Advanced Search
Volume 43 Issue 3
Jun.  2025
Turn off MathJax
Article Contents

ZHOU ZhenYong, LI DeYong, LIANG YiFei, DUAN ChiYu, REN Cao, JIE Qiong, DAI MingHui, CHENG HongGang. Fan Delta Sedimentation and Hydrocarbon Accumulation Models of Langgu Sag: A case study from the Shahejie Formation in the Jiuzhou-Wanzhuang area[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1145-1162. doi: 10.14027/j.issn.1000-0550.2023.079
Citation: ZHOU ZhenYong, LI DeYong, LIANG YiFei, DUAN ChiYu, REN Cao, JIE Qiong, DAI MingHui, CHENG HongGang. Fan Delta Sedimentation and Hydrocarbon Accumulation Models of Langgu Sag: A case study from the Shahejie Formation in the Jiuzhou-Wanzhuang area[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1145-1162. doi: 10.14027/j.issn.1000-0550.2023.079

Fan Delta Sedimentation and Hydrocarbon Accumulation Models of Langgu Sag: A case study from the Shahejie Formation in the Jiuzhou-Wanzhuang area

doi: 10.14027/j.issn.1000-0550.2023.079
Funds:

National Natural Science Foundation of China 42376060

Natural Science Foundation of Shandong Province ZR2023MD050

Natural Science Foundation of Shandong Province ZR2017BD014

Forward-looking Basic Science and Technology Research Project of Petroleum China 2021DJ0205

  • Received Date: 2023-06-11
  • Accepted Date: 2023-09-13
  • Rev Recd Date: 2023-08-23
  • Available Online: 2023-09-13
  • Publish Date: 2025-06-10
  • Objective After more than 50 years of exploration, Langgu Sag has entered the stage of oil and gas exploration and development with lithologic and structural-lithologic reservoirs as the main targets. Previous studies have been carried out on the large-scale sedimentary characteristics, hydrocarbon accumulation factors and models of Langgu Sag. However, relatively little is known of the spatial distribution characteristics and the distribution rules of the high-quality sand bodies. The main controlling factors of hydrocarbon accumulation and their distribution are not uniform, which restricts the evaluation and production of subtle reservoirs. Methods This study comprehensively used core data, well logging, seismic data, analytical tests and production data to systematically study the Shahejie Formation in the Jiuzhou-Wanzhuang area. The study aims to identify and classify sedimentary facies and microfacies types, accurately characterize the spatial distribution of sand bodies, and analyze reservoirs formation control factors such as source rocks, traps and fault conduit systems. The hydrocarbon accumulation model is established, leading to the prediction of favorable concealed lithologic or structural-lithologic reservoirs distribution zones. Results The lithology is mainly fine-grained clastic rock; the sedimentary sequence is not typical, a deformation structure is clearly developed, and floating mud gravel of sandy clastic flow origin can be seen. This reflects the characteristics of the dynamic conditions of traction flow in the distal fan delta. In the study area, there are two provenance supply systems in the south and north, and a braided channel extends from the SE of the Daxing Fault to the interior of the lake in a finger-like way, forming two depositional centers in Jiuzhou and Wanzhuang. In the study area, an underwater distri-butary channel at the front of the fan delta extends for some distance and migrates frequently. The estuary is unstable, with an underdeveloped or small-scale estuarine bar. Mature source rocks, effective traps and fault conduit systems are the main controls of hydrocarbon accumulation in the middle submember of Shahejie Formation 3rd member in the study area. The abundance of organic matter shows that the oil source of the lower submember of Shahejie Formation 3rd member in the study area comes from underlying source rocks of the lower submember of Shahejie Formation 3rd member. Using forward modeling and RGB (Red-Green-Blue) attribute fusion, sensitive attribute optimization was performed to predict the distribution range of high-quality sandstone reservoirs combined with a series of anticlinal tectonic settings to form good structural traps along with lithologic up-dip pinch-out traps. As oil source faults, the Daxing and Jiuzhou Faults and their secondary branches are the main channels connecting the oil and gas resources of the lower submember of Shahejie Formation 3rd member and the reservoirs of the middle submember of Shahejie Formation 3rd member, and they also control the formation of traps as a whole. Conclusions The results show that the study area is primarily characterized by fan-delta systems and lake systems. Within the fan-delta system, various microfacies types were identified (e.g., braided channels, submarine distributary channels, delta front sandbars, and sheet-like sands). The spatial distribution of sand bodies is characterized by thick layers of distributary channel-sandbar complexes with finger-like distribution and continuous thin sheet-like sands. The organic configurations of oil source faults, structures and even lithologic traps are the main causes of hydrocarbon accumulation in the study area, and the reservoir lithology within the traps determines the oil, gas and water distribution. Ultimately, four favorable development zones for lithologic or structural-lithologic reservoirs were predicted in the SE and NW wings of the jiuzhou plunging nose structure and the NE wing of the Tongxi paleo-structural ridge.
  • [1] 李丕龙,张善文,宋国奇,等. 断陷盆地隐蔽油气藏形成机制:以渤海湾盆地济阳坳陷为例[J]. 石油实验地质,2004,26(1):3-10.

    Li Pilong, Zhang Shanwen, Song Guoqi, et al. Forming mechanism of subtle oil pools in fault basins: Taking the Jiyang Depression of the Bohaiwan Basin as an example[J]. Petroleum Geology & Experiment, 2004, 26(1): 3-10.
    [2] 吕传炳,付亮亮,郑元超,等. 断陷盆地油藏单元分析方法及勘探开发意义[J]. 石油学报,2020,41(2):163-178.

    Chuanbing Lü, Fu Liangliang, Zheng Yuanchao, et al. An analysis method based on reservoir unit and its significance in exploration and development of rift basins[J]. Acta Petrolei Sinica, 2020, 41(2): 163-178.
    [3] 鲍志东,李忠诚,陈栗,等. 成熟探区相控油藏储集体精细表征与产能劈分[J]. 中国石油勘探,2022,27(3):61-77.

    Bao Zhidong, Li Zhongcheng, Chen Li, et al. Fine reservoir characterization and capacity splitting of facies controlled oil reservoir in mature petroleum exploration areas[J]. China Petroleum Exploration, 2022, 27(3): 61-77.
    [4] 林俊峰,郝芳,胡海燕,等. 廊固凹陷沙河街组烃源岩沉积环境与控制因素[J]. 石油学报,2015,36(2):163-173.

    Lin Junfeng, Hao Fang, Hu Haiyan, et al. Depositional environment and controlling factors of source rock in the Shahejie Formation of Langgu Sag[J]. Acta Petrolei Sinica, 2015, 36(2): 163-173.
    [5] 李明. 廊固凹陷安11区块沉积微相与油藏单元研究[D]. 荆州:长江大学,2022.

    Li Ming. Study on sedimentary microfacies and reservoir unit in An 11 block, Langgu Sag[D]. Jingzhou: Yangtze University, 2022.
    [6] 郑敬贵,李仲东,傅恒,等. 廊固凹陷古近系陆相断陷湖盆层序地层发育主控因素研究[J]. 成都理工大学学报(自然科学版),2006,33(3):240-245.

