Advanced Search
Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents

ZHU BaiYu, YIN SenLin, GUO HaiPing, TANG Pan, ZHAO JunWei, CHEN Xu, LEI ZhangShu. Continental Sedimentary Microfacies Distribution of Mixed Fine-Grained Rocks and Its Controlling Effect on Sweet Spots[J]. Acta Sedimentologica Sinica, 2024, 42(3): 839-856. doi: 10.14027/j.issn.1000-0550.2023.051
Citation: ZHU BaiYu, YIN SenLin, GUO HaiPing, TANG Pan, ZHAO JunWei, CHEN Xu, LEI ZhangShu. Continental Sedimentary Microfacies Distribution of Mixed Fine-Grained Rocks and Its Controlling Effect on Sweet Spots[J]. Acta Sedimentologica Sinica, 2024, 42(3): 839-856. doi: 10.14027/j.issn.1000-0550.2023.051

Continental Sedimentary Microfacies Distribution of Mixed Fine-Grained Rocks and Its Controlling Effect on Sweet Spots

doi: 10.14027/j.issn.1000-0550.2023.051
Funds:

Open Fund of the State Key Laboratory of Reservoir Geology and Engineering PLN2022_19

  • Received Date: 2023-02-13
  • Accepted Date: 2023-07-18
  • Rev Recd Date: 2023-06-08
  • Available Online: 2023-07-18
  • Publish Date: 2024-06-10
  • Objective The Permian Luhcaoao Formation in the Jimusaer Sag has developed a continental mixed sedimentary system. Insufficient research on the sedimentary microfacies types of mixed fine-grained rocks and the distribution pattern of sweet spots has hindered the development of shale oil in this area. Methods Using core, outcrop, logging, and X-ray fluorescence (XRF) element logging data, analytical testing, oil testing, and production are integrated by lithofacies, sedimentary facies coupling analysis, and dynamic static combination. The sedimentary micro-environment, microfacies classification, model, and its controlling factors on deserts were studied. Results (1) From the core, eight types of sedimentary structures were identified: wave cross bedding, horizontal bedding, syngenetic deformation structure, pyrite, calcite strip, birds-eye structure and nodule, suture structure, biological fossil, and dolomite dissolution hole. The sub-facies are divided into semi-deep to deep lacustrine, mixed shallow lacustrine, and clastic shallow lacustrine. These are further subdivided into six microfacies: semi deep lacustrine mud, dolomitic flat, mixed beach bar, mixed shallow lacustrine mud, shallow lacustrine sand bar, and clastic shallow lacustrine mud. The sedimentary characteristics and mechanism of different microfacies are different. (2) A sedimentary microfacies model of mixed fine-grained rocks in saline lakes has been established. No.1 member of the Lucaogou Formation evolved from deep to semi-deep to shallow lacustrine from bottom to top. Typical reservoir microfacies are developed in different layers, including shallow lacustrine sand bar, mixed beach bar, and dolomitic flat. Among them, dolomitic flat has a more continuous and large-scale sheet shape, and mixed beach bar has potato shape, with highly developed and different scales. The shallow lacustrine sand bar is intermittent and scale limited; vertically, it is located in the superposition of thin reservoir microfacies and thick mudstone. The Lucaogou Formation No.2 member is dominated by shallow lacustrine facies. The reservoir microfacies are similar to No.1, but the architecture style is different. The development quantity and scale of dolomitic flat and mixed beach bars are greatly reduced, and shallow lacustrine sand bars were developed, showing large-scale scattered potato shapes and thick layer superposition vertically. The profile shows that the stacking style of microfacies changed at different positions of the plane. (3) The deposition of the target layer is a transition environment from dry and hot brackish water to salt water, with a high level of paleo-productivity. The lower desert section was deposited in an oxygen enriched environment, but the upper section was deposited in an anaerobic sub reduction to reduction environment. (4) Sedimentary microfacies control desert distribution and oilfield development strategies. The mixed beach bar microfacies is a type I sweet spot reservoir with high development degree, weak heterogeneity and the best production effect. Large scale deployment of horizontal well platform operation is adopted for development. The dolomitic flat microfacies is a type III sweet spot reservoir, with strong heterogeneity and general development effect. It is a follow-up replacement oil and gas resource. The shallow lacustrine sand bar is a type II sweet spot reservoir being, with overall dispersion, poor continuity, strong heterogeneity, and good production effect. Conclusions After the detailed study of the spatial distribution of sedimentary microfacies, the horizontal well development is deployed with reference to the parameters of the nuclear magnetic resonance curve.
  • [1] Kukal Z, Al-Jassim J. Sedimentology of Pliocene molasse sediments of the Mesopotamian geosyncline[J]. Sedimentary Geology, 1971, 5(1): 57-81.
    [2] 吴崇筠. 湖泊沉积相的划分[J]. 石油勘探与开发,1981,8(2):1-10.

    Wu Chongjun. Division of lake facies[J]. Petroleum Exploration and Development, 1981, 8(2): 1-10.
    [3] 朱筱敏,信荃麟,张晋仁. 断陷湖盆滩坝储集体沉积特征及沉积模式[J]. 沉积学报,1994,12(2):20-28.

    Zhu Xiaomin, Xin Quanlin, Zhang Jinren. Sedimentary characteristics and models of the beach-bar reservoirs in faulted down lacustrine basins[J]. Acta Sedimentologica Sinica, 1994, 12(2): 20-28.
    [4] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [5] 焦方正,邹才能,杨智. 陆相源内石油聚集地质理论认识及勘探开发实践[J]. 石油勘探与开发,2020,47(6):1067-1078.

    Jiao Fangzheng, Zou Caineng, Yang Zhi. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens[J]. Petroleum Exploration and Development, 2020, 47(6): 1067-1078.
    [6] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.

    Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.
    [7] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:1-25.

    Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 1-25.
    [8] 商晓飞,侯加根,程远忠,等. 厚层湖泊滩坝砂体成因机制探讨及地质意义:以黄骅坳陷板桥凹陷沙河街组二段为例[J]. 地质学报,2014,88(9):1705-1718.

    Shang Xiaofei, Hou Jiagen, Cheng Yuanzhong, et al. Formation mechanism of the thick layer lacustrine beach-bar and its geological implications: An example of the 2nd member of the Shahejie Formation in Banqiao Sag[J]. Acta Geologica Sinica, 2014, 88(9): 1705-1718.
    [9] 殷志强,秦小光,吴金水,等. 湖泊沉积物粒度多组分特征及其成因机制研究[J]. 第四纪研究,2008,28(2):345-353.

    Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments[J]. Quaternary Sciences, 2008, 28(2): 345-353.
    [10] 陈敬安,万国江,张峰,等. 不同时间尺度下的湖泊沉积物环境记录:以沉积物粒度为例[J]. 中国科学(D辑):地球科学,2003,33(6):563-568.

    Chen Jing’an, Wan Guojiang, Zhang Feng, et al. Environmental records of lacustrine sediments in different time scales: Sediment grain size as an example[J]. Science China (Seri. D): Earth Sciences, 2003, 33(6): 563-568.
    [11] 于兴河,李顺利,杨志浩. 致密砂岩气储层的沉积—成岩成因机理探讨与热点问题[J]. 岩性油气藏,2015,27(1):1-13.

