Advanced Search
Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents

WU Jia, WANG Yuan, QI Wen, SHI ShengBao, JIANG FuJie, ZHANG ChunLin. Influence of Gypsum on the Distribution of Aromatic Molecules During Catagenesis and Its Geochemical Significance[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1401-1410. doi: 10.14027/j.issn.1000-0550.2022.132
Citation: WU Jia, WANG Yuan, QI Wen, SHI ShengBao, JIANG FuJie, ZHANG ChunLin. Influence of Gypsum on the Distribution of Aromatic Molecules During Catagenesis and Its Geochemical Significance[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1401-1410. doi: 10.14027/j.issn.1000-0550.2022.132

Influence of Gypsum on the Distribution of Aromatic Molecules During Catagenesis and Its Geochemical Significance

doi: 10.14027/j.issn.1000-0550.2022.132
cstr: 32268.14.cjxb.62-1038.2022.132
Funds:

Funding of CNPC 2018D-500804

National Natural Science Foundation of China 41403049

National Natural Science Foundation of China 42273052

National Science and Technology Major Project 2016ZX05007-002

  • Received Date: 2022-07-08
  • Accepted Date: 2022-11-04
  • Rev Recd Date: 2022-10-14
  • Available Online: 2022-11-04
  • Publish Date: 2024-08-10
  • Objective  The reactions between sulfates and sedimentary organic matter are typical organic⁃inorganic interactions in sedimentary basins. During the early stage of catagenesis, the thermal evolution of sedimentary organic matters would be influenced by the presence of sulfate. Investigations on thermal evolution of aromatic fraction compositions in the corresponding system will improve the understanding its geochemical behaviors.   Methods  In this study, the effect of sulfate on the thermal evolution of kerogen was investigated by hydrous pyrolysis. The source rock and the corresponding sulfur-bearing kerogen were sampled from the Pingliang Formation on the southwestern margin of the Ordos Basin.   Results  Experimental results showed that the presence of sulfate promotes the yields of soluble organic matters, as well as the generation peak of aromatic fractions in the early stage. Moreover, the organosulfur compounds, might be oxidized by sulfate during the early stage of catagenesis, which led to the decreasing of generation of dibenzothiophene. It would result in the significant discrepancies of aromatic fraction compositions between two group experiments. Therefore, there was a stage of oxidative degradation between sulfate and sedimentary organic matter before hydrocarbon generation peak. In this stage, the majority of production is polar organic compounds, such as oxygen-bearing compounds. Dibenzothiophene was derived from organosulfur compounds.   Conclusions  These understandings enlarged the reaction region between sulfate and sedimentary organic matters to the gypsum-bearing source rock during catagenesis with lower thermal stress.

  • [1] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer, 1984.
    [2] Seewald J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333.
    [3] Seewald J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1641-1664.
    [4] 刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(D辑):地球科学,2019,49(3):499-520.

    Liu Quanyou, Zhu Dongya, Meng Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Seri. D): Earth Sciences, 2019, 49(3): 499-520.
    [5] 周世新,邹红亮,解启来,等. 沉积盆地油气形成过程中有机—无机相互作用[J]. 天然气地球科学,2006,17(1):42-47.

    Zhou Shixin, Zou Hongliang, Xie Qilai, et al. Organic-inorganic interactions during the formation of oils in sedimentary basin[J]. Natural Gas Geoscience, 2006, 17(1): 42-47.
    [6] 刘佳宜,刘全有,朱东亚,等. 深部流体对有机质生烃演化过程的影响[J]. 天然气地球科学,2019,30(4):478-492.

    Liu Jiayi, Liu Quanyou, Zhu Dongya, et al. Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process[J]. Natural Gas Geoscience, 2019, 30(4): 478-492.
    [7] Lewan M D. Laboratory simulation of petroleum formation[M]//Engel M H, Macko S A. Organic geochemistry. New York: Springer, 1993: 419-442.
    [8] Lewan M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723.
    [9] Lewan M D. Evaluation of petroleum generation by hydrous phrolysis experimentation[J]. Philosophical Transactions of the Royal Society Series A, Mathematical, Physical and Sciences, 1985, 315(1531): 123-134.
    [10] 赵桂瑜,李术元,刘洛夫. 碳酸盐岩干酪根催化降解生烃过程及动力学研究[J]. 地质科学,2005,40(1):47-54.

    Zhao Guiyu, Li Shuyuan, Liu Luofu. A study on characteristics and kinetics of catalytic degradation from kerogen in carbonate rocks[J]. Chinese Journal of Geology, 2005, 40(1): 47-54.
    [11] 李术元,林世静,郭绍辉,等. 无机盐类对干酪根生烃过程的影响[J]. 地球化学,2002,31(1):15-20.