    Zheng Jinggui, Li Zhongdong, Fu Heng, et al. Study on key influential factors of sequence stratigraphy development in fault lacustrine basin: Taking the stratum of Paleogene system in Langgu Depression for example[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006, 33(3): 240-245.
    [7] 李忠诚,鲍志东,魏兆胜,等. 箕状断陷湖盆初始裂陷期层序地层与沉积充填特征:以松辽盆地梨南洼槽下白垩统火石岭组二段为例[J]. 石油与天然气地质,2022,43(3):670-681.

    Li Zhongcheng, Bao Zhidong, Wei Zhaosheng, et al. Sequence stratigraphy and sedimentary filling characteristics of a half-graben rift lake basin during the initial rifting period: A case study of the 2nd member of Lower Cretaceous Huoshiling Formation, Linan Sag, Songliao Basin[J]. Oil & Gas Geology, 2022, 43(3): 670-681.
    [8] 杨明慧,刘池阳,孙冬胜,等. 陆相伸展盆地强伸展期沉积格架与断块翘倾分析:以冀中坳陷廊固凹陷沙河街组三段中亚段为例[J]. 地质科学,2004,39(2):178-190.

    Yang Minghui, Liu Chiyang, Sun Dongsheng, et al. Depositional framework and fault-block tilting in strong extensional stage of continental basin: An example from the middle part of 3rd member, Shahejie Formation in the Langgu Depression, central Hebei Basin[J]. Chinese Journal of Geology, 2004, 39(2): 178-190.
    [9] 田然. 廊固凹陷沙河街组三、四段层序地层及沉积相研究[D]. 北京:中国地质大学(北京),2016.

    Tian Ran. Research on sequence stratigraphy and sedimentary facies of Palaeogene of member 3 and 4 of Shahejie Formation in Langgu Depression[D]. Beijing: China University of Geosciences (Beijing), 2016.
    [10] 周从安,胡美玲,佟凤芝,等. 廊固凹陷断陷期层序地层与沉积充填样式[J]. 中国石油勘探,2012,17(6):38-42,94.

    Zhou Cong'an, Hu Meiling, Tong Fengzhi, et al. Rift sequential formation and sedimentary infill pattern of Langgu Depression[J]. China Petroleum Exploration, 2012, 17(6): 38-42, 94.
    [11] 曾洪流,张万选,张厚福. 廊固凹陷沙三段主要沉积体的地震相和沉积相特征[J]. 石油学报,1988,9(2):12-18.

    Zeng Hongliu, Zhang Wanxuan, Zhang Houfu. Seismic and depositional characteristics of major sedimentary bodies in 3rd section of Shahejie Formation Longgu Depression[J]. Acta Petrolei Sinica, 1988, 9(2): 12-18.
    [12] 梁官忠,刘龙松,张峰,等. 廊固凹陷大兴断裂带沙四—沙三段近岸水下扇沉积特征[J]. 新疆石油地质,2017,38(2):137-143.

    Liang Guanzhong, Liu Longsong, Zhang Feng, et al. Sedimentary characteristics of nearshore subaqueous fans of Sha4-Sha3 member of Shahejie Formation in Daxing fault zone of Langgu Sag[J]. Xinjiang Petroleum Geology, 2017, 38(2): 137-143.
    [13] 王宗礼,李君,罗强,等. 利用测井资料精细评价冀中坳陷廊固凹陷烃源岩[J]. 天然气地球科学,2012,23(3):430-437.

    Wang Zongli, Li Jun, Luo Qiang, et al. Fine evaluation of source rock with logging data in Langgu Sag of Jizhong Depression[J]. Natural Gas Geoscience, 2012, 23(3): 430-437.
    [14] 刁帆,邹华耀,郝芳,等. 渤海湾盆地廊固凹陷烃源岩特征及其发育模式[J]. 石油与天然气地质,2014,35(3):326-335.

    Diao Fan, Zou Huayao, Hao Fang, et al. Characteristics and depositional models of source rocks in Langgu Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2014, 35(3): 326-335.
    [15] 金凤鸣,师玉雷,罗强,等. 廊固凹陷烃源岩精细评价研究及应用[J]. 中国石油勘探,2012,17(6):23-27.

    Jin Fengming, Shi Yulei, Luo Qiang, et al. Research and application of detailed assessment on hydrocarbon source rock of Langgu Depression[J]. China Petroleum Exploration, 2012, 17(6): 23-27.
    [16] 操义军,王权,邹华耀,等. 廊固凹陷原油成因类型与分布规律[J]. 石油学报,2017,38(11):1263-1274.

    Cao Yijun, Wang Quan, Zou Huayao, et al. Genesis types and distribution laws of crude oil in Langgu Sag[J]. Acta Petrolei Sinica, 2017, 38(11): 1263-1274.
    [17] 李建智. 廊固凹陷大柳泉地区沙三中亚段优势输导通道及其对油气分布的控制作用[D]. 大庆:东北石油大学,2021.

    Li Jianzhi. Dominant transport channels and their control on oil and gas distribution in the middle member of Es3 in Daliuquan area of Langgu Sag[D]. Daqing: Northeast Petroleum University, 2021.
    [18] 李根. 廊固凹陷大柳泉中北部地区沙三中、下亚段断裂对油气运聚控制作用研究[D]. 大庆:东北石油大学,2022.

    Li Gen. Control effect of faults on oil and gas transport and storage of the Es3 Formation in Daliuquan area, Langgu Depression[D]. Daqing: Northeast Petroleum University, 2022.
    [19] 付广,于桐. 断裂附近源断砂空间配置油气运聚有利部位预测方法及其应用[J]. 沉积学报,2023,41(1):270-279.

    Fu Guang, Yu Tong. Proposed method for predicting favorable locations for oil and gas migration and accumulation in source-faulted-sand zones near faults and its application[J]. Acta Sedimentologica Sinica, 2023, 41(1): 270-279.
    [20] 刘滨莹,姜海燕,付广,等. 下生上储式油气富集程度的定量研究方法及其应用:以廊固凹陷大柳泉构造带沙三中亚段为例[J]. 地球物理学进展,2017,32(5):2035-2043.

    Liu Bin-ying, Jiang Haiyan, Fu Guang, et al. Quantitative research method and application to the enrichment degree of the down generated up stored hydrocarbon accumulation: Case of Es3z in the Daliuquan structure zone of the Langgu Sag[J]. Progress in Geophysics, 2017, 32(5): 2035-2043.
    [21] 王宗礼,罗强,李胜利,等. 冀中廊固凹陷油气输导体系类型与成藏模式[J]. 现代地质,2011,25(6):1137-1144.

    Wang Zongli, Luo Qiang, Li Shengli, et al. Type of petroleum migration pathway system and accumulation model in Langgu Depression, Jizhong[J]. Geoscience, 2011, 25(6): 1137-1144.
    [22] 刘峻桥,王伟,吕延防,等. 渤海湾盆地廊固凹陷大柳泉地区油源断裂垂向输导能力定量评价[J]. 石油实验地质,2019,41(4):606-613.

    Liu Junqiao, Wang Wei, Yanfang Lü, et al. Quantitative evaluation of vertical fault transport in Daliuquan area of Langgu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 606-613.
    [23] 付广,梁木桂,李健如. 油源断裂活动期输导油气有利部位预测方法的改进[J]. 中国石油大学学报(自然科学版),2021,45(6):42-50.

