Advanced Search
Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents

LIU YuDi, LIANG Chao, CAO YingChang, WU Jing, HAN Yu, XIE HaoRan, LUO ZiLiang, MA XiaoYue. Shale Facies Characteristics and Sedimentation of the Wufeng Formation-Longmaxi Formation in the Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1832-1848. doi: 10.14027/j.issn.1000-0550.2022.153
Citation: LIU YuDi, LIANG Chao, CAO YingChang, WU Jing, HAN Yu, XIE HaoRan, LUO ZiLiang, MA XiaoYue. Shale Facies Characteristics and Sedimentation of the Wufeng Formation-Longmaxi Formation in the Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1832-1848. doi: 10.14027/j.issn.1000-0550.2022.153

Shale Facies Characteristics and Sedimentation of the Wufeng Formation-Longmaxi Formation in the Southern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2022.153
Funds:

National Natural Science Foundation of China 41902134

National Natural Science Foundation of China 42172165

The Fundamental Research Funds for the Central Universities 22CX06001A

The Taishan Scholars Program TSQN201812030

  • Received Date: 2022-07-05
  • Accepted Date: 2023-02-10
  • Rev Recd Date: 2022-11-21
  • Available Online: 2023-02-10
  • Publish Date: 2024-10-10
  • Results Six lithofacies are identified from the shales of the Wufeng Formation-Longmaxi Formation: biological siliceous, clayey, (felsic-calcareous) silty, calcareous silty, calcareous, and felsic silty shale. The shale sedimentary environment of the Wufeng Formation-Longmaxi Formation underwent five stages of bottom-up changes. The paleo-climate shifted from warm and humid at the bottom of the Wufeng Formation to dry and hot at the middle to dry and cold at the top, and then from dry and hot at the lower part of the Longmaxi Formation to warm and humid at the middle and upper sections. In the lower parts of the Wufeng and Longmaxi formations, the sea level had risen owing to two large-scale transgressions. When the sea level is high, the extent of basin retention is weak, strong in reduction, low in salinity, and high in paleo-productivity. The glacier event at the top of Wufeng Formation caused the sea level to drop. When the sea level is low, the extent of basin retention is strong, weak in reduction, high in salinity, and low in paleo-productivity. The shale of the Wufeng Formation-Longmaxi Formation was mainly formed by suspended sedimentation under low energy conditions. Upwelling sedimentation developed in the middle Wufeng Formation and the lower Longmaxi Formation. A small amount of storm surge sedimentation developed at the top of the Wufeng Formation. In the upper Longmaxi Formation, gravity slumping, debris flows, and turbidity currents developed because of the shallowing of water and the increase of terrige-nous input. Therefore, the sedimentary model of the Wufeng Formation-Longmaxi Formation shale was established by integrating the lithofacies, depositional processes type, tectonic evolution, and sedimentary environment evolution. Conclusions The frequent changes of sedimentary environment and the diversity of depositional processes control the types and characteristics of lithofacies, further leading to significant differences in organic matter content, porosity, gas content, and other reservoir quality factors of different lithofacies. Further research on shale lithofacies and reservoir quality is required to provide theoretical basis for shale gas exploration and development. [Objective and Methods] The black shales of the Upper Ordovician and Lower Silurian in the southern Sichuan Basin are the main target of shale gas exploration, having attracted extensive attention among domestic and foreign scholars. To provide the theoretical basis for shale exploration and development in the future, the lithofacies division, sedimentary environment, and depositional processes of shale are explored. Through core observation and analysis using optical and scanning electron microscopes, the lithofacies are divided based on mineral composition and content, sedimentary structural characteristics, and comprehensive consideration of biological process and diagenesis. The paleoenvironment is analyzed by oxidation-reduction (U/Th,V/Cr,V/(V+Ni),Ni/Co), sea level change (Ce*), hydrographic restriction (Mo/TOC), paleo-climate (Sr/Cu), paleo-salinity (Sr/Ba), and paleo-productivity (Cu, biogenic Ba) indices. Depositional processes are identified by core and thin section observation, X-ray fluorescence scanning, and mineral X-ray diffraction whole rock analysis.
  • [1] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [2] 金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.

    Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
    [3] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979-1007.

    Zou Caineng, Yang Zhi, Zhu Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007.
    [4] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. Berlin, Germany: Springer, 2005: 297.
    [5] 胡宗全,杜伟,彭勇民,等. 页岩微观孔隙特征及源—储关系:以川东南地区五峰组—龙马溪组为例[J]. 石油与天然气地质,2015,36(6):1001-1008.

    Hu Zongquan, Du Wei, Peng Yongmin, et al. Microscopic pore characteristics and the source-reservoir relationship of shale: A case study from the Wufeng and Longmaxi Formations in southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(6): 1001-1008.
    [6] Schieber J, Southard J B. Bedload transport of mud by floccule ripples:Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
    [7] Jiang Z X, Duan H J, Liang C, et al. Classification of hydrocarbon-bearing fine-grained sedimentary rocks[J]. Journal of Earth Science, 2017, 28(6): 693-976.
    [8] 王志峰,张元福,梁雪莉,等. 四川盆地五峰组—龙马溪组不同水动力成因页岩岩相特征[J]. 石油学报,2014,35(4):623-632.

    Wang Zhifeng, Zhang Yuanfu, Liang Xueli, et al. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2014, 35(4): 623-632.
    [9] Liang C, Jiang Z X, Zhang C M, et al. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale, Sichuan Basin, South China[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 636-648.
    [10] Zou C N, Dong D Z, Wang Y M, et al. Shale gas in China: Characte-ristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 753-767.
    [11] 聂海宽,汪虎,何治亮,等. 常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报,2019,40(2):131-143,164.

    Nie Haikuan, Wang Hu, He Zhiliang, et al. Formation mechanism, distribution and exploration prospect of normal pressure shale gas reservoir: A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2019, 40(2): 131-143, 164.
    [12] 董大忠,邹才能,杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报,2012,33(增刊1):107-114.

    Dong Dazhong, Zou Caineng, Yang Hua, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(Suppl.1): 107-114.
    [13] 张金川,聂海宽,徐波,等. 四川盆地页岩气成藏地质条件[J]. 天然气工业,2008,28(2):151-156.

    Zhang Jinchuan, Nie Haikuan, Xu Bo, et al. Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 151-156.
    [14] Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician-Early Silurian glaciation[J]. Science, 2011, 331(6019): 903-906.
    [15] Jablonski D. Extinctions: A paleontological perspective[J]. Science, 1991, 253(5021): 754-757.
    [16] Yang S C, Hu W X, Wang X L. Mechanism and implications of upwelling from the Late Ordovician to Early Silurian in the Yangtze region, South China[J]. Chemical Geology, 2021, 565: 120074.
    [17] Yang S C, Hu W X, Wang X L, et al. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China[J]. Earth and Planetary Science Letters, 2019, 518: 13-25.
    [18] Li N, Li C, Algeo T J, et al. Redox changes in the outer Yangtze Sea (South China) through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis[J]. Earth-Science Reviews, 2021, 212: 103443.
    [19] 王超,张柏桥,舒志国,等. 四川盆地涪陵地区五峰组—龙马溪组海相页岩岩相类型及储层特征[J]. 石油与天然气地质,2018,39(3):485-497.