    Li Shuyuan, Lin Shijing, Guo Shaohui, et al. Effects of inorganic salts on the hydrocarbon generation from kerogens[J]. Geochimica, 2002, 31(1): 15-20.
    [12] Brooks B T. Evidence of catalytic action in petroleum formation[J]. Industrial & Engineering Chemistry, 1952, 44(11): 2570-2577.
    [13] Brooks B T. Active-surface catalysts in formation of petroleum[J]. AAPG Bulletin, 1948, 32(12): 2269-2286.
    [14] Mango F D. The stability of hydrocarbons under the time-temperature conditions of petroleum genesis[J]. Nature, 1991, 352(6331): 146-148.
    [15] Mango F D, Hightower J W, James A T. Role of transition-metal catalysis in the formation of natural gas[J]. Nature, 1994, 368(6471): 536-538.
    [16] 蔡春芳,李宏涛. 沉积盆地热化学硫酸盐还原作用评述[J]. 地球科学进展,2005,20(10):1100-1105.

    Cai Chunfang, Li Hongtao. Thermochemical sulfate reduction in sedimentary basins: A review[J]. Advances in Earth Science, 2005, 20(10): 1100-1105.
    [17] Orr W L. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas[C]//Proceeding of the 7th international mecting on organic geochemistry. Madrid: Enadimsa, 1977: 571-597.
    [18] 戴金星. 中国含硫化氢的天然气分布特征、分类及其成因探讨[J]. 沉积学报,1985,3(4):109-120.

    Dai Jinxing. Distribution, classification and origin of natural gas with hydrogen sulphide in China[J]. Acta Sedimentologica Sinica, 1985, 3(4): 109-120.
    [19] Walters C C, Wang F C, Qian K A, et al. Petroleum alteration by thermochemical sulfate reduction: A comprehensive molecular study of aromatic hydrocarbons and polar compounds[J]. Geochimica et Cosmochimica Acta, 2015, 153: 37-71.
    [20] Cai C F, Worden R H, Bottrell S H, et al. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China[J]. Chemical Geology, 2003, 202(1/2): 39-57.
    [21] 朱光有,张水昌,梁英波,等. 川东北飞仙关组高含H2S气藏特征与TSR对烃类的消耗作用[J]. 沉积学报,2006,24(2):300-308.

    Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Characteristics of gas reservoirs with high content of H2S in the northeastern Sichuan Basin and the consumption of hydrocarbons due to TSR[J]. Acta Sedimentologica Sinica, 2006, 24(2): 300-308.
    [22] 杜春国,郝芳,邹华耀,等. 热化学硫酸盐还原作用对碳酸盐岩气藏的化学改造:以川东北地区长兴组—飞仙关组气藏为例[J]. 地质学报,2007,81(1):119-126.

    Du Chunguo, Hao Fang, Zou Huayao, et al. Effect of thermochemical sulfate reduction upon carbonate gas reservoir: An example from the northeast Sichuan Basin[J]. Acta Geologica Sinica, 2007, 81(1): 119-126.
    [23] Amrani A, Deev A, Sessions A L, et al. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2012, 84: 152-164.
    [24] Meshoulam A, Ellis G S, Said Ahmad W, et al. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis[J]. Geochimica et Cosmochimica Acta, 2016, 188: 73-92.
    [25] Wei Z B, Walters C C, Moldowan J M, et al. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Organic Geochemistry, 2012, 44: 53-70.
    [26] Wei Z B, Moldowan J M, Fago F, et al. Origins of thiadiamondoids and diamondoidthiols in petroleum[J]. Energy & Fuels, 2007, 21(6): 3431-3436.
    [27] Hanin S, Adam P, Kowalewski I, et al. Bridgehead alkylated 2-thiaadamantanes: Novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002(16): 1750-1751.
    [28] Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry, 1995, 10(4): 373-389.
    [29] 袁玉松,郝运轻,刘全有,等. TSR烃类化学损耗评价:II四川盆地含硫化氢天然气藏TSR烃类损耗程度[J]. 海相油气地质,2021,26(3):193-199.