    Fu Guang, Liang Mugui, Li Jianru, et al. Improved prediction method of favorable positions for oil and gas transport of active oil-source faults[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(6): 42-50.
    [24] 于英华,陈达,袁红旗,等. 渤海湾盆地冀中坳陷大柳泉地区F8断裂不同时期输导油气能力对油气成藏贡献[J]. 地质论评,2021,67(5):1478-1486.

    Yu Yinghua, Chen Da, Yuan Hongqi, et al. Contribution of hydrocarbon transport capacity of the fault F8 to hydrocarbon accumulation in different periods in Daliuquan area, Langgu Sag, Jizhong Depression, Bohai Bay Basin[J]. Geological Review, 2021, 67(5): 1478-1486.
    [25] 果文斌,马朋朋,董军,等. 活动期油源断裂输导油气有利凸面脊分布预测方法[J]. 大庆石油地质与开发,2022,41(4):54-59.

    Guo Wenbin, Ma Pengpeng, Dong Jun, et al. Prediction method of favorable convex ridge distribution of oil and gas transported by oil source faults in activity period[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(4): 54-59.
    [26] 付广,沙子萱,王宏伟,等. 油源断裂输导油气通道演化形式的研究方法及其应用[J]. 地质科学,2022,57(1):127-138.

    Fu Guang, Sha Zixuan, Wang Hongwei, et al. Research method and application of evolution form of oil and gas passage of oil source fault[J]. Chinese Journal of Geology, 2022, 57(1): 127-138.
    [27] 朱庆忠,李春华,杨合义. 廊固凹陷沙三段深层砾岩体油藏成岩作用与储层孔隙关系研究[J]. 特种油气藏,2003,10(3):15-17.

    Zhu Qingzhong, Li Chunhua, Yang Heyi. Relation of diagenesis and pores in conglomerate reservoir of deep Sha 3 Formation of Langgu Sag[J]. Special Oil and Gas Reservoirs, 2003, 10(3): 15-17.
    [28] 宋荣彩,张哨楠,董树义,等. 廊固凹陷陡坡带古近系砂砾岩体控制因素分析[J]. 成都理工大学学报(自然科学版),2006,33(6):587-592.

    Song Rongcai, Zhang Shaonan, Dong Shuyi, et al. An analysis of the characteristic and controlling factors of the Paleogene glutenite fan in the actic area of the Langgu Depression in Bohaiwan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006, 33(6): 587-592.
    [29] 赵伟森,武耀辉,曹建华,等. 廊固凹陷大兴砾岩体成藏差异性特征研究[J]. 中国石油勘探,2012,17(6):43-47.

    Zhao Weisen, Wu Yaohui, Cao Jianhua, et al. Study of accumulation differential characteristics of Daxing conglomerate bodies in Langgu Depression[J]. China Petroleum Exploration, 2012, 17(6): 43-47.
    [30] 刘晖,姜在兴,张锐锋,等. 廊固凹陷大兴砾岩体成因类型及其对油气的控制[J]. 石油勘探与开发,2012,39(5):545-551.

    Liu Hui, Jiang Zaixing, Zhang Ruifeng, et al. Genetic types of Daxing conglomerate bodies and their controls on hydrocarbons in the Langgu Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2012, 39(5): 545-551.
    [31] 王成泉,王孟华,周佳宜,等. 多属性融合定量储层预测方法研究与应用:以廊固凹陷杨税务潜山为例[J]. 物探与化探,2022,46(1):87-95.

    Wang Chengquan, Wang Menghua, Zhou Jiayi, et al. Application of multi-attribute fusion in quantitative prediction of reservoirs: A case study of Yangshuiwu buried hill in Langgu Sag[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 87-95.
    [32] 刘雪娇. 廊固凹陷构造变形与油气成藏[D]. 石家庄:河北地质大学,2018.

    Liu Xuejiao. Structural deformation and hydrocarbon accumulation in Langgu Sag[D]. Shijiazhuang: Hebei GEO University, 2018.
    [33] 黄婷婷,周文,傅恒,等. 廊固凹陷古近系隐蔽油气藏形成条件及成藏规律[J]. 大庆石油地质与开发,2007,26(6):51-56.

    Huang Tingting, Zhou Wen, Fu Heng, et al. Hydrocarbon generation conditions and rules of the Palaeogene subtle reservoirs in Langgu Sag[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(6): 51-56.
    [34] 曹敬华,周文,傅恒,等. 廊固凹陷旧州—固安构造带沙三段层序地层特征与油气成藏关系[J]. 大庆石油地质与开发,2007,26(5):29-32.

    Cao Jinghua, Zhou Wen, Fu Heng, et al. Relationship between formation characteristics of Sha3 member sequence in Jiuzhou-Gu'an structural belt of Langgu Depression and hydrocarbon accumulation[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(5): 29-32.
    [35] 田然,田建章,于炳松,等. 廊固凹陷大柳泉构造带油气藏形成与成藏模式[J]. 特种油气藏,2015,22(4):56-60.

    Tian Ran, Tian Jianzhang, Yu Bingsong, et al. Forming and accumulation mode of oil/gas reservoirs in Daliuquan structural belt of Langgu Sag[J]. Special Oil & Gas Reservoirs, 2015, 22(4): 56-60.
    [36] 张清勇. 冀中坳陷大柳泉地区沙河街组油气成藏规律研究[D]. 大庆:东北石油大学,2016.

    Zhang Qingyong. Study of Shahejie Formation’s reservoirs forming rules of Daliuquan in central Heibei Depression[D]. Daqing: Northeast Petroleum University, 2016.
    [37] 郑敬贵. 廊固凹陷古近系层序地层学研究[D]. 成都:成都理工大学,2006.

    Zheng Jinggui. Analysis of sequence stratigraphy of Langgu Depression[D]. Chengdu: Chengdu University of Technology, 2006.
    [38] 赵红格,刘池洋. 大兴断裂分段性研究[J]. 石油与天然气地质,2002,23(4):368-371.

    Zhao Hongge, Liu Chiyang. Research on the segmentation of Daxing fault[J]. Oil & Gas Geology, 2002, 23(4): 368-371.
    [39] 金凤鸣,傅恒,李仲东,等. 冀中坳陷廊固凹陷古近系层序地层与隐蔽油气藏勘探[J]. 矿物岩石,2006,26(4):75-82.

    Jin Fengming, Fu Heng, Li Zhongdong, et al. Sequence stratigraphy of Paleogene and exploration of blind reservoirs in the Jizhong Depression of Langgu subdepression[J]. Journal of Mineralogy and Petrology, 2006, 26(4): 75-82.
    [40] 胡欣蕾,吕延防,曹兰柱,等. 廊固凹陷大柳泉地区断层侧向启闭性评价及成藏模式[J]. 石油地球物理勘探,2018,53(6):1314-1325.

    Hu Xinlei, Yanfang Lü, Cao Lanzhu, et al. Evaluation of fault lateral sealing and reservoir accumulation model in Daliuquan area, Langgu Sag[J]. Oil Geophysical Prospecting, 2018, 53(6): 1314-1325.
    [41] 白淳元,胡望水,周振永,等. 渤海湾盆地廊固凹陷泉241—州16区块沙三中亚段沉积特征[J]. 大庆石油地质与开发,2023,42(1):32-39.

