段。华夏地块与扬子地块拼合导致地层褶曲,盆地强烈沉降,造成区内水体加深与大规模海侵(对应于全球三级海平面升降)。湘中地区演化为欠补偿饥饿型盆地,烟溪组黑色富有机质页岩、硅质岩沉积覆盖了除湘西北台地斜坡外的所有地区,沉积厚度大且稳定。湘西北碳酸盐台地转化为深水陆棚相,沉积瘤状泥灰岩和钙质页岩等。湘东南地区由于华夏地块向盆地方向推覆,转为深水陆棚相碳质页岩与硅质岩沉积(图11b)。

    晚奥陶世由于海平面持续下降,华夏地块为湘东南地区供给大量碎屑沉积物,海盆被陆源碎屑物大量填充,形成一套快速堆积的浊积岩建造。区域北部局部夹碳酸盐岩和硅质岩。雪峰山水下古隆起的形成,阻碍了粗碎屑进入扬子台地区。古隆起东南部江南斜坡带发育残留盆地相碳质页岩,并持续到早志留世。而湘中地区发育深水陆棚、盆地边缘和局限残留盆地相,沉积了一套由巨厚石英杂砂岩夹灰黑色泥页岩构成的复理石(图11c)。

  • 综上所述,中奥陶世湘中及周缘地区沉积了一套富有机质黑色细粒岩系,原型盆地也在此时完成过渡。图12为研究区早—中奥陶世沉积体系分布模式,可见研究区沉积具有明显分区特征:湘西北为碳酸盐台地沉积区,湘中地区为深水页岩沉积区,二者之间为江南斜坡过渡型沉积区;湘东南则为华夏古陆边缘以重力流沉积的砂岩夹泥页岩沉积区,水体由北西至南东方向由浅变深再变浅。研究区沉积相带在奥陶纪不同时期分布位置不同,分区明显,相带呈连续变化,指示出原型盆地是一个板块内坳陷性浅海盆地。

    Figure 12.  Early to Middle Ordovician distribution pattern of the sedimentary system in central Hunan and its surrounding areas

  • (1) 烟溪组岩性在垂向上具有显著三分特征:下段为硅质岩与碳质页岩不等厚互层,中段为厚层较纯碳质页岩,上段为硅质岩夹薄层碳质页岩。上段与下段岩相组合体现了湘中地区中奥陶世海平面波动和沉积环境变化。硅质岩以生物成因为主,指示出浅水环境下频繁的生物活动。中段黑色碳质页岩形成于水体较深且较为安静的缺氧环境。由于水体较深,大量浮游生物与泥质碎屑沉积到海底并得以保存,形成富有机质页岩。

    (2) 研究区各相带均呈连续分布,同一沉积相带在不同时期分布范围有显著差异。烟溪组沉积范围基本局限于古湘桂海盆中,沉积中心为全州—零陵—衡阳一带以南,中奥陶世深水盆地相及深水陆棚相为页岩气勘探有利区带。

    (3) 地球化学元素分析、岩相古地理及沉积构造演化史表明,早古生代湘中地区为板内坳陷性海盆,这一认识从沉积学角度补充了江南—华南地区早古生代原型盆地是海盆而非洋盆的相关依据。

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return