    Wang Chao, Zhang Boqiao, Shu Zhiguo, et al. Lithofacies types and reservoir characteristics of marine shales of the Wufeng Formation-Longmaxi Formation in Fuling area, the Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3): 485-497.
    [20] Liang C, Jiang Z X, Cao Y C, et al. Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration: A case study from the Lower Silurian Longmaxi shale in the southeastern Sichuan Basin[J]. AAPG Bulletin, 2016, 100(5): 773-794.
    [21] 梁超,姜在兴,杨镱婷,等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发,2012,39(6):691-698.

    Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698.
    [22] Wu L Y, Lu Y C, Jiang S, et al. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area[J]. Marine and Petroleum Geology, 2019, 102: 74-85.
    [23] Zhao J H, Jin Z J, Jin Z K, et al. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China[J]. International Journal of Coal Geology, 2016, 163: 52-71.
    [24] Zhou L, Algeo T J, Shen J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian Glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234.
    [25] 刘树根,马文辛, Jansa L,等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报,2011,27(8):2239-2252.

    Liu Shugen, Ma Wenxin, Jansa L, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, east Sichuan Basin, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2239-2252.
    [26] 朱志军,陈洪德,林良彪,等. 黔北—川东南志留系层序格架下的沉积体系演化特征及有利区带预测[J]. 沉积学报,2010,28(2):243-253.

    Zhu Zhijun, Chen Hongde, Lin Liangbiao, et al. Depositional system evolution characteristics in the framework of sequences of Silurian and prediction of favorable zones in the northern Guizhou-southeastern Sichuan[J]. Acta Sedimentologica Sinica, 2010, 28(2): 243-253.
    [27] 何龙. 四川盆地东南缘五峰组—龙马溪组页岩有机质富集机制及沉积环境演化[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2020:1-105.

    He Long. Organic matter enrichment and evolution of sedimentary environment of the Wufeng-Longmaxi shale in southeastern margins of the Sichuan Basin[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2020: 1-105.
    [28] Wang Y, Liu L F, Zheng S S, et al. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 134-146.
    [29] Lu Y B, Hao F, Lu Y C, et al. Lithofacies and depositional mechanisms of the Ordovician-Silurian Wufeng-Longmaxi organic-rich shales in the Upper Yangtze area, southern China[J]. AAPG Bulletin, 2020, 104(1): 97-129.
    [30] 吴蓝宇,胡东风,陆永潮,等. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发,2016,43(2):189-197.

    Wu Lanyu, Hu Dongfeng, Lu Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197.
    [31] 陆扬博. 上扬子五峰组和龙马溪组富有机质页岩岩相定量表征及沉积过程恢复[D]. 武汉:中国地质大学,2020:1-173.

    Lu Yangbo. Quantitative characterization of lithofacies and reconstruction of the sedimentary process for Upper Yangtze Wufeng and Longmaxi organic rich shales[D]. Wuhan: China University of Geosciences, 2020: 1-173.
    [32] 王玉满,王淑芳,董大忠,等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘,2016,23(1):119-133.

    Wang Yuman, Wang Shufang, Dong Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133.
    [33] Xu H, Zhou W, Hu Q H, et al. Quartz types, silica sources and their implications for porosity evolution and rock mechanics in the Paleozoic Longmaxi Formation shale, Sichuan Basin[J]. Marine and Petroleum Geology, 2021, 128: 105036.
    [34] Yang X R, Yan D T, Wei X S, et al. Different formation mechanism of quartz in siliceous and argillaceous shales: A case study of Longmaxi Formation in South China[J]. Marine and Petroleum Geology, 2018, 94: 80-94.
    [35] Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128.
    [36] Zhang L C, Xiao D S, Lu S F, et al. Effect of sedimentary environment on the formation of organic-rich marine shale: Insights from major/trace elements and shale composition[J]. International Journal of Coal Geology, 2019, 204: 34-50.
    [37] Yan D T, Chen D Z, Wang Q C, et al. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform, South China[J]. Science in China Series D: Earth Sciences, 2009, 52(1): 38-54.
    [38] 冯洪真, Erdtmann B D,王海峰. 上扬子区早古生代全岩Ce异常与海平面长缓变化[J]. 中国科学(D辑):地球科学,2000,30(1):66-72.

    Feng Hongzhen, Erdtmann B D, Wang Haifeng. Early Paleozoic whole-rock Ce anomalies and secular eustatic changes in the Upper Yangtze region[J]. Science China (Seri. D): Earth Sciences, 2000, 30(1): 66-72.
    [39] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016.
    [40] 邱振,王清晨. 来宾地区中晚二叠世之交烃源岩沉积的主控因素及大地构造背景[J]. 地质科学,2012,47(4):1085-1098.

    Qiu Zhen, Wang Qingchen. Main factors controlling the deposition of the Middle-Upper Permian source rocks in Laibin area and its tectonic setting[J]. Chinese Journal of Geology, 2012, 47(4): 1085-1098.
    [41] Wei C, Dong T, He Z L, et al. Major, trace-elemental and sedimentological characterization of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations, Sichuan Basin, South China: Insights into the effect of relative sea-level fluctuations on organic matter accumulation in shales[J]. Marine and Petroleum Geology, 2021, 126: 104905.
    [42] 王彤,朱筱敏,董艳蕾,等. 基于微量元素分析的古沉积背景重建:以准噶尔盆地西北缘古近系安集海河组为例[J]. 地质学报,2020,94(12):3830-3851.

    Wang Tong, Zhu Xiaomin, Dong Yanlei, et al. Trace elements as paleo sedimentary environment indicators: A case study of the Paleogene Anjihaihe Formation in the northwestern Junggar Basin[J]. Acta Geologica Sinica, 2020, 94(12): 3830-3851.
    [43] Li D L, Li R X, Zhu Z W, et al. Elemental characteristics and paleoenvironment reconstruction: A case study of the Triassic lacustrine Zhangjiatan oil shale, southern Ordos Basin, China[J]. Acta Geochimica, 2018, 37(1): 134-150.
    [44] Zhang X G, Lin C Y, Zahid M A, et al. Paleosalinity and water body type of Eocene Pinghu Formation, Xihu Depression, East China Sea Basin[J]. Journal of Petroleum Science and Engineering, 2017, 158: 469-478.
    [45] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [46] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [47] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [48] Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/2/3/4): 65-78.
    [49] Wilde P, Quinby-Hunt M S, Erdtmann B D. The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101(1/2): 43-53.
    [50] Rowe H D, Loucks R G, Ruppel S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25.
    [51] 王跃,桂和荣,苏尚国,等. 滇黔北五峰组—龙马溪组页岩沉积环境和古气候地球化学特征[J]. 沉积学报,2022,40(3):653-666.

    Wang Yue, Gui Herong, Su Shangguo, et al. Sedimentary environment and paleoclimate geochemical characteristics of shale in the Wufeng and Longmaxi Formations, northern Yunan-Guizhou area[J]. Acta Sedimentologica Sinica, 2022, 40(3): 653-666.
    [52] Algeo T J, Rowe H. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324-325: 6-18.
    [53] Liang C, Jiang Z X, Cao Y C, et al. Sedimentary characteristics and paleoenvironment of shale in the Wufeng-Longmaxi Formation, north Guizhou province, and its shale gas potential[J]. Journal of Earth Science, 2017, 28(6): 1020-1031.
    [54] Li Y F, Zhang T W, Ellis G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
    [55] 刘峰,蔡进功,吕炳全,等. 下扬子五峰组上升流相烃源岩沉积特征[J]. 同济大学学报(自然科学版),2011,39(3):440-444.