    Bai Chunyuan, Hu Wangshui, Zhou Zhenyong, et al. Sedimentary characteristics of Es3m of Quan 241⁃Zhou 16 block in Langgu Sag in Bohai Bay Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(1): 32-39.
    [42] 钟大康. 廊固凹陷固安—旧州地区沙三—42下段重力流沉积特征[J]. 西南石油学院学报,1988,10(1):85-96.

    Zhong Dakang. Features of gravity flow sediments of Lower S34-2 section in Gu’an-Jiuzhou region, Longfang-Gu’an Depression[J]. Journal of Southwestern Petroleum Institute, 1988, 10(1): 85-96.
    [43] McPherson J G, Shanmugam G, Moiola R J. Fan-deltas and braid deltas: Varieties of coarse-grained deltas[J]. GSA Bulletin, 1987, 99(3): 331-340.
    [44] 唐玮玮,吴晓明,王为林,等. 鄂尔多斯盆地环县北地区延长组长72亚段重力流特征及油气地质意义[J]. 成都理工大学学报(自然科学版),2022,49(5):561-569,585.

    Tang Weiwei, Wu Xiaoming, Wang Weilin, et al. Gravity flow characteristics and geological significance of oil and gas of the Chang 72 sub-member of the Yanchang Formation in the northern Huanxia area, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 561-569, 585.
    [45] 鲍志东,赵立新,王勇,等. 断陷湖盆储集砂体发育的主控因素:以辽河西部凹陷古近系为例[J]. 现代地质,2009,23(4):676-682.

    Bao Zhidong, Zhao Lixin, Wang Yong, et al. The main control factors of sandbody reservoir development in rift-subsidence lake basin: An example from the Paleogene west sag of Liaohe Basin[J]. Geoscience, 2009, 23(4): 676-682.
    [46] 陈欢庆,王珏,胡海燕,等. 扇三角洲前缘沉积特征及对油藏有效开发的影响:以辽河西部凹陷某试验区于楼油层油藏为例[J]. 海洋地质与第四纪地质,2018,38(5):156-170.

    Chen Huanqing, Wang Jue, Hu Haiyan, et al. Depositional characteristics of fan delta deposits and their impacts to reservoir development: An example from Liaohe Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 156-170.
    [47] 彭飚,金振奎,朱小二,等. 扇三角洲沉积模式探讨:以准噶尔盆地玛北地区下三叠统百口泉组为例[J]. 古地理学报,2017,19(2):315-326.

    Peng Biao, Jin Zhenkui, Zhu Xiaoer, et al. Discussion about depositional models of fan delta: A case study from the Lower Triassic Baikouquan Formation in Mabei area, Junggar Basin[J]. Journal of Palaeogeography, 2017, 19(2): 315-326.
    [48] 赵春娟,徐淑娟,程宏岗,等. 松辽盆地徐家围子断陷沙河子组沉积相类型及演化模式[J]. 沉积学报,2024,42(4):1460-1478.

    Zhao Chuanjuan, Xu Shujuan, Cheng Honggang, et al. Sedimentary facies types and evolution models of the Shahezi Formation in the Xujiaweizi fault depression, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1460-1478.
    [49] Nabawy B S, Abd El Aziz E A, Ramadan M, et al. Implication of the micro- and lithofacies types on the quality of a gas-bearing deltaic reservoir in the Nile Delta, Egypt[J]. Scientific Reports, 2023, 13(1): 8873.
    [50] 赵伟,邱隆伟,姜在兴,等. 断陷湖盆萎缩期浅水三角洲沉积演化与沉积模式:以东营凹陷牛庄洼陷古近系沙三段上亚段和沙二段为例[J]. 地质学报,2011,85(6):1019-1027.

    Zhao Wei, Qiu Longwei, Jiang Zaixing, et al. Depositional characters and models of shallow-water delta in the rift lacustrine basins during the shrinking stage: A case study of upper submember of member 3 and member 2 of Paleogene Shahejie Formation in the area of Niuzhuang Subsag, Dongying Sag[J]. Acta Geologica Sinica, 2011, 85(6): 1019-1027.
    [51] Dunne L A, McPherson J G, Shanmugam G, et al. Fan-deltas and braid deltas: Varieties of course-grained deltas: Discussion and reply[J]. GSA Bulletin, 1988, 100(8): 1308-1310.
    [52] Fisher J A, Nichols G J, Waltham D A. Unconfined flow deposits in distal sectors of fluvial distributary systems: Examples from the Miocene Luna and Huesca Systems, northern Spain[J]. Sedimentary Geology, 2007, 195(1/2): 55-73.
    [53] 张莉,鲍志东,林艳波,等. 浅水三角洲砂体类型及沉积模式:以松辽盆地南部乾安地区白垩系姚家组一段为例[J]. 石油勘探与开发,2017,44(5):727-736.

    Zhang Li, Bao Zhidong, Lin Yanbo, et al. Genetic types and sedimentary model of sandbodies in a shallow-water delta: A case study of the first member of Cretaceous Yaojia Formation in Qian’an area, south of Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2017, 44(5): 727-736.
    [54] 江涛. 廊固凹陷中北部资源潜力分析和油气源研究[D]. 青岛:中国石油大学(华东),2014.

    Jiang Tao. Resource potential and oil-gas source in north-central Langgu Sag[D]. Qingdao: China University of Petroleum (East China), 2014.
    [55] 刁帆,金凤鸣,郝芳,等. 廊固凹陷古近系沙河街组古湖泊环境与有机质富集机制[J]. 石油实验地质,2014,36(4):479-486,510.

    Diao Fan, Jin Fengming, Hao Fang, et al. Palaeolake environment and organic matter enrichment mechanism of Paleogene Shahejie Formation in Langgu Sag[J]. Petroleum Geology & Experiment, 2014, 36(4): 479-486, 510.
    [56] 吴小洲. 冀中廊固凹陷含油气系统[J]. 勘探家,2000,5(3):71-74.

    Wu Xiaozhou. Petroleum systems of Langgu Sag[J]. Petroleum Explorationist, 2000, 5(3): 71-74.
    [57] 朱坤静,彭远黔. 廊固凹陷旧州断裂构造特征[J]. 华北地震科学,2020,38(3):88-96.

    Zhu Kunjing, Peng Yuanqian. Structure features of the Jiuzhou fault in Langgu Depression[J]. North China Earthquake Sciences, 2020, 38(3): 88-96.
    [58] 赵利杰,蒋有录,刘华,等. 饶阳凹陷烃源岩热演化特征及其与油藏分布的关系[J]. 油气地质与采收率,2012,19(4):1-4.