    Yu Xinghe, Li Shunli, Yang Zhihao. Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir[J]. Lithologic Reservoirs, 2015, 27(1): 1-13.
    [12] 杨华,窦伟坦,刘显阳,等. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J]. 沉积学报,2010,28(2):254-263.

    Yang Hua, Dou Weitan, Liu Xianyang, et al. Analysis on sedimentary facies of member 7 in Yanchang Formation of Triassic in Ordos Basin[J]. Acta Sedimentologica Sinica, 2010, 28(2): 254-263.
    [13] 陈世悦,张顺,刘惠民,等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报,2017,19(2):271-284.

    Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of fine-grained sediments in lacustrine deep water[J]. Journal of Palaeogeography, 2017, 19(2): 271-284.
    [14] 宋璠,侯加根,张震,等. 利用测井曲线研究陆相湖泊沉积微相[J]. 测井技术,2009,33(6):589-592.

    Song Pan, Hou Jiagen, Zhang Zhen, et al. Application of log curves in indicating sedimentary micro-facies of lake facies basins[J]. Well Logging Technology, 2009, 33(6): 589-592.
    [15] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435.
    [16] Doyle L J, Roberts H H. Carbonate-clastic transitions[M]. Amsterdam: Elsevier, 1988.
    [17] 董桂玉,陈洪德,何幼斌,等. 陆源碎屑与碳酸盐混合沉积研究中的几点思考[J]. 地球科学进展,2007,22(9):931-939.

    Dong Guiyu, Chen Hongde, He Youbin, et al. Some problems on the study of the mixed siliciclastic-carbonate sediments[J]. Advances in Earth Science, 2007, 22(9): 931-939.
    [18] Chiarella D, Longhitano S G, Tropeano M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments[J]. Marine and Petroleum Geology, 2017, 88: 617-627.
    [19] 张少敏,操应长,朱如凯,等. 湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘,2018,25(4):198-209.

    Zhang Shaomin, Cao Yingchang, Zhu Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209.
    [20] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607.

    Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
    [21] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

    Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
    [22] 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458.

    Jin Zhijun, Bai Zhenrui, Gao Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458.
    [23] 杨智,邹才能. “进源找油”:源岩油气内涵与前景[J]. 石油勘探与开发,2019,46(1):173-184.

    Yang Zhi, Zou Caineng. “Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184.
    [24] 胡素云,赵文智,侯连华,等. 中国陆相页岩油发展潜力与技术对策[J]. 石油勘探与开发,2020,47(4):819-828.

    Hu Suyun, Zhao Wenzhi, Hou Lianhua, et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development, 2020, 47(4): 819-828.
    [25] Bohacs K M. Introduction: Mudrock sedimentology and stratigraphy:Challenges at the basin to local scales[M]//Schieber J, Zimmerle W, Sethi P S. Shales and mudstones: I. Basinstudies, sedimentology and paleontology. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung, 1998: 13-20.
    [26] Galvis H, Becerra D, Slatt R. Lithofacies and stratigraphy of a complete Woodford Shale outcrop section in south Central Oklahoma: Geologic considerations for the evaluation of unconventional shale reservoirs[J]. Interpretation, 2018, 6(1): SC15-SC27.
    [27] Liu B, Wang H L, Fu X F, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432.
    [28] 匡立春,孙中春,欧阳敏,等. 吉木萨尔凹陷芦草沟组复杂岩性致密油储层测井岩性识别[J]. 测井技术,2013,37(6):638-642.

    Kuang Lichun, Sun Zhongchun, Ouyang Min, et al. Complication lithology logging identification of the Lucaogou tight oil reservoir in Jimusaer Depression[J]. Well Logging Technology, 2013, 37(6): 638-642.
    [29] 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报,2020,41(12):1445-1464.

    Jia Chengzao. Development challenges and future scientific and technological researches in China's petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445-1464.
    [30] 姜在兴,孔祥鑫,杨叶芃,等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发,2021,48(1):26-37.

    Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37.
    [31] 斯春松,陈能贵,余朝丰,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层沉积特征[J]. 石油实验地质,2013,35(5):528-533.

    Si Chunsong, Chen Nenggui, Yu Chaofeng, et al. Sedimentary characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Petroleum Geology & Experiment, 2013, 35(5): 528-533.
    [32] 邵雨,杨勇强,万敏,等. 吉木萨尔凹陷二叠系芦草沟组沉积特征及沉积相演化[J]. 新疆石油地质,2015,36(6):635-641.

    Shao Yu, Yang Yongqiang, Wan Min, et al. Sedimentary characteristic and facies evolution of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Ge-ology, 2015, 36(6): 635-641.
    [33] 葸克来,操应长,朱如凯,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507.

    Xi Kelai, Cao Yingchang, Zhu Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507.
    [34] 张亚奇,马世忠,高阳,等. 吉木萨尔凹陷芦草沟组致密油储层沉积相分析[J]. 沉积学报,2017,35(2):358-370.

    Zhang Yaqi, Ma Shizhong, Gao Yang, et al. Depositional facies analysis on tight reservoir of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 358-370.
    [35] 马克,侯加根,刘钰铭,等. 吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式[J]. 石油学报,2017,38(6):636-648.

    Ma Ke, Hou Jiagen, Liu Yuming, et al. The sedimentary model of saline lacustrine mixed sedimentation in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2017, 38(6): 636-648.
    [36] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12.

    Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12.
    [37] 王成云,匡立春,高岗,等. 吉木萨尔凹陷芦草沟组泥质岩类生烃潜力差异性分析[J]. 沉积学报,2014,32(2):385-390.

    Wang Chengyun, Kuang Lichun, Gao Gang, et al. Difference in hydrocarbon generation potential of the shaly source rocks in Jimusar Sag, Permian Lucaogou Formation[J]. Acta Sedimentologica Sinica, 2014, 32(2): 385-390.
    [38] 匡立春,唐勇,雷德文,等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012,39(6):657-667.

    Kuang Lichun, Tang Yong, Lei Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
    [39] 李书琴,印森林,高阳,等. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学,2020,31(2):235-249.

    Li Shuqin, Yin Senlin, Gao Yang, et al. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 235-249.
    [40] 印森林,谢建勇,程乐利,等. 陆相页岩油研究进展及开发地质面临的问题[J]. 沉积学报,2022,40(4):979-995.

    Yin Senlin, Xie Jianyong, Cheng Leli, et al. Advances in continental shale oil research and problems of reservoir geology[J]. Acta Sedimentologica Sinica, 2022, 40(4): 979-995.
    [41] 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534.

    Zhi Dongming, Tang Yong, Yang Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534.
    [42] 曲长胜,邱隆伟,杨勇强,等. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义[J]. 地质学报,2017,91(3):605-616.

    Qu Changsheng, Qiu Longwei, Yang Yongqiang, et al. Carbon and oxygen isotope compositions of carbonatic rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and their paleolimnological significance[J]. Acta Geologica Sinica, 2017, 91(3): 605-616.
    [43] Reis H L S, Suss J F. Mixed carbonate-siliciclastic sedimentation in forebulge grabens: An example from the Ediacaran Bambuí Group, São Francisco Basin, Brazil[J]. Sedimentary Geology, 2016, 339: 83-103.
    [44] 李泉泉,鲍志东,肖毓祥,等. 混合沉积研究进展与展望[J]. 沉积学报,2021,39(1):153-167.