    Liu Feng, Cai Jingong, Bingquan Lü, et al. Sedimentary characters of Wufeng Formation upwelling facies source rock in Lower Yangtze area[J]. Journal of Tongji University (Natural Science), 2011, 39(3): 440-444.
    [56] Ran B, Liu S G, Jansa L, et al. Origin of the Upper Ordovician–Lower Silurian cherts of the Yangtze Block, South China, and their palaeogeographic significance[J]. Journal of Asian Earth Sciences, 2015, 108: 1-17.
    [57] Pope M C, Steffen J B. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: A proxy record of glaciation?[J]. Geology, 2003, 31(1): 63-66.
    [58] 王濡岳,胡宗全,龙胜祥,等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质,2022,43(2):353-364.

    Wang Ruyue, Hu Zongquan, Long Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364.
    [59] Wu J, Liang C, Hu Z Q, et al. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin[J]. Marine and Petroleum Geology, 2019, 101: 556-565.
    [60] 郭英海,李壮福,李大华,等. 四川地区早志留世岩相古地理[J]. 古地理学报,2004,6(1):20-29.

    Guo Yinghai, Li Zhuangfu, Li Dahua, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 2004, 6(1): 20-29.
    [61] 叶玥豪. 四川盆地五峰—龙马溪组页岩储层形成机理[D]. 成都:成都理工大学,2018:1-139.

    Ye Yuehao. Formation mechanism of shale reservoir in Wufeng-Longmaxi Formation in Sichuan Basin[D]. Chengdu: Chengdu University Of Technology, 2018: 1-139.
    [62] 邹晓艳,李贤庆,王元,等. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学,2022,33(4):654-665.

    Zou Xiaoyan, Li Xianqing, Wang Yuan, et al. Reservoir characteristics and gas content of Wufeng-Longmaxi Formations deep shale in southern Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(4): 654-665.
    [63] 黄梓桑,王兴志,杨西燕,等. 沉积环境对页岩中有机质富集的约束:以蜀南地区五峰组—龙马溪组为例[J]. 沉积学报,2021,39(3):631-644.

    Huang Zisang, Wang Xingzhi, Yang Xiyan, et al. Constraints of sedimentary environment on organic matter accumulation in shale: A case study of the Wufeng-Longmaxi Formations in the southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 631-644.
    [64] 王兴,田景春,林小兵,等. 渝东地区五峰组—龙马溪组沉积环境及有机质主控因素分析:以接龙剖面为例[J]. 沉积学报, 2024,42(1):309-323.

    Wang Xing, Tian Jingchun, Lin Xiao-bing, et al. Sedimentary environment and controlling factors of organic matter accumulation in Wufeng Formation-Longmaxi Formation: A case study of Jielong section in eastern Chongqing[J]. Acta Sedimentologica Sinica, 2024, 42(1): 309-323.
    [65] 何龙,王云鹏,陈多福,等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学,2018,30(2):203-218.

    He Long, Wang Yunpeng, Chen Duofu, et al. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area, Chongqing[J]. Natural Gas Geoscience, 2018, 30(2): 203-218.
    [66] Yang S C, Hu W X, Yao S P, et al. Constraints on the accumulation of organic matter in Upper Ordovician-Lower Silurian black shales from the Lower Yangtze region, South China[J]. Marine and Petroleum Geology, 2020, 120: 104544.
    [67] 张晨晨,王玉满,董大忠,等. 川南长宁地区五峰组—龙马溪组页岩脆性特征[J]. 天然气地球科学,2016,27(9):1629-1639.

    Zhang Chenchen, Wang Yuman, Dong Dazhong, et al. Brittleness characteristics of Wufeng-Longmaxi shale in Changning region, southern Sichuan, China[J]. Natural Gas Geoscience, 2016, 27(9): 1629-1639.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(1)

Article Metrics

Article views(78) PDF downloads(33) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-07-05
  • Revised:  2022-11-21
  • Accepted:  2023-02-10
  • Published:  2024-10-10

Shale Facies Characteristics and Sedimentation of the Wufeng Formation-Longmaxi Formation in the Southern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2022.153
Funds:

National Natural Science Foundation of China 41902134

National Natural Science Foundation of China 42172165

The Fundamental Research Funds for the Central Universities 22CX06001A

The Taishan Scholars Program TSQN201812030

Abstract: Results Six lithofacies are identified from the shales of the Wufeng Formation-Longmaxi Formation: biological siliceous, clayey, (felsic-calcareous) silty, calcareous silty, calcareous, and felsic silty shale. The shale sedimentary environment of the Wufeng Formation-Longmaxi Formation underwent five stages of bottom-up changes. The paleo-climate shifted from warm and humid at the bottom of the Wufeng Formation to dry and hot at the middle to dry and cold at the top, and then from dry and hot at the lower part of the Longmaxi Formation to warm and humid at the middle and upper sections. In the lower parts of the Wufeng and Longmaxi formations, the sea level had risen owing to two large-scale transgressions. When the sea level is high, the extent of basin retention is weak, strong in reduction, low in salinity, and high in paleo-productivity. The glacier event at the top of Wufeng Formation caused the sea level to drop. When the sea level is low, the extent of basin retention is strong, weak in reduction, high in salinity, and low in paleo-productivity. The shale of the Wufeng Formation-Longmaxi Formation was mainly formed by suspended sedimentation under low energy conditions. Upwelling sedimentation developed in the middle Wufeng Formation and the lower Longmaxi Formation. A small amount of storm surge sedimentation developed at the top of the Wufeng Formation. In the upper Longmaxi Formation, gravity slumping, debris flows, and turbidity currents developed because of the shallowing of water and the increase of terrige-nous input. Therefore, the sedimentary model of the Wufeng Formation-Longmaxi Formation shale was established by integrating the lithofacies, depositional processes type, tectonic evolution, and sedimentary environment evolution. Conclusions The frequent changes of sedimentary environment and the diversity of depositional processes control the types and characteristics of lithofacies, further leading to significant differences in organic matter content, porosity, gas content, and other reservoir quality factors of different lithofacies. Further research on shale lithofacies and reservoir quality is required to provide theoretical basis for shale gas exploration and development. [Objective and Methods] The black shales of the Upper Ordovician and Lower Silurian in the southern Sichuan Basin are the main target of shale gas exploration, having attracted extensive attention among domestic and foreign scholars. To provide the theoretical basis for shale exploration and development in the future, the lithofacies division, sedimentary environment, and depositional processes of shale are explored. Through core observation and analysis using optical and scanning electron microscopes, the lithofacies are divided based on mineral composition and content, sedimentary structural characteristics, and comprehensive consideration of biological process and diagenesis. The paleoenvironment is analyzed by oxidation-reduction (U/Th,V/Cr,V/(V+Ni),Ni/Co), sea level change (Ce*), hydrographic restriction (Mo/TOC), paleo-climate (Sr/Cu), paleo-salinity (Sr/Ba), and paleo-productivity (Cu, biogenic Ba) indices. Depositional processes are identified by core and thin section observation, X-ray fluorescence scanning, and mineral X-ray diffraction whole rock analysis.