    Zhao Lijie, Jiang Youlu, Liu Hua, et al. Thermal evolution of Paleogene source rocks and relationship with reservoir distribution in Raoyang Sag, Bohai Bay Basin[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(4): 1-4.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Article Metrics

Article views(252) PDF downloads(18) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-06-11
  • Revised:  2023-08-23
  • Accepted:  2023-09-13
  • Published:  2025-06-10

Fan Delta Sedimentation and Hydrocarbon Accumulation Models of Langgu Sag: A case study from the Shahejie Formation in the Jiuzhou-Wanzhuang area

doi: 10.14027/j.issn.1000-0550.2023.079
Funds:

National Natural Science Foundation of China 42376060

Natural Science Foundation of Shandong Province ZR2023MD050

Natural Science Foundation of Shandong Province ZR2017BD014

Forward-looking Basic Science and Technology Research Project of Petroleum China 2021DJ0205

Abstract: Objective After more than 50 years of exploration, Langgu Sag has entered the stage of oil and gas exploration and development with lithologic and structural-lithologic reservoirs as the main targets. Previous studies have been carried out on the large-scale sedimentary characteristics, hydrocarbon accumulation factors and models of Langgu Sag. However, relatively little is known of the spatial distribution characteristics and the distribution rules of the high-quality sand bodies. The main controlling factors of hydrocarbon accumulation and their distribution are not uniform, which restricts the evaluation and production of subtle reservoirs. Methods This study comprehensively used core data, well logging, seismic data, analytical tests and production data to systematically study the Shahejie Formation in the Jiuzhou-Wanzhuang area. The study aims to identify and classify sedimentary facies and microfacies types, accurately characterize the spatial distribution of sand bodies, and analyze reservoirs formation control factors such as source rocks, traps and fault conduit systems. The hydrocarbon accumulation model is established, leading to the prediction of favorable concealed lithologic or structural-lithologic reservoirs distribution zones. Results The lithology is mainly fine-grained clastic rock; the sedimentary sequence is not typical, a deformation structure is clearly developed, and floating mud gravel of sandy clastic flow origin can be seen. This reflects the characteristics of the dynamic conditions of traction flow in the distal fan delta. In the study area, there are two provenance supply systems in the south and north, and a braided channel extends from the SE of the Daxing Fault to the interior of the lake in a finger-like way, forming two depositional centers in Jiuzhou and Wanzhuang. In the study area, an underwater distri-butary channel at the front of the fan delta extends for some distance and migrates frequently. The estuary is unstable, with an underdeveloped or small-scale estuarine bar. Mature source rocks, effective traps and fault conduit systems are the main controls of hydrocarbon accumulation in the middle submember of Shahejie Formation 3rd member in the study area. The abundance of organic matter shows that the oil source of the lower submember of Shahejie Formation 3rd member in the study area comes from underlying source rocks of the lower submember of Shahejie Formation 3rd member. Using forward modeling and RGB (Red-Green-Blue) attribute fusion, sensitive attribute optimization was performed to predict the distribution range of high-quality sandstone reservoirs combined with a series of anticlinal tectonic settings to form good structural traps along with lithologic up-dip pinch-out traps. As oil source faults, the Daxing and Jiuzhou Faults and their secondary branches are the main channels connecting the oil and gas resources of the lower submember of Shahejie Formation 3rd member and the reservoirs of the middle submember of Shahejie Formation 3rd member, and they also control the formation of traps as a whole. Conclusions The results show that the study area is primarily characterized by fan-delta systems and lake systems. Within the fan-delta system, various microfacies types were identified (e.g., braided channels, submarine distributary channels, delta front sandbars, and sheet-like sands). The spatial distribution of sand bodies is characterized by thick layers of distributary channel-sandbar complexes with finger-like distribution and continuous thin sheet-like sands. The organic configurations of oil source faults, structures and even lithologic traps are the main causes of hydrocarbon accumulation in the study area, and the reservoir lithology within the traps determines the oil, gas and water distribution. Ultimately, four favorable development zones for lithologic or structural-lithologic reservoirs were predicted in the SE and NW wings of the jiuzhou plunging nose structure and the NE wing of the Tongxi paleo-structural ridge.

ZHOU ZhenYong, LI DeYong, LIANG YiFei, DUAN ChiYu, REN Cao, JIE Qiong, DAI MingHui, CHENG HongGang. Fan Delta Sedimentation and Hydrocarbon Accumulation Models of Langgu Sag: A case study from the Shahejie Formation in the Jiuzhou-Wanzhuang area[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1145-1162. doi: 10.14027/j.issn.1000-0550.2023.079
Citation: ZHOU ZhenYong, LI DeYong, LIANG YiFei, DUAN ChiYu, REN Cao, JIE Qiong, DAI MingHui, CHENG HongGang. Fan Delta Sedimentation and Hydrocarbon Accumulation Models of Langgu Sag: A case study from the Shahejie Formation in the Jiuzhou-Wanzhuang area[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1145-1162. doi: 10.14027/j.issn.1000-0550.2023.079
  • 随着油气勘探进程的推进,国内主要油田进入油气勘探瓶颈阶段,众多学者开始研究非构造油气藏的地质条件、形成因素和分布情况[13]。廊固凹陷历经50余年勘探,对柳泉、河西务、永清、别古庄等油田的开发程度较高[4],成藏条件好的纯构造油藏已开发殆尽[5],现进入以岩性和构造—岩性油气藏为主要目标的油气勘探开发阶段。前人对廊固凹陷大尺度的沉积特征、成藏要素和成藏模式进行了一定的研究。廊固凹陷是具备多物源、近物源、相带窄、相变快等特点的陆相断陷湖盆[6],不同构造带上沉积相带分异特征明显[7]。廊固凹陷沙河街组发育扇三角洲、辫状河三角洲、冲积扇、近岸水下扇、湖泊相和海底扇,沙四段物源主要来自沧县隆起,沙三段物源主要来自大兴凸起[810],旧州地区发育碎屑流近岸水下扇[1112]。在此基础上,学者从烃源岩、储层物性和断裂疏导体系等方面研究了其成藏条件。王宗礼等[13]、刁帆等[14]、金凤鸣等[15]认为研究区烃源岩主要发育在沙三段和沙四段,沙三下亚段有机质丰度较高,优质烃源岩主要分布于旧州—固安一带。操义军等[16]在研究区划分出3种成因类型原油,Ⅰ类来自沙四上亚段烃源岩,Ⅱ类来自沙三下亚段烃源岩,Ⅲ类来自前两者生成的混源油。部分学者进一步从优势疏导通道、断裂侧向封闭和油气储集砂体的角度分析了研究区的油气运输条件和分布规律[1720],其中油源断裂及其疏导能力是研究区油气成藏的重要因素[2126]。此外,有学者对大兴砾岩体开展了储层物性分析[2730],还有学者利用敏感属性优选和多属性融合技术预测了该区杨税务潜山有效储层[31]。廊固凹陷油气围绕生油洼槽分布,形成聚油环带[32],陡坡带和缓坡带分别是发育上倾尖灭岩性油藏和断块—岩性型油藏的有利区带[33]。曹敬华等[34]、田然等[35]、张清勇[36]考虑了烃源岩、储层岩性和物性变化、疏导体系与生储盖组合方式等多种成藏要素,提出了多种多样的成藏模式。