    Li Quanquan, Bao Zhidong, Xiao Yuxiang, et al. Research advances and prospect of mixed deposition[J]. Acta Sedimentologica Sinica, 2021, 39(1): 153-167.
    [45] 刘翰林,邹才能,邱振,等. 陆相黑色页岩沉积环境及有机质富集机制[J].沉积学报,2023,41(6):1810-1829.

    Liu HanLin, Zou CaiNeng, Qiu Zhen, et al. Sedimentary depositional environment and organic matter enrichment mechanism of lacustrine black shales: A case study of the Chang 7 member in the Ordos Basin [J]. Acta Sedimentologica Sinica, 2023, 41(6): 1810-1829.
    [46] Raiswell R, Plant J. The incorporation of trace elements into pyrite during diagenesis of black shales, Yorkshire, England[J]. Economic Geology, 1980, 75(5): 684-699.
    [47] 张涛,王琳霖,廖慧鸿,等. 沉积盆地古水深恢复方法与研究进展[J].沉积与特提斯地质,2023:1-28.

    Zhang Tao, Wang Linlin, Liao Huihong, et al. Methods and research progress of paleo-water depth reconstruction in sedimentary basins [J]. Sedimentary Geology and Tethyan Geology, 2023, 1-28.
    [48] 韩豫,操应长,梁超,等. 川南地区五峰组—龙马溪组沉积环境演化及其对页岩发育的控制[J]. 中国石油大学学报(自然科学版),2024,48(2):11-23.

    Han Yu, Cao Yingchang, Liang Chao, et al. Sedimentary environment evolution of Wufeng Formation-Longmaxi Formation and its control on shale deposition in the southern Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2): 11-23.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(3)

Article Metrics

Article views(17) PDF downloads(8) Cited by()

Proportional views
Related
Publishing history
  • Received:  2023-02-13
  • Revised:  2023-06-08
  • Accepted:  2023-07-18
  • Published:  2024-06-10

Continental Sedimentary Microfacies Distribution of Mixed Fine-Grained Rocks and Its Controlling Effect on Sweet Spots

doi: 10.14027/j.issn.1000-0550.2023.051
Funds:

Open Fund of the State Key Laboratory of Reservoir Geology and Engineering PLN2022_19

Abstract: Objective The Permian Luhcaoao Formation in the Jimusaer Sag has developed a continental mixed sedimentary system. Insufficient research on the sedimentary microfacies types of mixed fine-grained rocks and the distribution pattern of sweet spots has hindered the development of shale oil in this area. Methods Using core, outcrop, logging, and X-ray fluorescence (XRF) element logging data, analytical testing, oil testing, and production are integrated by lithofacies, sedimentary facies coupling analysis, and dynamic static combination. The sedimentary micro-environment, microfacies classification, model, and its controlling factors on deserts were studied. Results (1) From the core, eight types of sedimentary structures were identified: wave cross bedding, horizontal bedding, syngenetic deformation structure, pyrite, calcite strip, birds-eye structure and nodule, suture structure, biological fossil, and dolomite dissolution hole. The sub-facies are divided into semi-deep to deep lacustrine, mixed shallow lacustrine, and clastic shallow lacustrine. These are further subdivided into six microfacies: semi deep lacustrine mud, dolomitic flat, mixed beach bar, mixed shallow lacustrine mud, shallow lacustrine sand bar, and clastic shallow lacustrine mud. The sedimentary characteristics and mechanism of different microfacies are different. (2) A sedimentary microfacies model of mixed fine-grained rocks in saline lakes has been established. No.1 member of the Lucaogou Formation evolved from deep to semi-deep to shallow lacustrine from bottom to top. Typical reservoir microfacies are developed in different layers, including shallow lacustrine sand bar, mixed beach bar, and dolomitic flat. Among them, dolomitic flat has a more continuous and large-scale sheet shape, and mixed beach bar has potato shape, with highly developed and different scales. The shallow lacustrine sand bar is intermittent and scale limited; vertically, it is located in the superposition of thin reservoir microfacies and thick mudstone. The Lucaogou Formation No.2 member is dominated by shallow lacustrine facies. The reservoir microfacies are similar to No.1, but the architecture style is different. The development quantity and scale of dolomitic flat and mixed beach bars are greatly reduced, and shallow lacustrine sand bars were developed, showing large-scale scattered potato shapes and thick layer superposition vertically. The profile shows that the stacking style of microfacies changed at different positions of the plane. (3) The deposition of the target layer is a transition environment from dry and hot brackish water to salt water, with a high level of paleo-productivity. The lower desert section was deposited in an oxygen enriched environment, but the upper section was deposited in an anaerobic sub reduction to reduction environment. (4) Sedimentary microfacies control desert distribution and oilfield development strategies. The mixed beach bar microfacies is a type I sweet spot reservoir with high development degree, weak heterogeneity and the best production effect. Large scale deployment of horizontal well platform operation is adopted for development. The dolomitic flat microfacies is a type III sweet spot reservoir, with strong heterogeneity and general development effect. It is a follow-up replacement oil and gas resource. The shallow lacustrine sand bar is a type II sweet spot reservoir being, with overall dispersion, poor continuity, strong heterogeneity, and good production effect. Conclusions After the detailed study of the spatial distribution of sedimentary microfacies, the horizontal well development is deployed with reference to the parameters of the nuclear magnetic resonance curve.

ZHU BaiYu, YIN SenLin, GUO HaiPing, TANG Pan, ZHAO JunWei, CHEN Xu, LEI ZhangShu. Continental Sedimentary Microfacies Distribution of Mixed Fine-Grained Rocks and Its Controlling Effect on Sweet Spots[J]. Acta Sedimentologica Sinica, 2024, 42(3): 839-856. doi: 10.14027/j.issn.1000-0550.2023.051
Citation: ZHU BaiYu, YIN SenLin, GUO HaiPing, TANG Pan, ZHAO JunWei, CHEN Xu, LEI ZhangShu. Continental Sedimentary Microfacies Distribution of Mixed Fine-Grained Rocks and Its Controlling Effect on Sweet Spots[J]. Acta Sedimentologica Sinica, 2024, 42(3): 839-856. doi: 10.14027/j.issn.1000-0550.2023.051
  • 湖泊陆上水流汇集、沉积物和沉积矿产堆积的重要场所,Kukal et al.[1]根据气候、地理环境、沉积物类型及物源供应,将湖泊进行了分类。随后,吴崇筠[2]按含盐度、沉积物、所处地理位置和成因进行了分类。之后,朱筱敏等[3]根据砂体发育位置提出了四类浅湖砂坝,包括湖岸线拐弯处的砂质滩坝及生物滩、鲕粒滩,水下古隆起处的生物滩、鲕粒滩及砂质滩坝,三角洲侧缘的砂质滩坝,开阔浅湖地区的砂质滩坝及生物滩、鲕粒滩,这些类型已有陆源碎屑与碳酸盐岩的混积特征[46]。随后,姜在兴[7]进一步细化成因解释,并将滩坝分为砂质(砾质)滩坝和碳酸盐岩滩坝两类,商晓飞等[8]在此基础上开展了厚层滩坝储层构型解剖。国内外学者针对湖泊相做了大量露头、现代沉积和地下解剖的研究,对湖泊相及其内部骨架储集体系的沉积环境[9]、沉积特征[10]进行了分析,也对控制湖泊相发育的古地理位置、物源供给条件、水动力条件[1113]进行了研究,并确定了微相的测井响应特征[14]。一些学者针对混合沉积开展了定义[15]、岩石分类[16]、成因机制和主控因素[6,1718]等方面的研究。然而,针对咸化湖泊所形成的细粒混积沉积体系仍缺乏系统研究[1920],混积细粒岩沉积相—亚相—微相体系及其沉积成因等研究亟待加强。