LIU YuDi, LIANG Chao, CAO YingChang, WU Jing, HAN Yu, XIE HaoRan, LUO ZiLiang, MA XiaoYue. Shale Facies Characteristics and Sedimentation of the Wufeng Formation-Longmaxi Formation in the Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1832-1848. doi: 10.14027/j.issn.1000-0550.2022.153
Citation: LIU YuDi, LIANG Chao, CAO YingChang, WU Jing, HAN Yu, XIE HaoRan, LUO ZiLiang, MA XiaoYue. Shale Facies Characteristics and Sedimentation of the Wufeng Formation-Longmaxi Formation in the Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1832-1848. doi: 10.14027/j.issn.1000-0550.2022.153
  • 细粒沉积岩约占沉积岩的三分之二,但由于粒度小、观察难度大以及受超微观实验条件的限制,其沉积、成岩作用仍是地质界的难题,且细粒物质各组分的物质来源、形成机制以及沉积过程极其复杂[13]。岩相及其沉积环境是研究细粒沉积岩的两大基本问题[47]。岩相的发育、垂向变化,以及其沉积时的古气候、古环境对于细粒沉积岩的研究有着至关重要的意义[89]。同时也为页岩油气勘探开发和寻找有利勘探目标提供理论支撑[2,1013]

    在五峰组到龙马溪组沉积期间,全球发生了包括火山喷发、冰期事件、生物大灭绝等一系列的地质事件[1418]。受多种地质事件的综合影响,沉积五峰组—龙马溪组页岩时的气候、海平面、氧化还原性、水体封闭性、初级生产力等沉积环境要素发生频繁变化,进一步控制着岩相的类型与特征,同时也导致了其垂向上的非均质性。由于岩相的类型多样,不同岩相的有机质含量、含气量存在显著差异,在页岩气勘探与开发中受到重点关注[1921]。因此,五峰组—龙马溪组页岩的形成及演化值得深入研究[19,2223]

    本文综合运用野外观察、岩心描述、镜下观察、电镜观察、TOC含量测试及元素地球化学测试分析,对四川盆地川南五峰组—龙马溪组页岩进行研究,刻画页岩的岩相类型和沉积特征,分析古气候、古盐度、古水深和古生产力等古沉积环境要素及其演化规律,并建立页岩沉积模式,从而为该区域下一步页岩气的勘探和开发提供理论依据。

  • 奥陶纪期间,华南克拉通是冈瓦纳大陆西北缘构造复杂地区的一个微大陆[24]。晚奥陶世,盆地受到周边挤压作用,使得上扬子海域被围限成局限海盆(图1a);到早志留世,川中隆起的范围不断扩大,使得四川盆地成为古隆起带包围的局限陆棚环境[25]。且奥陶纪末和志留纪初,发生了两次全球性的海侵[26]

    Figure 1.  Late Ordovician global paleogeographic map (a, modified from reference [24]), structural diagram of the research area (b, modified from reference [28]) and sithologic histogram (c, modified from reference [29])

    四川盆地位于我国西南部,属于扬子板块内的次一级的克拉通盆地[27],可进一步划分为五个次级的构造单元,包括川北低缓构造区、川中低缓构造区、川东高陡构造带、川西低陡构造区以及川南中低缓构造带[28],研究区位于川南中低缓构造带(图1b)。

    受海侵以及构造活动的影响,沉积了五峰组—龙马溪组富有机质黑色页岩。上奥陶统五峰组主要由黑色硅质泥岩组成,并含有丰富的笔石、放射虫和海绵骨针等化石。晚奥陶世,观音桥段主要沉积生物介壳灰岩,被认为是冰期海平面短暂下降的结果[29]。在志留纪早期,全球冰川融化,海平面快速上升,导致龙马溪组主要沉积黑色硅质泥岩、灰色粉砂岩夹层泥岩以及灰色黏土质泥岩(图1c)。

  • 五峰组—龙马溪组页岩矿物以石英、碳酸盐矿物和黏土矿物为主,含钾长石、斜长石、黄铁矿等(图2)。石英含量介于9.70%~72.80%,平均为33.88%,由陆源石英、生物成因石英以及成岩自生石英构成[30];斜长石含量介于1.40%~9.60%,平均为4.09%;方解石含量介于7.2%~38%,平均为25.10%,呈碎屑颗粒或纹层状的形式存在;白云石含量介于3.60%~42.60%,平均为10.43%;黏土矿物含量介于5.70%~51.20%,平均为24.73%,主要由伊利石、伊蒙混层及绿泥石组成;黄铁矿含量介于0.70%~7.00%,平均为2.68%,以自形状或草莓状黄铁矿的形式存在。

    Figure 2.  Main mineral composition of the Wufeng Formation⁃Longmaxi Formation in well N222 in the southern Sichuan Basin

  • 岩相是一定沉积环境中形成的岩石或岩石组合,既包含了岩石类型、颜色、结构、沉积构造等宏观信息,也包含无机矿物与有机组分的微观信息[31]。关于页岩岩相的划分,前人已经进行了大量研究,合理的岩相划分能够反映地层主要的、典型的岩石类型[32]。本文通过岩心观察、镜下观察以及扫描电镜分析,根据矿物组成及含量、沉积构造特征,以长英质(石英+长石)、钙质(方解石+白云石)和黏土矿物为三端元进行划分,并综合考虑生物作用及成岩作用,识别出六种页岩岩相类型:生物硅质页岩、黏土质页岩、(长英质—钙质)粉砂页岩、钙质粉砂页岩,长英质粉砂页岩以及钙质页岩。除此之外,还发育少量凝灰岩和生物介壳灰岩。

  • 生物硅质页岩主要分布在五峰组的中部以及龙马溪组下部,呈层状分布,厚度一般介于0.2~1.0 cm,少量厚几百微米,上下界面呈现突变接触(图3a1)。岩心颜色多为黑色—灰黑色,硬度普遍比较大,TOC平均含量为3.31%。生物硅质页岩中SiO2含量高,放射虫、海绵骨针等化石丰富(图3a3),由于方解石在放射虫的空腔内有充足的空间生长,大多呈自形(图3a2,a3)。前人研究中所绘制的Al-Fe-Mn三元图证实研究区的石英并非来源于热液,因为由黏土矿物转化产生的SiO2大多形成分散在黏土基质中的粒状微晶石英[3334],由陆源搬运而来的石英则呈碎屑外形,而生物硅质页岩中大部分硅质呈隐晶质充填在放射虫化石中(图3a2),故排除其黏土转化及陆源成因。且放射虫、海绵等硅质生物化石丰富,并结合其所在层位具较高的古生产力,推测其生物硅质页岩中的硅质来源为硅质生物碎屑的部分溶解。

    Figure 3.  Shale lithofacies types and characteristics of Wufeng Formation⁃Longmaxi Formation in the southern Sichuan Basin