    尽管前人开展了大量有关沉积和成藏方面的研究工作,对研究区沉积体系发育类型的认识也趋于统一,并且为早期油气藏勘探提供了重要支撑。但是,对精细砂体空间展布特征和分布规律的认识仍然较为粗浅,难以满足现阶段构造—岩性和岩性油藏精细识别和评价的需求,迫切需要开展精细的相控油藏储集体的精细表征。同时,虽然前人提出了多种多样的成藏模式,但对于油气成藏主控因素和分布规律的认识还不统一,制约了隐蔽油气藏的评价建产。本文针对廊固凹陷旧州—万庄地区沙三中亚段(Es32和Es33)主要产油层,开展沉积微相和油气成藏控制因素研究:对区块内12口井沙三中亚段岩心进行观察和描述,建立相层序分析剖面;综合岩心、测井和录井等资料,对53口井进行单井沉积相和微相分析;进而,统计了120余口井的砂砾岩厚度和砂地比数据,并结合储层反演结果(另文讨论)刻画沉积相与沉积微相空间展布特征;最终,在典型油气藏解剖的基础上,综合研究区有关油源、构造、圈闭、储层、疏导等成藏条件的认识,提出了研究区扇三角洲油气成藏模式,预测了有利的岩性或构造—岩性油藏发育区带,为隐蔽油气藏的评价提供依据。

  • 廊坊—固安凹陷(廊固凹陷)地理上位于北京市和天津市之间,构造上归属于渤海湾盆地冀中坳陷北部的一个北东向展布的古近纪箕状断陷。其北与大厂凹陷相接,南界为牛驼镇凸起,西以大兴断层接靠大兴凸起,东以河西务断层与武清凹陷相邻,勘探面积为2 600 km2,是华北油田主要富油凹陷之一(图1)。廊固凹陷具有东西分带、南北分区的构造格局,由六条断层分隔为五个主要构造带:旧州—固安构造带、柳泉—曹家务构造带、河西务构造带、牛北斜坡及凤河营构造带[37],控制凹陷的一级断层有大兴断层[38]和河西务断层,控制构造带的二级断层有旧州断层、曹家务断层、牛北断层和桐柏镇断层。旧州地区断层主要呈阶梯状,平面上呈雁列式展布,走向为近东西向,断层断距介于40~100 m,延伸较短。万庄地区断层主要呈负花状,平面组合模式也呈雁列式展布,走向为北东—南西向,断层断距较大,最大可达160 m左右,延伸较长。廊固凹陷经历了断陷初始期、强烈断陷期、断陷回返上升期及断陷消亡期4个阶段[39]。廊固凹陷古近系逐层超覆于寒武系—奥陶系碳酸盐岩和石炭系—二叠系煤系之上,形成北断南超和西断东超的构造格局[40],自上而下沉积了东营组(Ed)、沙河街组一段(Es1)、二段(Es2)、三段(Es3)、四段(Es4)和孔店组(Ek[33]。本文研究区为位于廊固凹陷中北部的旧州—万庄地区,面积约170 km2,研究的目的层为Es32(I、II、III、IV、底)、Es33(I、II、III)、Es33(I、II、III)共计11个油组层。

    Figure 1.  Structural geographic location and oilfield scope of Langgu Sag (modified from reference [17])

  • 本研究对旧州—万庄地区12口井沙三中亚段(Es32和Es33)岩心进行了详细观察和描述,对研究区发育的沉积相、亚相、微相的类型进行了识别。岩心观察结果显示:由于取心井离物源区较远,岩心粒度偏细,以细粒碎屑岩为主,少见砾岩、砂砾岩;泥岩颜色主要为灰色和灰黑色,整体反映水下还原沉积环境特点[41]。除T35井见由混杂灰质砾石构成的中细砾岩(碎屑流成因)[4243]图2a~c、图3e)外,旧州—万庄地区沙三中亚段碎屑岩以细粒砂岩和泥岩为主;岩心中沉积层理发育不典型,主要有块状层理(图2d~g)、沙纹层理(图2h)以及脉状—波状—透镜状层理(图2i),同时常见小型同沉积断裂(图2j,k)与软沉积物变形构造(图2l~n),变形构造较为发育(图2o~q),其中Q85井、T29井和T53井细粒砂岩层内部还观察到明显的呈撕裂状、条带状的不规则漂浮状泥砾(砂质碎屑流成因)[44]图2r,s、图3f);岩心中可见河道底部冲刷形成的侵蚀面与滞留泥砾(图2t~x),少见典型的粒度下细上粗、顶部发育低角度交错层理的反韵律河口砂坝层序(图2y),整体反映了远端扇三角洲牵引流的水动力条件特征。综合沉积构造、相层序组合以及测井、录井岩电特征,并结合大兴断层控制的山高坡陡的古构造地貌背景[45],本文认为研究区主要发育扇三角洲沉积体系和湖泊沉积体系。

    Figure 2.  Sedimentary and structural characteristics of the Shahejie Formation in the Jiuzhou⁃Wanzhuang area

    Figure 3.  Single well facies profiles of well Z1 (a) and well T35 (b)

    录井资料中除Z1井见到扇三角洲平原亚相中的紫红色、棕黄色泥岩外,均以发育扇三角洲前缘亚相和湖泊相为主(图3)。其中扇三角洲平原识别出辫状河道、河道砂坝和河道间沉积微相;岩心显示多数井钻遇扇三角洲前缘亚相,扇三角洲前缘发育水下分流河道、水下分流间、河口砂坝、席状砂沉积微相[46]。分流河道自下而上可出现正韵律的河道底部冲刷与滞留泥砾泥屑层[47]图2z)、砂岩或粉砂岩,层理可见交错层理、块状层理、沙纹层理和平行层理,具有下粗上细的正韵律特征(图4a),自然伽马(GR)测井曲线呈钟形或齿化钟形及箱形或齿化箱形。分流间为灰色泥岩或粉砂岩夹砂质条带(图4b),层理可见沙纹层理和平行层理,GR测井曲线呈齿化线性;砂坝主要为多期反韵律的交错层理细砂岩—波状或沙纹层理细砂岩、粉砂岩(图4c),GR测井曲线呈漏斗型或齿化漏斗型。席状砂多为平行层理、沙纹层理粉细砂岩夹碳屑纹层或泥质条带[48]图4d),测井曲线为指状或舌型;前扇三角洲则主要发育浅湖泥[49]

    Figure 4.  Fan delta facies sequences of the Shahejie Formation in the Jiuzhou⁃Wanzhuang area

  • 在取心资料分析的基础上,综合分析单井沉积相、连井沉积相和地震属性结果,以砂体厚度和砂地比数据为约束,通过多因素成图方法[50]绘制万庄—旧州地区各油组的沉积微相平面展布图(图56)。

    Figure 5.  Sedimentary microfacies from the Es33 oil groups in the Jiuzhou⁃Wanzhuang area

    Figure 6.  Sedimentary microfacies from the Es32 oil groups in the Jiuzhou⁃Wanzhuang area