    陆相湖泊形成的细粒沉积岩[21],例如,页岩、碳酸盐岩等,是油气富集的重要场所[22],在我国松辽盆地、渤海湾盆地、鄂尔多斯盆地和准噶尔盆地资源量丰富,类型多样,成为油气资源的接替领域[23]。最新勘探显示,占比约60%的页岩油地质资源量分布在上述四大盆地,分别为54.6×108 t、27.4×108 t、60.5×108 t和25.1×108 t,资源总量167.6×108 t,是今后我国陆相页岩油勘探开发的核心地区[24]。部分学者在准噶尔盆地吉木萨尔凹陷已开展了沉积相研究,并对比了国内外含页岩油盆地的岩相[2527]、沉积特征和油气富集特征[2830],但认识尚未完全统一,包括湖泊和三角洲相[31]、三角洲相→深湖相及火山相组合[3233]等观点,但对湖相页岩体系的认识是一致的。目前,虽初步建立了岩相划分方案和组合模式[34],并开展了砂组级别的沉积相研究[35]。然而,从页岩油高效开发[36]的角度来看,仍缺乏针对咸化湖泊混积沉积微环境特征[3740]、沉积微相类型与储层非均质性、微相与甜点的关系等方面研究。因此,本文以吉木萨尔凹陷芦草沟组为对象,研究陆相湖泊混积细粒岩沉积微相分布,以指导下步页岩油的高效开发。

  • 吉木萨尔凹陷位于准噶尔盆地东部的东南缘,东靠奇台凸起,南以三台断裂为界限,西临西地断裂,北抵吉木萨尔断裂,构造单元面积约为1 278 km2,呈东高西低的箕状断陷[41]图1a)。研究区二叠系可分为井井子沟组、芦草沟组和梧桐沟组,芦草沟组(P2l)是准东重要的页岩油含油层系[42],也是本次研究目的层。芦草沟组全凹陷发育,呈西厚东薄、南厚北薄的趋势,厚度介于200~350 m,具有源—储紧邻、近源成藏的特征[42]。芦草沟组自下而上可划分为一段(P2l1)和二段(P2l2),P2l1和P2l2又可细分为2个层组,发育了下、上2个“甜点体”(图1b)。下“甜点体”位于P2l12砂组,岩性主要为灰色粉细砂岩,灰黑色(含)云质粉砂岩,夹有泥质粉砂岩与黑灰色泥岩互层、黑灰色(含)云质粉砂岩或灰黑色泥岩。全凹陷均发育,厚度为17.5~67.5 m,平均为42.8 m,实测孔隙度介于2.1%~26.5%,平均为8.75%;实测渗透率介于(0.01~52.6)×10-3 μm2,平均为0.05×10-3 μm2,该砂组以浅湖—半深湖亚相沉积为主。上“甜点体”位于P2l22砂组,岩性以灰黑色云屑砂岩、灰白色粉砂质云岩、灰色长石岩屑粉砂岩为主,夹有黑灰色泥岩、白云质泥岩。主要发育在凹陷东斜坡处,厚度介于13.4~43.0 m,平均为33 m,实测孔隙度介于1.1%~20.4%,平均为9.9%;实测渗透率介于(0.01~36.3)×10-3 μm2,平均为0.07×10-3 μm2,该砂组以浅湖亚相沉积为主。目的层碳酸盐岩类沉积岩发育程度很高,为一套中低孔、低渗—特低渗的致密页岩油储集层。

    Figure 1.  Comprehensive diagram of structure position and target strata in Jimusar Sag

  • 利用岩心、测井、露头、分析化验和试油试采等资料,开展沉积微相类型识别、空间展布、沉积微相模式、沉积微相对甜点控制作用和沉积微环境的研究。具体步骤:(1)岩心描述、沉积微相划分和测井相模式建立。结合18口井1 390.50 m岩心、测井及野外露头等资料,通过相标志识别并划分沉积微相类型,并建立了6种微相的测井相模式;(2)沉积微相空间分布特征与演化。在单井岩性解释基础上,根据81口单井、连井剖面,按小层(时间)单元,结合岩性叠合等值线,确定了11小层微相时空分布与演化特征;(3)结合XRF 1 574个元素扫描样品数据的资料对研究区微环境进行识别,以此为基础,探讨了混积细粒岩沉积微相分布模式,利用相控核磁孔隙度和饱和度分布,揭示了沉积微相对甜点的控制作用。

  • 根据目的层189个X射线衍射(X⁃Ray Diffraction,XRD)矿物鉴定实验,芦草沟组矿物成分多样,主要包括陆源碎屑矿物及碳酸盐矿物两类,包含斜长石、钾长石、石英、黏土矿物、白云石、方解石和黄铁矿等,其产状及成因来源复杂多样,粒度整体细,属于典型混积细粒岩范畴。长石含量最高,分为钾长石和斜长石,其中斜长石含量较高,最高含量达到58.1%,平均为26%,钾长石含量较低,平均为6.7%。碳酸盐矿物主要包括白云石和方解石两种类型,其中白云石含量远大于方解石含量,白云石含量约为方解石的两倍,且变化范围较大,最低含量为0.5%,最高可达60%,平均含量为21%,仅次于长石含量。方解石含量则相对较少,主要集中于0~19%,平均含量为11%(表1)。

    主要矿物黏土矿物/%石英/%钾长石/%斜长石/%方解石/%白云石/%
    含量12.0020.373.9126.8310.5021.01
    次要矿物铁白云石/%菱铁矿/%黄铁矿/%方沸石/%赤铁矿/%浊沸石/%
    含量3.600.050.890.510.030.03
    注:数据来源于吉174井189个XRD分析测试点。

    Table 1.  Average mineral contents of rocks in the study area

  • 沉积构造是岩石宏观特征的体现,它能够反映沉积介质的性质、流体水动力情况、沉积物搬运和沉积方式等方面的信息,岩心标志直观明显,是确定沉积相类型并建立相—亚相—微相体系的关键资料。通过对18口重点取心井岩心的详细观察和描述,发现目的层沉积构造十分丰富(图2)。研究区陆源碎屑长英质粉砂岩中多发育波浪改造形成的沙纹层理和浪成沙纹层理,为湖泊相的典型沉积构造,也可见方解石脉和液化变形构造,为碎屑浅湖和混合浅湖标志性特征(图2a,b)。同时,研究区泥岩中多发育安静水体下加积形成的水平层理(图2c),也可见缝合线和差异压实、重力滑动引起的液化变形构造(图2d~j),局部见蕨类植物叶片化石,反映其水动力不强,是半深湖—深湖沉积的重要标志。粉砂质白云岩中可见生物介壳层鲕粒滩(图2k),反映的是混合浅湖相的沉积特征。泥质白云岩中见水平层理、液化变形、碳酸岩盐岩缝合线构造(图2l)和有机质产生的气体空间被沉淀结晶的方解石充填形成的鸟眼构造(图2p)和结核(图2m)、方解石脉发育(图2o,p,q),为碎屑浅湖的沉积特征。白云质粉砂岩中白云岩溶蚀形成的孔隙是典型混积岩沉积标志(图2r)。此外,还发育指示咸化湖泊环境特征的生物化石和各种产状的黄铁矿(图2n,s、表2)。另外,还有指示半深湖—深湖相的油页岩(图2t)。