  • 黏土质页岩主要分布在五峰组的底部以及龙马溪组的上部,发育水平层理和块状层理,岩心呈黑色—灰黑色(图3b1),硬度相对较小,TOC平均含量为3.66%。黏土矿物平均含量大于50%(图3b3),主要为伊利石,其次为伊蒙混层及少量绿泥石,有少量石英、长石或碳酸盐矿物漂浮在黏土矿物中(图3b2),颗粒粒度一般小于62.5 μm。部分可见黏土透镜体(图3b2),其可能为再搬运的泥质碎屑[35]

  • (长英质—钙质)粉砂页岩主要分布在龙马溪组中部,发育平行层理,透镜状层理以及韵律性层理,岩心呈灰黑色—深灰色(图3c1),硬度相对较大,TOC平均含量为4.25%,是有机质含量最丰富的岩相。薄片观察可见粉砂质(亮纹层)与泥质(暗纹层)相间(图3c2,c3),其粉砂质纹层并不完全平行,而是呈狭长的透镜状(图3c2)。长英质矿物与碳酸盐矿物含量大致相当,均超过30%,分别为38.27%和33.64%,碎屑颗粒分选较差,磨圆中等,呈次棱角—次圆状。有机质与黏土混杂在一起,镜下很难分辨,长石及云母在镜下很少看到。

  • 钙质粉砂页岩主要分布在五峰组中部,通常不显层理,岩心呈灰黑色(图3d1),硬度相对较大,TOC平均含量为3.50%。石英、长石、方解石均表现出碎屑外形,以方解石为主(图3d2,d3),平均含量为54.56%,其次为石英颗粒,平均含量为18.23%,碎屑颗粒分选较好,磨圆中等,多呈次棱角—次圆状,粒径一般介于10~50 μm。黏土矿物平均含量为23.07%。

  • 钙质页岩主要分布在龙马溪组下部,纹层十分明显,岩心呈灰黑色夹白色方解石纹层,在手标本上可以见到灰质断口,TOC含量较高,平均为5.35%。镜下可观察到纹层十分发育(图3e1),为顺层分布的亮晶方解石纹层和暗色的黏土层的纹层组合(图3e2,e3),方解石平均含量可达30.5%,其亮晶方解石为成岩作用形成。石英悬浮在黏土纹层中,平均含量为37.4%,黏土矿物含量较低。

  • 长英质粉砂页岩主要分布在龙马溪组的下部和上部,层状或块状分布,岩心呈黑色或灰黑色(图3f1),硬度较大,TOC平均含量为3.96%。镜下观察矿物以石英及长石为主(图3f2,f3),石英平均含量为42%,矿物分布均匀,磨圆中等,呈次棱角—次圆状,粒度大多介于20~50 μm,方解石含量较少,平均为11.8%,黏土矿物含量较高,平均为43.40%。

  • 以N222井为例,分析了岩相的垂向演变(图4)。五峰组沉积早期,黏土矿物、方解石含量较高,石英、长石、白云石含量较低,发育一套黏土质页岩,TOC含量较高。五峰组中部,方解石、白云石含量增多,石英、长石、黏土矿物含量降低,发育钙质粉砂页岩与(长英质—钙质)粉砂页岩,TOC含量较高。在五峰组及龙马溪组的交界处,此时发生冰期事件,发育一套生物介壳灰岩,TOC含量较低。龙马溪组沉积早期,石英、黏土矿物含量升高,长石、方解石含量降低,发育一套钙质页岩、长英质粉砂页岩以及少量生物硅质页岩,TOC含量逐渐降低。龙马溪组中上部,石英含量较高,长石、黏土矿物含量逐渐升高,方解石、白云石含量逐渐降低,发育(长英质—钙质)粉砂页岩、长英质粉砂页岩以及黏土质页岩,TOC含量降低并保持稳定。岩相序列演变随着气候、海平面的升降以及沉积环境发生变化,TOC含量以及各种矿物含量均随之变化,从而导致岩相的类型也发生相应的变化。

    Figure 4.  Comprehensive lithofacies histogram of well N222

  • N222井五峰组—龙马溪组22个页岩样品TOC介于1.49%~7.17%,平均为3.90%,五峰组页岩的TOC含量波动幅度较大,龙马溪组TOC含量则较为稳定。微量元素分析显示,Cr元素含量介于19.3~87.0 μg/g,平均为48.65 μg/g;Co元素含量介于3.03~22.40 μg/g,平均为10.21 μg/g;V元素含量介于42.7~402.0 μg/g,平均为145.45 μg/g;Ni元素含量介于35~188 μg/g,平均为81.79 μg/g;Zn元素含量介于26.10~214.00 μg/g,平均为101.15 μg/g。这些微量元素及其比值被广泛地用于古环境的判识(表1)。

    古环境分析地球化学特征判识方法
    氧化还原性U/Th<0.75指示富氧氧化条件,0.75~1.25指示贫氧条件,>1.25指示缺氧还原条件[36]
    V/Cr<2指示富氧氧化,2.00~4.25指示贫氧条件,>4.25指示还原条件[3637]
    V/(V+Ni)<0.46指示氧化条件,0.46~0.60指示贫氧条件,0.60~0.84指示缺氧还原条件,>0.84指示静海闭塞还原条件[3637]
    Ni/Co<5指示氧化条件,5~7指示贫氧条件,>7指示还原条件[36]
    海平面Ce异常氧化条件下,沉积物中Ce表现为正异常(>1);还原条件下,表现为负异常[38]
    滞留程度Mo/TOC水体滞留程度高时,Mo/TOC比值减小,滞留程度低时,比值增大[39]
    古生产力Babio生物成因的Ba含量与古生产力成正比[40]
    CuCu含量与古生产力成正比[41]
    古气候Sr/Cu当Sr/Cu比值较低,在1.0到5.0之间时,则指示此时气候为温湿气候,当Sr/Cu比值较高大于5.0时, 指示此时古气候为干热气候[4243]
    古盐度Sr/Ba>1.0指示海相咸水沉积环境,0.5~1.0指示海陆过渡相半咸水环境,<0.5指示陆相淡水环境[44]

    Table 1.  Geochemical methods used to identify the ancient environment

  • 氧化还原条件是影响细粒沉积的重要因素,虽然V、Ni、U、Th等元素已经被广泛地运用于沉积水体氧化还原性的恢复,但是单个元素含量与沉积水体的氧化还原性之间的对应关系存在不确定性。因此,选取U/Th、V/Cr、V/(V+Ni)、Ni/Co作为水体氧化还原性的有效判识指标。

    1) U/Th比值法

    U元素在水体氧化还原性的判识中最为常见,水体处于强还原状态时U元素比较富集,以U4+化合物从海水析出并沉淀下来,而当水体中氧含量丰富,U元素很容易迁移,以U6+离子游离于水体,利用此种性质可判识水体的氧化还原条件。Th元素是一种化学性质不活泼的惰性元素,通常不受氧化还原条件的影响,利用U/Th比值的可以判识沉积水体的氧化还原性[4546]。研究区U/Th比值变化幅度较大,介于0.278~2.823(图5),在五峰组下部U/Th比值介于0.75~1.25,表明沉积水体贫氧,中部变为缺氧的还原环境,顶部U/Th比值小于0.75,表明迅速演变成氧化环境;在龙马溪组下部,U/Th比值大于1.25,沉积水体属于缺氧还原环境,中上部逐渐变为富氧环境。