    1) Es33和Es33亚段沉积微相展布

    研究区存在旧州和万庄两个沉积中心。平原亚相沿大兴断层根部发育,辫状河道呈指状由大兴断裂自SE向湖泊内部延伸,自北向南发育2个扇体。分流河道两侧依次发育河口砂坝、席状砂、分流间,其余部分发育湖泊相。Es33Ⅲ至Es33Ⅲ油组沉积时期,沉积范围不断扩大,沉积中心向北部迁移。万庄地区前缘扇体延伸方向从向S方向转变为向E和SE方向,分支数量增加,向内部推进距离增加,最远延伸约1.3 km;旧州地区沉积范围不断扩大,主要分支数量从2个增加到3个,北端分支与万庄地区前缘扇体相接,最远延伸约1.8 km。Es33Ⅱ至Es33Ⅰ油组沉积时期,北部沉积扩大,南部沉积缩小。万庄地区沉积中心较为集中,前缘扇体向湖泊内部延伸距离最远达到1.4 km,随后减少至1 km,主分支向SE延伸,发育多个分支,席状砂与旧州地区前缘扇体相接;旧州地区沉积中心较为分散,扇体主要发育两个分支,前缘扇体横向分布范围明显变小,发育两个主分支,分支之间发育湖泊相沉积,旧州地区前缘扇体主要发育两个分支,分别向E和SE方向延伸。

    2) Es32亚段沉积微相展布

    Es32底至Es32Ⅲ油组沉积时期,南支物源供给体系相对较强,旧州沉积体系占主导地位。万庄地区扇体由自NW向SE延伸转变为N向S延伸,在T45井、T53井发育新的沉积中心,沉积分布范围逐渐减小,延伸距离减少至约700 m。旧州地区发育两个主分支,沉积范围逐渐扩大,分流河道分支更为繁琐,分支之间发育的湖泊相逐渐消失。Es32Ⅱ油组沉积时期,沉积中心汇聚,呈指状分布。万庄地区扇三角洲沉积体系范围达到最小,延伸距离最短;旧州地区河道位置更加密集。Es32Ⅰ油组沉积时期,沉积中心分布分散,沉积范围减小。万庄地区向内部推进距离小于1 km;旧州地区向内部推进距离约1.6 km。

    综上,旧州—万庄地区沉积物物源供给主要来自大兴凸起,主要存在南、北两支物源供给体系,南支物源由SW向NE、E以及SE方向输送沉积砂体,北支物源主要向E和SE方向输送沉积砂体。由于研究区扇三角洲沉积牵引流水动力作用强,因此扇三角洲前缘水下分流河道延伸距离远、迁移改道频繁、河口不稳定,河口沙坝不发育或规模较小[5152],以厚层的、呈指状分布的分流河道—砂坝复合体[53]以及连片的薄层席状砂为主。

  • 以单井相分析为基础,结合地层分层,在研究区内选取多条剖面进行连井剖面对比分析,刻画沙河街组沉积相横向上不同时期砂体的叠加演化特征。

    万庄地区Q87井—T47井—T47-13X井—T47-14X井—Q56-1井—Q56-3井—T29井连井剖面(图7)穿过Es32底、Es33Ⅰ、Es33Ⅱ三个油组,其走向平行于物源方向。从图7可以看到,砂体整体连通性较好,显示为多期箱型正韵律分流河道砂体与灰色泥岩互层,其间发育席状砂砂体,分流河道岩性主要为细砂岩和粉砂岩,单砂体厚度不大;席状砂夹杂在分流河道之间,为薄层细砂岩、粉砂岩,厚度多在2 m以下。

    Figure 7.  Sedimentary facies correlation section between wells in the Wanzhuang area

  • 本文以圈闭成因为主线,对研究区开发区块的油藏类型进行了划分。

    T21块油藏主要受2~3条相互交切的正断层控制,属于交叉断层断块—岩性油藏。T47、Q87、T12、Q56块油藏主要受反向正断层和大型鼻状构造控制,属于断鼻—岩性油藏。以T12块油藏(图8)为例,主力油层Es33I和II油组上倾方向由2条弧形交叉断层形成遮挡条件,油藏内部复杂的油水关系受鼻状构造和岩性联合控制,属于反向正断层控制的下盘断鼻型构造—岩性油藏。而Es33I和II油组受5条NE走向、相互交叉的反向正断层遮挡控制,属于多断层围限的复杂断块—岩性油藏。

    Figure 8.  Reservoir profile of T12 block

    Z16块油气藏(图9)整体受2条NEE走向的交切断层所夹持,断块内部被2条近于垂直的NE、SW向次级断层切割复杂化,油气藏内部复杂的油水关系受岩性控制明显。Z16块可细分为东、西两个次级区块,其中西侧区块上倾方向由3条相互交切的断层形成遮挡条件,下倾方向被2条交切断层围限封闭,属于多断层复杂断块—岩性油气藏;东侧区块局部油藏单元主体受2条NE走向和SW走向的交切断层控制,油藏内部可能受鼻状构造控制,属于断鼻型构造—岩性油藏。

    Figure 9.  Reservoir profile of Z16 block

  • 在沉积微相识别、优质储层预测和典型油气藏解剖的基础上,综合分析研究区有关构造、圈闭、储层、油源等油气成藏条件的认识,认为研究区目的层油气成藏主要受成熟烃源岩、有效圈闭和断层运移通道的控制。

  • 研究区15口取心井有机地球化学分析资料显示,Es32亚段平均TOC为1.35%,氯仿沥青“A”为0.12%,总烃为0.35 mg/g,S1+S2为0.35 mg/g,Tmax为433.75 ℃;Es33亚段平均TOC为1.14%,氯仿沥青“A”为0.1%,总烃为0.42 mg/g,S1+S2为0.33 mg/g,Tmax为436.50 ℃;Es33亚段平均TOC为1.03%,氯仿沥青“A”为0.78%。

    由上述有机质丰度统计结果可知,研究区目的层烃源岩整体上属于中等—较好烃源岩(图10)。现有资料表明,研究区主要烃源岩为沙三中、下亚段,有机质丰度高,但沙三中亚段烃源岩成熟度低(Ro约为0.4%~0.6%),未达到成熟门限,无法大规模生烃;而沙三下亚段烃源岩成熟度高,能为沙三中亚段提供规模较大的油气来源[35,5456]。因此,本文认为研究区沙三段Es32、Es33、Es33亚段油气藏的油气主要来源于沙三下亚段烃源岩,操义军等[16]从油气源对比和原油生物标志化合物分析的角度同样证实了这一观点。

    Figure 10.  Abundance evaluation of organic matter in source rocks in the Jiuzhou⁃Wanzhuang area

  • 受旧州断层及其分支断层控制,大柳泉构造带自南而北形成了柳泉背斜、柳泉东背斜、中岔口断鼻、王居背斜、琥珀营背斜、琥珀营北断鼻等多个局部背斜、断背斜、断鼻圈闭(图11)。旧州鼻状构造区即为大柳泉构造带向桐南洼槽倾伏的末端,整体为地层向南东抬升、西北倾没的大型鼻状构造[35]。此外,桐南洼槽与旧州倾伏鼻状构造区之间还发育一被反向正断层复杂化、SW向倾伏的大型鼻状构造圈闭,即桐南古构造脊;由桐南洼槽向凤河营凸起延伸的斜坡带被桐柏镇断裂及大兴断层的分支断层切割,形成了多个断块圈闭。圈闭内,以厚层的、呈指状分布的分流河道—砂坝复合体为主的扇三角洲砂体具有良好的储集条件。取心井储层物性分析资料显示,Es32亚段平均孔隙度为15.48%,渗透率为1.85×10-3 μm2,Es33亚段平均孔隙度为22.19%,整体上属于中高孔、中低渗储层。构造背景与储层条件的有机配置形成了良好的构造(断块、断鼻)圈闭和上倾尖灭岩性圈闭。