    Figure 2.  Typical sedimentary structures of Lucaogou Formation cores in Jimusar Sag

    类别沉积构造含油气性岩性颜色发育程度成因描述分析
    1水平层理泥岩、长英质粉砂岩、白云质粉砂岩灰黑、黑普遍发育安静水体条件、细粒岩长期加积形成
    2浪成交错层理长英质粉砂岩灰、灰白砂岩粗粒段发育浅水环境中波浪来回摆动形成
    3同生变形构造泥岩、泥晶白云岩、砂质白云岩灰、灰黑泥岩层段发育成岩前由于压实差异、重力滑动等因素引发的变形构造
    4鸟眼构造和结核油浸泥晶白云岩、长英质粉砂岩、白云质粉砂岩灰、灰白碳酸盐矿物含量高层段发育有机质产生的气体形成的空间被沉淀结晶的方解石充填
    5生物化石泥岩灰黑、黑部分泥岩偶见渐变或突变的各种地质事件
    6黄铁矿泥岩、泥晶白云岩灰黑、黑泥岩层段发育于静滞的还原弱碱性水下环境中结晶形成
    7溶蚀孔隙油浸泥岩、泥晶白云岩、长英质粉砂岩、白云质粉砂岩灰、灰白碳酸盐矿物含量高层段发育孔隙中碳酸盐矿物被可溶性流体溶蚀
    8白云岩溶蚀孔油斑泥晶白云岩、白云质粉砂岩灰、灰白碳酸盐矿物含量高层段发育孔隙中白云岩被可溶性流体溶蚀

    Table 2.  Summary of typical sedimentary structures in the studied cores

  • 在研究区细粒岩心中呈现出极强的韵律特征,分别为从长英质粉砂岩到粉砂质白云岩到泥岩的正粒序特征(图3a)和从泥岩到白云质粉砂岩的反粒序特征(图3b)。

    Figure 3.  Core and outcrop lithofacies rhythm and hydrocarbon level differences

    三台镇出露的西大龙口露头区也发育块状厚层不明显韵律的白云质粉砂岩相发育(图3c,d),岩性粒度的整体变化不明显。另外,目的层为含油气储集岩与烃源岩不同厚度的互层,受岩性和物性影响含油气级别存在较大差异性。P2l1含油段夹层厚度相对较薄(0.5~1.5 m),含油气级别高且含油层段多,以白云质粉砂岩为主,不同岩性含油性差异明显(图3e)。P2l2含油段隔夹层发育程度较高,长英质粉砂岩易碎,且含油气级别低于P2l1。其局部含油性较好,但隔夹层比较发育(图3f)。岩心整体显示,含油气级别由高到低分别为白云质粉砂岩(偏粗粒)、长英质粉砂岩、粉砂质白云岩。其中,以白云质粉砂岩溶蚀孔隙发育段含油气级别最高,含油性最好。

  • 通过对覆盖全区的关键井的岩心观察和露头分析、以沉积相标志为基础,结合测录井和沉积背景分析,将芦草沟组定义为咸化湖泊相,细分为3个亚相及6个微相类型(表3)。其中浅湖亚相细分为碎屑浅湖与混合浅湖亚相。碎屑浅湖亚相细分为浅湖砂坝、碎屑浅湖泥微相;混合浅湖亚相细分为云坪、混合滩坝和混合浅湖泥微相。半深湖—深湖亚相主要由半深湖泥微相构成。不同微相的岩性、沉积构造与测井响应具有明显的差异性。

    相类型亚相类型微相类型岩性沉积构造测井响应特征
    咸化湖泊半深湖—深湖半深湖泥灰黑色、深灰色云质泥岩,泥晶白云岩水平层理发育,见星散状和块状黄铁矿自生矿物GR低值、SP负异常、RT极高值,CPOR低值
    浅湖混合浅湖云坪泥晶白云岩,砂质白云岩与云质粉砂岩互层见水平层理,液化变形构造,缝合线构造,鸟眼构造及方解石脉发育GR低值、SP负异常、RT高值,CPOR低值
    混合滩坝砂质白云岩与云质粉砂岩交互见沙纹层理、方解石脉、液化变形现象;局部见生物介壳层鲕粒滩GR低值、SP负异常、RT高值,CPOR低值
    混合浅湖泥泥岩、泥晶白云岩液化变形、方解石脉,见水平层理GR低值、SP负异常、RT高值,CPOR低值
    碎屑浅湖浅湖砂坝粉细砂岩发育沙纹层理及浪成沙纹层理GR高值、SP负异常、RT平直,CPOR高值
    碎屑浅湖泥泥岩发育水平层理、缝合线和液化变形,局部见蕨类植物叶片化石GR低值、SP负异常、RT高值,CPOR低值

    Table 3.  Sedimentary facies classification for the Lucaogou Formation in Jimusar Sag

    1) 碎屑浅湖亚相

    位于水体较浅的地带,沉积物源以陆源碎屑输送为主,沉积物主要延续了碎屑岩沉积机制与沉积特点,处于湖面枯水期最深水平面至浪基面中间,包括浅湖砂坝和碎屑浅湖泥微相。

    浅湖砂坝微相水体浅,水动力条件相对很强,较强波浪作用是主要的动力机制,岩性以浅灰色粉砂岩为主,钾长石矿物较为发育,局部夹含少量细砂岩和小砾岩,厚度较大,发育典型沙纹层理和浪成沙纹层理(图4a)。粒径较粗,砂体垂向连续性好,平面分布范围较大,分选磨圆较好,属于有利的储集层。测井曲线形态,GR(自然伽马)以箱形和漏斗形高值为主;RXO(冲洗带电阻率)以箱形低值为主。GR值介于121.9~78.9 API,平均为101.6 API;SP(自然电位)负异常,RXO值介于31.0~12.5 Ω∙m,平均为25.2 Ω∙m,CPOR(岩心分析孔隙度)值介于14.4%~4.7%,平均为11.8%。浅湖砂坝微相是工区页岩油中厚度较大、物性和含油性较好的储集层类沉积单元。

    Figure 4.  Sedimentary microfacies cores and logging curves

    碎屑浅湖泥微相水体较深,为水动力条件相对弱条件下沉积,主要岩性为灰色、灰黑色泥岩,发育水平层理,水动力较强的地方有小型交错层理,还可见缝合线(图2l)和液化变形构造(图2d,g),局部见蕨类植物叶片化石(图4b)。测井曲线形态,GR以钟形和漏斗形低值为主,RXO以齿形中高值为主,介于125.6~56.6 API,平均为80.3 API,SP负异常,RXO值介于108.8~8.0 Ω∙m,平均为30.5 Ω∙m,CPOR值介于6.70%~1.50%,平均为3.77%。碎屑浅湖泥微相是研究区页岩油中厚度较大、物性和含油性较差的非储集层类沉积单元,有机碳含量一般,一般属于烃源岩。