    Figure 5.  Sedimentary environment analysis of the Wufeng Formation⁃Longmaxi Formation in well N222 in the southern Sichuan Basin

    2) V/Cr及V/(V+Ni)比值法

    V/Cr的比值也可用于氧化还原条件的判识,因为当水体处于氧化状态时,V元素通常以V5+的形式存在于钒酸盐(HVO42-、H2VO4-)中,且常常被铁和锰的氢氧化物吸附而发生迁移,当水体处于还原状态时,V5+会被还原为V4+的VO2+离子形成不溶的氢氧化物,易被有机质颗粒吸附而沉淀下来,在硫化环境中,V4+可被进一步还原成V3+,形成固态氧化物V2O3或氢氧化物V(OH)3沉淀[4748]。当水体处于氧化状态时,Cr元素以+6价的可溶铬酸盐阴离子CrO42-的形式存在,当水体处于还原状态时,Cr元素则以+3价的不溶铬氢氧化物Cr(OH)2+的形式存在[4647]。研究区V/Cr比值介于1.46~5.54(图5),平均为3.27,指示其沉积水体总体为贫氧环境。在五峰组下部沉积环境从氧化迅速演化为还原环境,中部变为贫氧的沉积环境,到五峰组顶部时沉积环境变为氧化环境;在龙马溪组下部,V/Cr比值大于4.25,沉积环境属于还原环境,中上部沉积环境逐渐变为氧化环境。

    当水体处于还原状态时,沉积物中会富集V所形成的有机络合物,在硫化还原条件下Ni的富集会更早,因此可以用V/(V+Ni)的比值来指示沉积水体的氧化还原环境[3637]。研究区V/(V+Ni)比值介于0.40~0.74(图5),平均为0.63,指示沉积五峰组—龙马溪组页岩时环境总体为厌氧亚还原环境。在五峰组下部,V/(V+Ni)比值介于0.60~0.84,沉积水体属于缺氧还原环境,中部水体还原性减弱,局部达到有氧条件,可能是由于水体硫化增强导致V/(V+Ni)比值偏低,顶部比值介于0.46~0.60,属于贫氧环境;在龙马溪组,V/(V+Ni)比值介于0.60~0.84,属于缺氧还原环境。

    3) Ni/Co比值法

    当水体处于缺氧且H2S存在的还原环境时,Ni会形成硫化物NiS的形式赋存在沉积物中,Co则以固溶体的形态存在于自生黄铁矿中,但如果水体的氧含量比较充足时,Ni则以Ni2+离子和NiCO3等形式存在,Co也以离子的形式存在且易溶于水[36,4546]。研究区Ni/Co比值变化较大(图5),介于3.58~15.63,平均为8.74,表明其沉积水体总体属于还原环境。在五峰组下部,沉积水体属于贫氧环境,中部沉积水体演变为还原环境,顶部Ni/Co比值降低,属于有氧—贫氧环境;在龙马溪组下部,Ni/Co比值大于7,属于缺氧还原环境,中上部沉积环境逐渐变为氧化环境。

  • 当海平面发生变化时,所沉积地层中的Ce异常值也会发生相应的变化,在氧化环境下Ce元素以+4价态存在,在水体中的溶解度较小,表现出水体的Ce负异常,沉积物则表现为Ce正异常或无明显负异常;在还原环境下Ce元素以+3价态存在,溶解度增加,表现出沉积物的负异常[49]。水体中的溶解氧浓度随深度的增加而降低,因而垂向上Ce异常值的变化也可指示海平面的升降变化,前人总结出Ce异常值的计算公式为Ce*=lg[3CeN/(2LaN+NdN)][38]。研究区Ce*值变化范围较小,介于0.72~0.87(图5),平均为0.81,小于1,显示为Ce负异常,指示在沉积五峰组—龙马溪组页岩时水体较深。垂向变化表明在五峰组下部,海平面升高,中部缓慢降低,随后到五峰组顶部,海平面显著降低并达到最低点;龙马溪组下部海平面逐渐升高,至龙马溪组中部后海平面略微降低并趋于稳定。

  • 沉积盆地的水体滞留程度通过影响水体交换流通从而对生物地球化学的循环造成制约,因此是影响沉积环境的一个重要因素。由于四川盆地被周围的古隆起所围限,因此盆地的水体滞留程度直接受水平面高低的影响[29,39]。在氧化环境中,Mo元素以钼氧离子MoO42-的形式存在,在还原环境中,Mo则会被还原为+4价进入沉积物。因此水体在强滞留程度条件下,Mo/TOC比值通常较低。因为Mo再补给率低于沉积物对Mo的吸收率,而水体在较为开放的条件下,Mo/TOC比值相对较高,因为外界海水Mo补给较为充足[5051]。从TOC与Mo的关系图可以看出,研究区页岩总体形成于中等—强滞留的环境(图6)。五峰组下部滞留程度显著降低,水体处于中等滞留程度,中部Mo/TOC比值降低,属于强滞留环境,随后五峰组顶部Mo/TOC比值达到最低,滞留程度最强;龙马溪组下部,滞留程度显著降低,水体逐渐开放,中上部Mo/TOC比值降低,滞留程度逐渐增强(图5)。

    Figure 6.  Comparison of Mo⁃TOC (water retention index) relationship for the southern Sichuan Basin and those for modern anoxic basins (modified from references [29,52])

  • 喜干型元素Sr和喜湿型Cu的含量变化与古气候有密切关系,因此Sr/Cu比值的变化可以用来指示古气候的变化[4243]。研究区五峰组—龙马溪组页岩中的Sr/Cu比值变化范围较大(图5),介于0.59~16.03,平均为5.93。五峰组下部属温湿气候,中部演变为干热气候,顶部Sr/Cu比值明显降低,此时变为干冷气候,对应五峰组与龙马溪组交界处的赫南特冰期;龙马溪组下部Sr/Cu比值升高,大于5,表明此时气候较为干热,中上部Sr/Cu比值逐渐降低,表明气候也逐渐向温湿转变。

  • 一般情况下,Sr比Ba化学性质更活泼,从而更容易发生流失、迁移。在水体矿化度较低的沉积环境中,Sr和Ba均以重碳酸盐的形式赋存,Ba在水体盐度升高时由于其溶解度较小,以碳酸钡的形式先沉淀,水体中的部分Ba被沉淀,导致留在水体中的Sr含量更高,水体盐度继续增大达到过量的程度时,Sr也以SrSO4的形式逐渐沉淀[44]。因此,记录在沉积物中的Sr丰度和Sr/Ba比值与古盐度呈正比关系,可作为古盐度的判别标志[44,53]。研究区五峰组—龙马溪组Sr/Ba比值变化不大(图5),介于0.04~0.74,平均为0.25。五峰组下部水体盐度较低,中部Sr/Ba比值有部分明显增大,达到0.74,表明此阶段水体古盐度较高,五峰组顶部水体古盐度较低,随后略微升高;龙马溪组开始,水体古盐度持续缓慢下降并趋于稳定。