    Figure 11.  Trap profile and superimposed maps of top structural surfaces and predicted reservoir distribution in the study area (profile location shown in Fig.1)

    同时,为了准确预测和精细刻画优质砂体储层的分布,本次研究在明确了研究区地质—储层特征的基础上,开展了正演模拟,并基于此开展敏感属性分析,经钻井标定优选了储层弧长、瞬时频率、最大振幅三种敏感属性,通过RGB属性融合进行地震属性降维和优化,预测了优质砂岩储层的展布范围,为成藏模式的建立提供依据。

  • 旧州—万庄地区构造沉降和演化主要受大兴断层和旧州断层及其次级分支断层的控制。此外,内部还发育大量次级调节断裂,包括曹家务断层、中岔口断层、琥珀营断层和王居断层等[35,57]。前述油藏解剖结果也显示,旧州—万庄地区主要发育受大兴断层、旧州断层及其分支断层和鼻状构造控制的一系列构造—岩性油气藏:旧州地区Z16断块是由一系列平面呈网格状的旧州断层及其分支断层控制下形成的断鼻型构造—岩性油藏;万庄地区T47、Q87、T12以及Q56油藏主要是大兴断层的次级分支断裂切割桐西倾伏古构造脊斜坡形成的断鼻—岩性油藏;T21块油藏是桐柏镇断层的次级分支断裂相互交切形成的断块—岩性油藏。因此,研究区油气成藏具有大兴断层和旧州断层控源,大兴断层、旧州断层及其次级分支断层控藏的特征。其中控源断层即油源断层,是沟通沙三下亚段油气源和沙三中亚段储集层的主要通道,同时还整体控制了圈闭的形成,油气藏主要沿控源断层呈条带状分布[35,58]

  • 旧州—万庄地区油气成藏主要受能够沟通沙三下亚段烃源岩与沙三中亚段扇三角洲储集砂体的油源断层控制,油气经垂向运移后进入与油源断层相接触的、孔渗性能良好的扇三角洲前缘水下分流河道、河口砂坝以及席状砂砂体而发生横向运移,油气最终进入与油源断层相邻或直接交叉的、封闭性能较好的次级断层控制形成的断块或断鼻圈闭中聚集成藏,但岩性差异造成油气藏内部复杂的油水关系。本文建立了旧州倾伏鼻状构造区(图12)、桐西古构造脊斜坡区(图13)和桐南洼槽缓坡区(图14)的岩性或构造—岩性油气成藏模式,认为油源断层与构造(断鼻、断块)甚至岩性圈闭的有机配置是控制旧州—万庄地区油气成藏的最主要的因素,而圈闭内部的储层岩性则决定了油气水的分布特征。成藏模式的建立为有利岩性或构造—岩性油藏分布区带的预测提供了基础。

    Figure 12.  Hydrocarbon accumulation model in the Jiuzhou plunging nose area

    Figure 13.  Hydrocarbon accumulation model controlled by reverse faults of the Tongxi paleo⁃structural ridge

    Figure 14.  Hydrocarbon accumulation model in the gentle slope area of the Tongnan trough

  • 通过将RGB属性融合预测的扇三角洲优质储层分布图与构造图叠合(图11),综合圈闭构造、沉积砂体、优质储层以及油源等成藏条件的认识,在构造—岩性油藏主控要素与成藏模式的指导下,本次研究预测了4个有利隐蔽油气藏发育区带(图15),其中旧州倾伏鼻状构造SE翼部(目标区A)、旧州倾伏鼻状构造NW翼部(目标区B和C)和桐西古构造脊NE翼部(目标区D)是有利的岩性或构造—岩性油气藏发育目标区。

    Figure 15.  Three⁃dimensional structure map of Es32 horizon and prediction of target areas for favorable development of lithologic or structural⁃lithologic reservoirs in the Jiuzhou⁃Wanzhuang area

    目标区A位于旧州倾伏鼻状构造SE翼部,靠近Z16块已经开发证实的油源断层,扇三角洲前缘水下分流河道、河口砂坝和席状砂砂体上倾尖灭可形成岩性或构造—岩性圈闭,Es33II和III油组是有利的富油气层位;目标区B和C位于旧州倾伏鼻状构造NW翼部,分别靠近T47井—Q87井区以及T29井—T52井区西侧已经开发证实的油源断层,具备形成岩性或构造—岩性圈闭的良好条件,Es32底油组、Es33I和II油组、Es33II油组以及Es33I、II油组、Es33II油组分别是有利的富油气层位;目标区D位于桐西古构造脊NE翼部,靠近Q56块—T21块已经开发证实的油源断层,具备形成岩性或构造—岩性圈闭的优质条件,Es32III油组是有利的富油气层位。

  • (1) 研究区沙河街组主要发育扇三角洲体系和湖泊体系。除Z1井钻遇扇三角洲平原亚相外,多数井钻遇扇三角洲前缘亚相,并识别出水下分流河道、水下分流间、河口砂坝、席状砂和浅湖泥五种沉积微相。岩性主要为细粒碎屑岩,多见灰色、灰黑色泥页岩。沉积层序中层理不典型,主要有块状层理、交错层理等,变形构造发育明显。岩心常见河道底部冲刷形成的侵蚀面与滞留泥砾,可见砂质碎屑流成因的漂浮状泥砾。整体反映了远端扇三角洲牵引流水动力条件特征。

    (2) 研究区存在南、北2支物源供给体系,辫状河道呈指状由大兴断裂自SE向湖泊内部延伸,形成了旧州和万庄2个沉积中心。Es33Ⅲ至Es33Ⅲ油组时期,沉积中心向北迁移,旧州地区沉积逐渐扩大,向内推进距离增长;Es33Ⅱ、Ⅰ油组时期,旧州地区沉积范围缩小;Es32底至Es32Ⅰ油组时期,万庄地区沉积范围缩小,延伸距离减少,而旧州地区沉积范围大,延伸距离远。研究区扇三角洲前缘水下分流河道延伸距离远、迁移改道频繁、河口不稳定,河口砂坝不发育或规模较小,砂体空间展布以厚层的、呈指状分布的分流河道—砂坝复合体以及连片的薄层席状砂为特征。

    (3) T47、Q87、T12、Q56块属于断鼻—岩性油藏,T21块属于交叉断层断块—岩性油藏,Z16块属于多断层复杂断块/断鼻—岩性油气藏。研究区沙三中亚段油气成藏主要受成熟烃源岩、有效圈闭和疏导体系控制。其中切穿沙三下亚段有效烃源岩和沙三中亚段油气藏的油源断层与构造甚至岩性圈闭的有机配置是研究区油气成藏的主控因素,而圈闭内部的储层岩性则决定了油气水的分布特征。依此建立了旧州倾伏鼻状区、桐西古构造脊、桐南洼槽缓坡区的岩性或构造—岩性油气成藏模式,预测了旧州倾伏鼻状区SE翼部、旧州倾伏鼻状构造NW翼部和桐西古构造脊NE翼部共4个有利的岩性或构造—岩性油藏发育目标区。

Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return