    2) 混合浅湖亚相

    位于相对浅水部位,湖面处于枯水期最深水平面至浪基面中间,为碎屑浅湖与半深湖—深湖相的过渡区域,沉积物以陆源碎屑岩与碳酸盐岩混积岩为主。对应微相包括云坪、混合滩坝和混合浅湖泥。

    混合滩坝是混合浅湖泥沉积和云坪沉积的过渡地带,属于过渡型滩坝,水动力条件较弱,受波浪作用影响,主要岩性为浅灰色云质(灰质)粉砂岩及砂质云岩,见沙纹层理、方解石脉(图2q)、液化变形现象,局部见生物介壳层(图4c)。GR以钟形和漏斗形低值为主,RXO以齿形中高值为主。GR值介于89~58.2 API,平均为72.2 API,SP负异常,RXO高值35.1~8.3 Ω∙m,平均为17.0 Ω∙m,CPOR值介于4.9%~0.9%,平均为2.1%。混合滩坝微相是研究区页岩油中厚度较薄、物性和含油性较好的储集层类沉积单元。

    云坪微相发育在半咸水环境到咸水环境的过渡环境,离陆源碎屑输入区较近时,容易形成化学沉积,水体能量较弱时,形成泥晶白云岩。水体能量变强时,形成砂质白云岩与云质粉砂岩互层的特征。见水平层理,液化变形构造,缝合线构造,鸟眼构造(图2p)及方解石脉发育(图4d)。测井曲线形态,GR值漏斗形低值为主,RXO以齿形高值为主。GR值介于123.3~59.9 API,平均为78.7 API,SP负异常,RXO值介于33.6~7.1 Ω∙m,平均为17.2 Ω∙m,CPOR值介于6.30%~1.50%,平均为3.84%。云坪微相是研究区页岩油中厚度较薄、物性和含油性一般的储集层类沉积单元。

    混合浅湖泥主要岩性为深灰色灰质(云质)泥岩,以水平层理为主,见液化变形(图2i)和方解石脉(图4e)。测井曲线形态,GR以平直状高值为主,RXO以齿形高值为主。GR值介于102.8~82.8 API,平均为91.1 API,SP负异常,RXO值介于15.1~7.6 Ω∙m,平均为10.0 Ω∙m,CPOR值介于5.0%~2.7%,平均为3.5%。混合浅湖泥是研究区页岩油中厚度较薄、物性和含油性较差的非储集层类沉积单元,有机碳含量高,一般属于烃源岩。

    3) 半深湖—深湖亚相

    半深湖—深湖泥亚相位于浪基面以下,发育半深湖泥微相,主要岩性为灰黑色、深灰色云质泥岩,泥晶白云岩,水平层理发育,见星散状和块状黄铁矿(图2n)自生矿物(图4f)。测井曲线形态,GR以平直状中高值为主,RT(真电阻率)以平直状高值为主。GR值介于109.0~66.5 API,平均为83.2 API,SP负异常,RT值介于2619.2~96.3 Ω∙m,平均为403.6 Ω∙m,CPOR值介于5.54%~0.13%,平均为1.54%。半深湖—深湖泥是页岩油中厚度较大、物性和含油性很差的非储集层类沉积单元,有机碳含量极高,一般属于优质烃源岩。

  • 在沉积微相类型及其测井响应特征的基础上,开展了单井相、连井相和平面沉积微相研究,采用等值线叠合法将不同岩性在不同层位的分布特征描绘出来。结合井点资料,绘制了11小层的沉积微相平面分布图(图5)。

    Figure 5.  Plane distribution of the sedimentary microfacies in member 1 of the Lucaogou Formation

    P2l1平面上,P2l127、P2l126整体上处于混合浅湖,北部位于深湖—半深湖区。主要发育云坪和混合滩坝,云坪主要发育在中西部和东南部,分布范围较广,以粉砂质白云岩夹泥晶白云岩为主,见水平层理,液化变形构造,缝合线构造,鸟眼构造及方解石脉发育。其中P2l127混合滩在东南部和中部呈片状发育,岩石类型以浅灰色云质粉砂岩及砂质云岩为主,见沙纹层理、方解石脉、液化变形现象;局部见生物介壳层鲕粒滩,浅湖砂坝不发育(图5g)。P2l126混合滩发育程度一般,主要发育在西部。P2l125期间湖平面快速下降,中部处于混合浅湖,南北碎屑浅湖(图5f)。云坪面积相较于P2l126缩减明显(图5e)。混合滩坝主要发育在西部,以浅灰色云质粉砂岩及砂质云岩为主,见沙纹层理、方解石脉、液化变形现象。浅湖砂坝在东南部发育较好,分布范围较广,在北部及中部也有零星分布,岩石以长英质粉砂岩为主,沙纹层理及浪成沙纹层理发育。

    P2l124湖平面继续下降,中部混合浅湖面积扩大,南北处于碎屑浅湖,云坪面积相较于P2l125增加。混合滩主要发育在西部,在北部也有发育(图5d)。浅湖滩坝在东南部和东北部有所发育。P2l123湖平面持续下降,整个南部处于混合浅湖,北部处于碎屑浅湖,云坪和混合滩坝发育,分布范围广泛,云坪主要分布在北部偏西,混合滩则主要发育在中西部。浅湖滩坝也较为发育,从东南—西北呈现厚—薄—厚的分布趋势,其中北部浅湖滩坝较厚(图5c)。P2l122湖平面开始上升,中部为混合浅湖,南北处于碎屑浅湖。云坪极为发育,在中西部分布范围广泛。混合滩坝在中西部发育,由西向东呈现范围缩小的趋势,在西部最为发育。浅湖砂坝在东南部较为发育,在中部及北部有零星分布(图5b)。P2l121期间湖平面继续上升,混合浅湖中混合滩坝和浅湖滩坝面积相较于P2l122小层均大幅减小(图5a)。东南部浅湖砂坝的分布范围也有所缩减。

    P2l1剖面上,垂直物源东西向北侧剖面显示(图6a),离物源相对较远的西侧主要发育云坪,且云坪主要发育在J10039井附近,岩性主要为砂质白云岩夹泥晶白云岩,厚度相对较薄,横向连续性一般,纵向上在各层都有分布,主要集中在P2l113、P2l121、P2l122和P2l123。东侧浅湖砂坝发育程度低,单层厚度较薄,横向连续性也较差,主要岩性为粉砂岩,主要分布在P2l124、P2l125和P2l126层。剖面向西延伸水体变深,沉积微相由以浅湖砂坝为主变为以云坪为主。平行物源方向剖面显示(图6b),浅湖砂坝在J10015井及南北两侧发育程度较好,主要岩性为粉砂岩,横向连续性较好,混合滩坝和云坪在其他部位呈薄互层发育,云坪主要发育在J10015井的上部,岩性主要为砂质白云岩夹泥晶白云岩,混合滩坝主要集中发育在J10015井的下部,水体整体上呈现出上升趋势。