  • 古生产力的高低可由页岩中的TOC含量直接反映,因此可以用TOC含量初步表征古生产力。研究区五峰组—龙马溪组TOC含量变化范围较大,介于1.49%~7.17%,平均为3.97%。但页岩中TOC含量除受古生产力因素控制外,还受水体介质条件、沉积速率等多方面因素的影响,因此并不能准确地反映初级生产力的强弱。Cu主要以与有机质相关的有机金属络合物的形式输送到沉积物中,并在还原条件下保留在沉积物中,因此Cu含量可用于评估古生产力[41]

    Ba含量变化也被广泛用于古生产力的判识,与古生产力及有机碳含量存在正比关系[54]。沉积物中的Ba主要有两种来源,陆源输入和生物成因,其中生物成因的Ba与古生产力之间有直接决定关系,因此若想通过Ba的含量来判识古生产力的高低,就必须去除陆源Ba的影响,计算公式为Babio=Batotal-Titotal×(Ba/Ti)PASS,公式中的Batotal为样品Ba总含量,Titotal表示样品Ti总含量,(Ba/Ti)PASS取自晚太古代澳大利亚平均页岩中的Ba/Ti质量分数比值,为0.007 7[40]。研究区五峰组—龙马溪组页岩生物钡Babio 值变化较大,介于(454.993~1 978.982)×10-6图5),平均为1 079.665×10-6。五峰组中部以及龙马溪组底部Babio值明显偏低,曾发生两幕生物灭绝事件[18],大量生物在此次事件中灭绝,从而导致古生产力低下。

  • 综上所述,奥陶系五峰组到志留系龙马溪组时期古环境经历了五个阶段(图7)。阶段Ⅰ:五峰组沉积早期,气候属于温湿气候,海平面逐渐升高,沉积水体属贫氧—缺氧环境,水体的滞留程度减弱,水体盐度略微下降,古生产力相对升高。阶段Ⅱ:到五峰组中部,此时属于干热气候,海平面逐渐下降,水体滞留程度逐渐增强,水体还原程度增强,水体盐度较高,古生产力较低。阶段Ⅲ:随着时间推移到五峰组顶部,冰川作用造成全球迅速降温,盆地内变为寒冷干燥的气候,水体变浅,水体滞留程度较高,属强滞留海盆,沉积水体由还原条件变为氧化条件,水体古盐度较高,此时古生产力较低。阶段Ⅳ:龙马溪组早期,冰期结束气温回升,气候再次变为干热条件,发生广泛海侵,海平面长期保持在高位,水体滞留程度较弱,沉积水体是缺氧的还原环境,沉积速率较稳定,水体古盐度降低,古生产力显著升高。阶段Ⅴ:到龙马溪组中上部时,古气候变为温暖湿润,海平面略微降低并趋于稳定,水体封闭程度增强,还原性逐渐减弱并最终变为富氧的氧化环境,水体古盐度逐渐降低并趋于稳定,古生产力逐渐升高。

    Figure 7.  Sedimentary environment evolution of the Wufeng Formation⁃Longmaxi Formation in the southern Sichuan Basin

  • 基于详细的岩心和薄片观察、X射线荧光扫描以及矿物X衍射全岩分析,识别了六种沉积作用类型:悬浮沉积、上升流、浊流、碎屑流、风暴流和重力滑塌。

  • 悬浮沉积是五峰组—龙马溪组页岩主要的沉积过程。(长英质—钙质)粉砂页岩和黏土质页岩矿物粒度较小,粗碎屑颗粒少见,有机质、笔石含量较高且富含黄铁矿,说明其沉积时水体较深,水动力条件较弱,沉积速率较慢,一般为悬浮沉积的结果(图8a)。

    Figure 8.  Sedimentary tectonic features formed by different sedimentary processes

  • 海洋上升流是海洋循环中的一个重要过程,对气候变化和海洋生产力有很大的影响,前人认为四川盆地生物硅质页岩是上升流的结果(图8b)[5556]。上升流主要发生在现代海洋的狭窄区域,沿低纬度或中纬度大陆的西海岸垂直于赤道,与海岸平行的表层风通过埃克曼运输将水从海岸带走,随后下层温度较低的、营养丰富的水被补充到表层,从而促进表层海水中的放射虫、海绵等生物更加繁盛,使得原始海洋古生产力增强[16]。在冰期,纬度温度梯度更大,结合信风能增强温盐环流的强度,产生更强烈的上升流。在间冰期,两极和赤道温差相对较小,海洋环流较为缓慢,从而上升流强度较弱[5758]

  • 龙马溪组中上部的页岩发育浊流沉积,在黑色页岩中可见粉砂岩夹层,往往与页岩有明显的突变接触,具槽模构造和正粒序结构(图8c)。底部发育的波状层理和水平层理,到顶部发育的块状层理,这一沉积序列符合鲍马序列的C、D、E段。顶部的块状层理段有低TOC含量的特点,且镜下矿物颗粒无定向排列,明显与悬浮沉积长轴矿物定向排列的特点不同,因此这些具块状层理的黏土质页岩可能为浊流沉积而成,且是在较短的时间内沉积。浊流沉积时会将上部的富氧水体携带到海底,从而导致局部氧含量短暂提升,大量有机质被氧化,这是浊流沉积TOC含量偏低的主要原因之一[20]。此外,尽管较快的沉积速率缩短了有机质降解的时间,但有机质的原始供应和保存条件较差,导致最终TOC含量较低[59]

  • 威远地区下部和长宁地区中上部发育碎屑流沉积,厚度介于10~50 cm,结构和成分混杂,杂基含量较高,岩相之间呈突变接触,无分选,不具正粒序结构,可见高角度的侵蚀面及悬浮的泥岩撕裂屑(图8d)。

  • 风暴流沉积主要发育于龙马溪组底部,但这种作用相对较弱。与下伏泥岩接触底面呈突变接触,常具底冲刷面结构[60],夹疑似生物逃逸的粉砂岩(图8e),可见丘状交错层理、平行层理以及水平层理等层理构造,指示其为风暴成因。

  • 龙马溪组上部可见重力滑塌变形构造(图8f),沉积层内发生变形,揉皱,岩性混杂,与上下层位呈突变接触。岩层颜色稍浅且TOC含量较低,由于水体变浅以及陆源碎屑输入使得粉砂质含量增多。一般是伴随快速沉积而产生,是水下滑坡的良好标志。