    Figure 6.  Along⁃source deposition and transverse⁃source deposition sedimentary microfacies profile for member 1 of the Lucaogou Formation

    P2l2平面上,P2l224期间湖平面较深,介于混合浅湖和碎屑浅湖之间,云坪和混合滩发育,部分井砂质含量高,云坪主要分布在西北部,混合滩坝则主要沿西北—东南方向上呈孤立状间隔分布(图7d)。P2l223期间湖平面上升,整体以混合浅湖为主,大面积发育云坪和混合滩坝,云坪和混合滩坝范围均有明显增大,厚度也有所增加,云坪主要分布在工区西部和东南部,分布范围广泛。只在北部部分井附近发育浅湖砂坝(图7c)。P2l222期间湖平面快速下降,浅湖砂坝大面积发育,主要沿西北—东南方向分布,横向连续性好,厚度最大,为本区最好的储集岩层。云坪和混合滩坝面积大范围缩减,厚度大幅度下降,云坪在西部发育良好(图7b)。P2l221期间湖平面又上升,北部大部分位于混合浅湖,大面积发育云坪,多在湖盆中间和湖盆偏西等地势较低的地方,混合滩坝较为发育,主要分布在西北部。南部主要受到南部物源影响小部位于碎屑浅湖,浅湖砂坝大面积发育,厚度较大(图7a)。

    Figure 7.  Plane and profile distribution of sedimentary microfacies in member 2 of Lucaogou Formation

    从P2l2剖面上显示,垂直物源东西向北侧的剖面(图7e),甜点段P2l222切物源方向连井剖面中浅湖滩坝的横向连续性较好,厚度相对稳定。甜点段P2l223单层厚度相对较薄,横向连续性较差。剖面向西延伸水体变深,浅湖砂坝发育程度较高,云坪主要发育在西部,东部不发育。平行物源南北向东侧的剖面可以看出(图7f),P2l224期间主要发育混合浅湖沉积,下部主要为混合滩坝沉积,上部则云坪沉积多,显示湖平面上升。P2l223时期则以云坪沉积为主夹混合滩坝沉积,多呈薄层状分布。P2l222期间,由于北部靠近物源方向,甜点段主要发育浅湖砂坝微相,且由北向南,厚度有逐渐变薄的趋势,浅湖砂坝发育程度一般。P2l221期间以云坪沉积为主夹浅湖砂坝沉积。浅湖砂坝发育程度一般,云坪主要发育在J10015井附近,北部和南部云坪不发育。湖平面呈现出先下降再上升的特点。

  • 围绕混合细粒沉积环境与沉积模式的研究刚刚开始,学者们大量关注在混积岩定义、分类和成因机制的研究,针对陆相湖泊混合细粒岩沉积微相类型及沉积模式的研究还较少。与河流三角洲富砂体系不同,混合细粒岩整体为贫砂体系,为物理、化学与生物作用耦合,与微环境关系密切。

  • 研究区微环境对沉积物沉积和沉积后作用的影响较大,利用取心井XRF资料,开展了甜点段微环境研究,主要包括古气候、古盐度、古生产力、古水深和氧化还原性等方面。

    潮湿气候型元素(Fe、Mn、Cr、V、Ni和Co)和干旱气候型元素(Ca、Mg、K、Na、Sr和Ba)的迁移及分配特征可以半定量指示沉积环境气候条件[45],本文采用Sr/Cu、Mg/Ca比值法来判定古气候。P2l1、P2l2样品中,Sr/Cu值均大于10,指示为干燥炎热的气候,P2l2层Sr/Cu值介于1.50~32.50,平均为10.90(图8a),P2l1层Sr/Cu值介于4.22~53.00,平均为14.02(图8b);P2l1、P2l2中Mg/Ca比值平均值分别为1.32和0.79,分别介于0.07~9.81和0.03~6.86。说明P2l1沉积时,气候更为干旱,湖水蒸发强度较大,白云岩类岩石更加发育。

    Figure 8.  Analysis of sedimentary microenvironment elements in the sweet spot interval

    Sr和Ba在淡水体系中以可溶性重碳酸盐形式存在,随着水体矿化度增加,Sr微量元素在水体中的迁移能力增加,其丰度及Sr/Ba比值与古盐度变化密切相关[46]。P2l1、P2l2两段Sr/Ba比值分别介于0.24~5.86和0.01~4.00(图8a,b),平均值分别为1.09和0.98,均接近于1,为半咸水环境到咸水环境。总体看来,P2l2水体更咸。研究区P2l1、P2l2样品Sr/Ca比值的平均值分别为0.013和0.007,表现出下部样品水体盐度低于上部。工区总体上为半咸水湖盆环境,沉积早期的水体盐度低于晚期。

    P、Cu和Zn均是评价古生产力的重要指标,但Cu和Zn可能受到非硫酸盐还原环境的影响,而P/Ti可以消除沉积物中自生矿物等对P绝对含量的稀释作用[45]。目的层P含量较高(880~4 240 μg/g),P2l2层P/Ti比值介于0.057~12.994(图8a),P2l1层介于为0.074~1.025(图8b);P2l2平均值为0.731,P2l1为0.380,属于中到高生产力,指示后期的古生产力要明显高于初期。

    Fe、Mn都是变价元素,对氧化还原环境的变化反映特别敏感。在沉积过程中Mn、Fe易发生分离,Fe先发生沉淀,比值Mn/Fe明显降低,所以比值Mn/Fe可以指示水深条件。一般浅水环境的Mn/Fe比值要比深水环境的Mn/Fe比值低得多[47]。P2l2中Mn/Fe的比值介于0.001~0.096(图8a),P2l1中Mn/Fe的比值介于0.010~0.092(图8b),平均值分别为0.032和0.024。P2l1沉积时期水体深度较P2l2沉积时期水体浅。

    Ni元素易在还原条件下被吸附富集,发生沉淀,而Co元素与向沉积物中的富集与有机质沉积过程相关,因此随着水体还原性增强,Ni/Co比值升高[48]。通过分析可知(图8c),P2l1、P2l2的Ni/Co比值分别介于1.73~4.50和3.85~28.66,平均值分别为2.96和6.68。总体上,P2l1的比值均小于P2l2,说明P2l2还原性更强。综上,工区P2l1属富氧环境,P2l2属厌氧亚还原环境近还原环境。

    不同微相的微环境存在差异。浅湖砂坝古生产力较高,呈氧化环境;碎屑浅湖泥微相古生产力较高,呈亚还原环境;混合滩坝,古生产力很高,呈亚氧化环境,水体较浅;云坪微相水体盐度较大,古生产力较高,呈亚还原环境;混合浅湖泥,水体较浅,水动力较弱,咸度较高,古生产力较高,呈还原环境;半深湖—深湖泥亚相,水体相对较深,水动力极弱,安静水体环境下形成的,沉积环境为缺氧的弱还原—还原环境(图8)。

  • 在沉积微环境、微相类型及其成因分布研究的基础上,提出了具有页岩油开发地质意义的沉积微相模式(图9)。整体来说,研究区发育一套咸度较高的混积细粒沉积岩体。从陆源碎屑逐渐过渡到碳酸盐岩混合区,碎屑浅湖亚相、混合浅湖亚相到半深湖—深湖亚相形成了从浅湖砂坝到混合滩坝再到云坪的叠置骨架储集体特征。位于碎屑浅湖亚相水动力较强且鱼化石发育,其中浅湖砂坝发育程度较高,呈平行和斜列形态分布,规模较大,以厚层长英质粉砂岩相为主,垂向上单层厚度介于5~8 m,孔隙结构较好,为Ⅱ类甜点发育区。混合浅湖亚相为工区沉积特色的亚相类型,是陆源碎屑与碳酸盐岩相互混积作用的区带,水动力一般,位于局部构造较高位置,其中生物介壳化石较为常见,发育少量鲕粒;混合浅湖亚相内部混合滩坝发育程度很高,大部分呈平行和零散状夹生物化石分布,或者在云坪上小范围分布,整体规模较小,以中—厚层白云质粉砂岩相和薄层粉砂质白云岩互层为主,垂向上单层厚度介于3~5 m,溶蚀孔隙发育,孔隙结构很好,为Ⅰ、Ⅱ类甜点发育区;而云坪呈席状大面积分布于混合浅湖靠近半深湖位置,规模很大,以薄层粉砂质白云岩相为主,垂向上单层厚度介于1.0~2.5 m,孔隙结构较好,为Ⅱ、Ⅲ类甜点发育区。半深湖—深湖区水动力最弱,以还原环境为主,形成的深黑色和灰黑色泥岩为优质烃源岩,其中黄铁矿发育程度较高产状多样。碎屑浅湖亚相、混合浅湖亚相到半深湖—深湖亚相发育了一系列富含有机质的烃源岩和油页岩,其中以混合浅湖相对安静环境下形成的白云质泥岩和半深湖—深湖区泥岩为主,泥晶白云岩主要发育在混合浅湖亚相,且均为Ⅳ类甜点发育区。

    Figure 9.  Sedimentation model of the Lucaogou Formation in Jimusar Sag

  • 浅湖砂坝、混合滩坝微相主要发育Ⅰ类和Ⅱ类甜点,云坪微相主要发育Ⅱ类和Ⅲ类甜点;碎屑浅湖泥、混合浅湖泥微相主要发育Ⅲ类和Ⅳ类甜点,半深湖—深湖泥微相仅发育Ⅳ类甜点,以泥岩为主。考虑沉积微相、物性和含油气性后,对甜点层及其开发策略进行分析。选取典型三个小层开展分析。P2l12-2甜点层主要分布混合浅湖带的混合滩坝与云坪的微相叠置,核磁饱和度值整体较高,西部呈分散连片分布,东部呈不连续分布,非均质性较弱。试油结果显示,此层水平井开发压裂效果较好(图10a),除白云质粉砂岩脆性较好外,源—储结构非常优质,储集层储油丰度较高、压力系数大且分布均匀。因此,叠置区是目前平台化作业甜点水平井部署的有利区域(图10d)。

    Figure 10.  Plane distribution of different types of sweet spots and nuclear magnetic resonance saturation

    P2l121甜点层主要为混合滩坝与云坪呈孤立型的分布,西部、东部和东南部分散,整体核磁饱和度值不高,非均质性相对弱,其孔隙结构复杂,难以达到当前经济有效储层下限标准(图10b)。试油结果显示,此层水平井开发压裂效果一般,粉砂质白云岩脆性虽较好,但储层物性较差,储集层储油丰度不高、压力系数较小。因此,P2l121甜点层为水平井部署后续接替对象(图10e)。

    P2l222甜点层主要为浅湖砂坝沉积,呈厚层状大面积孤立状分布,核磁饱和度整体值虽然较高,但甜点分布较形态为土豆状,体现了较强的非均质性(图10c)。试油结果显示,此层水平井开发压裂效果较好,是工区早期开发的主力层,其脆性一般,但储层物性较好,使得源—储结构较好,储集层储油丰度较高、压力系数一般。厚度大,储量大,但受微观孔隙结构的影响,不同区域产能差异悬殊。因此,水平井部署时需对微相分布精细研究,主要考虑西北部、中南部和东南部核磁饱和度较高的部位部署(图10f)。

    近年来,学者认为硅质碎屑岩与碳酸盐岩并不是两个完全不同的领域,相反他们属于一个连续统一体[16]。混合沉积物正是处于他们之间而广泛存在,但混合沉积的发生需要在陆源供应和碳酸盐生产之间取得平衡的状态下进行[18,4344]。在向湖盆中部方向一般发育滨浅湖—半深湖—深湖沉积体系,依据研究实际情况,为了更好地突出湖泊不同相带的典型特征,文章率先提出把浅湖亚相细分为“碎屑浅湖亚相”与“混合浅湖亚相”,与目前学者们提出的“滨浅湖”沉积位置大体对应但沉积机制存在差异。主要在于“混合浅湖亚相”中混积特征十分明显,既有狭义的陆源碎屑与碳酸盐岩混积,也有广义的陆源碎屑与碳酸盐岩的混积层存在。其复杂的混合沉积机制有待进一步深入研究。

  • (1) 研究区主要发育浪成交错层理、水平层理、同生变形构造、黄铁矿、方解石条带、鸟眼构造和结核、缝合线构造、含生物化石和白云岩溶蚀孔等8类沉积构造。岩相以薄层白云质粉砂岩相与厚层状泥岩相互层叠置,厚层状白云质粉砂岩相与薄层泥岩相互层叠置夹含少量粉砂质白云岩相两种样式为主。研究区发育半深湖—深湖、混合浅湖和碎屑浅湖3类亚相,可进一步细分为半深湖泥、云坪、混合滩坝、混合浅湖泥、浅湖砂坝和碎屑浅湖泥等6种微相,不同微相沉积特征及其沉积机制差异明显。

    (2) 建立了具有开发地质意义的混积细粒沉积微相模式。芦一段自下而上从深湖—半深湖—浅湖演化发展,储集体微相包括浅湖砂坝、混合滩坝与云坪。其中,云坪呈连片状大范围状,混合滩坝呈土豆状分布,发育程度较高,不同层规模有差异,浅湖砂坝发育程度一般,呈断续状局限分布,垂向上呈薄储集层微相与厚层泥岩叠置状。芦二段水体深度较浅,发育浅湖亚相,储集体微相与芦一段类似,但形态、规模与叠置样式差异较大。云坪和混合滩坝发育数量和规模大幅降低,浅湖砂坝发育程度较高,呈大规模分散土豆状发育,垂向上呈厚层叠置状。剖面显示,平面不同位置微相的叠置样式不同。

    (3) 甜点段XRF元素分析显示,目的层沉积时为干燥炎热的半咸水环境到咸水过渡环境,古生产力水平较高;下甜点段为富氧环境沉积,上甜点段则为厌氧亚还原到还原环境沉积。

    (4) 沉积微相控制了甜点分布和开发对策。混合滩坝微相Ⅰ类甜点发育程度高,非均质性弱,开发效果最好,采用大规模部署水平井平台化作业进行效益开发。云坪微相Ⅲ类甜点发育,非均质性强,开发效果一般,是后续接替区域。浅湖砂坝Ⅱ类甜点发育,整体分散状,连续性较差,非均质性强,开发效果较好。后续应在沉积微相空间分布精细研究基础上,参考核磁曲线参数部署水平井开发。

Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return