  • 综合岩相及沉积作用类型、构造演化以及沉积环境演化建立了五峰组—龙马溪组页岩的沉积模式(图9)。五峰组沉积早期,古气候属于温湿气候,海侵导致盆地内大面积的水体变深,海平面上升,此时沉积水体由贫氧变为贫氧—缺氧,水体封闭性减弱,水体盐度略微下降,古生产力升高,TOC含量逐渐降低,主要在悬浮沉积作用下沉积黏土质页岩(图9a)。到五峰组沉积中期时,气候干热,海平面逐渐下降,水体变浅,水体滞留程度增强,还原性增强,古盐度较高,古生产力先下降后上升,TOC含量逐渐升高,主要在悬浮作用下沉积钙质粉砂页岩以及(长英质—钙质)粉砂页岩(图9b)。五峰组与龙马溪组交界时期,气温经历了大范围的波动,气温快速下降,发生冰期事件,但也存在短暂干热气候的间冰期,冰期海平面急剧下降,导致盆地内水体变浅,水体古盐度上升,滞留程度较高,属强滞留海盆,沉积水体演变为氧化环境,古生产力变低,TOC含量先下降后快速上升,主要发育生物介壳灰岩,也可见风暴流沉积的粉砂质层(图9c)。龙马溪组沉积早期,气候迅速演变为干热气候,冈瓦纳冰盖消融,导致海平面显著上升,水体相对滞留程度弱,底部水体氧含量很低,是有利于有机质保存的还原水体,水体古盐度逐渐下降,顶层水体富氧且营养丰富,笔石、海藻、放射虫等海洋生物大规模复苏,古生产力水平高,主要发育由化学作用沉积的钙质页岩,在悬浮沉积作用下发育的长英质粉砂页岩,以及上升流影响的生物硅质页岩(图9d)。随后龙马溪组沉积中晚期气候变为温暖湿润气候,海平面保持稳定略微下降,水体还原性减弱,受构造运动的影响,水体封闭性增强,水体古盐度逐渐下降,古生产力逐渐升高,此时沉积速率较快,且陆源供给的碎屑物质逐渐变多,不利于有机质的保存,TOC含量相对较低,此时沉积作用较为丰富,主要由化学作用沉积的钙质页岩以及悬浮沉积的作用下发育(长英质—钙质)粉砂页岩、长英质粉砂页岩和黏土质页岩,可见浊流沉积的粉砂岩夹层、碎屑流产生的泥岩撕裂屑以及重力滑塌作用导致的滑塌变形构造(图9e)。不同地区垂向上岩相序列的发育也不相同,威远和泸州地区五峰组长英质矿物含量较高,长宁地区则碳酸盐矿物含量较高,且威远和长宁脆性矿物含量更高,有利于压裂。长宁地区的黑色页岩形成环境缺氧程度强于威远地区[61]。总体上泸州和长宁地区页岩有机质丰度较高,威远部分井位五峰组的有机质丰度较低[6162]。所识别的六种沉积作用在威远、泸州以及长宁地区均存在,只是发育程度以及发育位置有所差异。

    Figure 9.  Shale sedimentary model of the Wufeng Formation⁃Longmaxi Formation in the southern Sichuan Basin

    由于构造活动、氧化还原条件、古生产力条件、气候变化以及沉积作用等因素都会对页岩的有机质富集产生一定的影响,因此恢复五峰组—龙马溪组沉积期的古环境并且建立沉积模式对明确有机质的富集机理显得尤为重要。前人对于有机质的富集模式提出了“生产力模式”和“保存条件模式”,前者强调高生产力水平下,有机质的埋藏速率增加促进有机质的积累;后者则认为受限盆地中的缺氧水体更利于有机质的保存。而实际情况更加复杂,往往是两种模式共同作用的结果[6364]。五峰组下部,虽然古生产力逐渐升高,但TOC含量却逐渐下降,其原因可能是海平面上升,逐渐开放的水体不利于有机质的保存。五峰组中部,古生产力逐渐升高,TOC含量也随之升高,此时的还原性逐渐增强,水体封闭性较强,有机质的含量主要受“保存条件模式”主导,大部分有机质得以保留。进入赫南特冰期,冰川形成导致全球海平面下降,尽管底栖生物繁盛,但水体变为不利于有机质保存的氧化环境,导致TOC含量较低。龙马溪组沉积期,开始时仍受冰川作用控制,海平面处于最低点,此时古生产力虽较低,但还原的水体环境以及较强的封闭性对于有机质来说是良好的保存条件,导致TOC含量较高。随后气候变暖导致冰川消融,海平面升高,溶解的冷水向赤道对流形成的上升流带来丰富的营养物质,生产力逐步升高,但陆源碎屑的增加以及逐渐开放的水体环境破坏了有机质的保存,导致TOC含量降低。综上所述,五峰组—龙马溪组页岩有机质的富集受构造条件、海平面升降、氧化还原条件、古生产力条件、气候变化以及沉积作用等因素共同控制[6566]

    除有机质丰度外,影响储层性质的还有储层脆性、孔隙类型、孔隙度、渗透率以及含气性等因素。一般认为,页岩脆性越好,造缝能力越强,改造效果越理想。石英、长石、方解石以及白云石含量越高,储层的脆性越好[62,67]。N222井页岩脆性均较好,平均脆性矿物含量为72.59%。不同岩相的脆性矿物含量不同,其中生物硅质页岩以及钙质页岩脆性矿物含量最高。王超等[19]对五峰组—龙马溪组主要页岩岩相储层特征分析发现,硅质类页岩有机质孔隙非常发育,连通性好,孔隙度平均为3.77%,渗透率平均为1.57×10-3 μm2,含气量较高,平均为1.61 m3/t(图10);混合类页岩普遍发育有机质孔隙、黏土矿物晶间孔以及碎屑颗粒原生粒间孔,孔隙度平均为3.39%,渗透率平均为2.16×10-3 μm2,含气量相对较低,平均为1.16 m3/t(图10);黏土类页岩孔隙结构以黏土矿物粒间孔为主,孔隙度较低,平均为3.05%,渗透率平均为2.31×10-3 μm2。含气量最低,仅为0.66 m3/t(图10)。黏土类页岩、混合类页岩以及硅质类页岩不同岩相的储层品质差异较大,而岩相又受到沉积作用以及沉积环境的控制。综合考虑,在水动力条件较弱、封闭性较强且缺氧还原的水体中悬浮沉积,以及受上升流带来的大量营养物质影响所沉积的(长英质—钙质)粉砂页岩、长英质粉砂页岩以及生物硅质页岩,由于有机质丰度较高,脆性矿物含量较高,孔隙度、渗透率以及含气性也较高,因此可以作为良好的储层。

    Figure 10.  Characteristics of main shale lithofacies reservoirs in the Wufeng Formation⁃Longmaxi Formation, Sichuan Basin (modified from reference [19])

  • (1) 根据五峰组—龙马溪组页岩矿物组成及含量、沉积构造特征,研究区识别出六种页岩岩相类型(生物硅质页岩、黏土质页岩、(长英质—钙质)粉砂页岩、钙质粉砂页岩、钙质页岩及长英质粉砂页岩)。

    (2) 五峰组—龙马溪组沉积期间,沉积环境频繁变化,自下而上经历五个阶段。古气候经历了从五峰组底部温湿到中部干热再到顶部干冷,随后从龙马溪组下部的干热到中上部的温湿的演变。在五峰组下部以及龙马溪组下部经历了两次大规模的海侵使得海平面升高,海平面较高时,水体封闭性弱,还原性强,盐度较低,古生产力较高;在五峰组顶部发生冰川事件导致海平面下降,海平面较低时,水体封闭性强,还原性弱,盐度较高,古生产力较低。

    (3) 川南地区识别出六种沉积作用类型,即悬浮沉积、上升流、浊流、碎屑流、风暴流和重力滑塌。五峰组—龙马溪组页岩主要是在低能条件下悬浮沉积,五峰组中部及龙马溪组下部受上升流影响,古生产力升高,发育生物硅质页岩;五峰组顶部,由于水体变浅,发育少量风暴流沉积;龙马溪组上部,由于水体变浅以及陆源输入的增加,发育重力滑塌、碎屑流以及浊流。

Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return