    Yuan Yusong, Hao Yunqing, Liu Quanyou, et al. Evaluation of TSR hydrocarbon chemical loss: II. TSR hydrocarbon loss degree of H2S-bearing natural gas reservoir in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2021, 26(3): 193-199.
    [30] Kelemen S R, Walters C C, Kwiatek P J, et al. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration[J]. Organic Geochemistry, 2008, 39(8): 1137-1143.
    [31] Kelemen S R, Walters C C, Kwiatek P J, et al. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5305-5332.
    [32] Zhang T W, Amrani A, Ellis G S, et al. Experimental investigation on thermochemical sulfate reduction by H2S initiation[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3518-3530.
    [33] 马中良,郑伦举,李志明,等. 盐类物质对泥质烃源岩生排烃过程的影响[J]. 西南石油大学学报(自然科学版),2013,35(1):43-51.

    Ma Zhongliang, Zheng Lunju, Li Zhiming, et al. The effect of salts on hydrocarbon generation and expulsion of argillaceous source rock[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1): 43-51.
    [34] Wu J, Qi W, Jiang F J, et al. Influence of sulfate on the generation of bitumen components from kerogen decomposition during catagenesis[J]. Petroleum Science, 2021, 18(6): 1611-1618.
    [35] 王娟. 咸化环境盐类物质与有机质相互作用研究[D]. 青岛:中国石油大学,2009.

    Wang Juan. A study on interaction of source rock and oil with evaporates in saline-lake facies[D]. Qingdao: China University of Petroleum, 2009.
    [36] Li M J, Wang T G, Simoneit B R T, et al. Qualitative and quantitative analysis of dibenzothiophene, its methylated homologues, and benzonaphthothiophenes in crude oils, coal, and sediment extracts[J]. Journal of Chromatography A, 2012, 1233: 126-136.
    [37] Li M J, Simoneit B R T, Zhong N N, et al. The distribution and origin of dimethyldibenzothiophenes in sediment extracts from the Liaohe Basin, East China[J]. Organic Geochemistry, 2013, 65: 63-73.
    [38] 师生宝,李美俊,朱雷. 石油及沉积有机质中C1-和C2-烷基二苯并噻吩鉴定及分布[J]. 石油实验地质,2014,36(5):612-617.

    Shi Shengbao, Li Meijun, Zhu Lei. Identification and distribution of C1-and C2-alkylated dibenzothiophenes in petroleum and sedimentary organic matter[J]. Petroleum Geology & Experiment, 2014, 36(5): 612-617.
    [39] 慕小水. 东濮凹陷文留地区含盐层系油气成藏机理与模式[D]. 北京:中国地质大学(北京),2011.

    Mu Xiaoshui. Hydrocarbon reservoir formation mechanism and pattern for saline series in Wenliu area, Dongpu Depression[D]. Beijing: China University of Geosciences (Beijing), 2011.
    [40] 李术元,郭绍辉,郑红霞,等. 褐煤催化降解生烃过程的动力学研究[J]. 石油勘探与开发,1997,24(3):21-23.

    Li Shuyuan, Guo Shaohui, Zheng Hongxia, et al. A study of catalytic degradation kinetics of Fanshi lignite[J]. Petroleum Exploration and Development, 1997, 24(3): 21-23.
    [41] Jin X, Wu J, Fang P, et al. Kinetics and fate of organosulphur compounds during the metagenesis stage of thermal maturation: Hydrous pyrolysis investigations on dibenzothiophene[J]. Marine and Petroleum Geology, 2021, 130: 105129.
    [42] Worden R H, Smalley P C, Oxtoby N H. Gas souring by thermochemical sulfate reduction at 140°C[J]. AAPG Bulletin, 1995, 79(6): 854-863.
    [43] Heydari E. The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi[J]. AAPG Bulletin, 1997, 81(1): 26-45.
    [44] 田继先,赵健,张静,等. 柴达木盆地英雄岭地区硫化氢形成机理及分布预测[J]. 岩性油气藏,2020,32(5):84-92.

    Tian Jixian, Zhao Jian, Zhang Jing, et al. Formation mechanism and distribution prediction of hydrogen sulfide in Yingxiongling area, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(5): 84-92.
    [45] 吴嘉,齐雯,罗情勇,等. 二甲基二苯并噻吩生成实验及地球化学意义[J]. 石油实验地质,2019,41(2):260-267.

    Wu Jia, Qi Wen, Luo Qingyong, et al. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications[J]. Petroleum Geology & Experiment, 2019, 41(2): 260-267.
    [46] Asif M, Alexander R, Fazeelat T, et al. Sedimentary processes for the geosynthesis of heterocyclic aromatic hydrocarbons and fluorenes by surface reactions[J]. Organic Geochemistry, 2010, 41(5): 522-530.
    [47] 夏燕青,孟仟祥,王红勇,等. 芴系列化合物的成因[J]. 沉积学报,1999,17(4):655-658.

    Xia Yanqing, Meng Qianxiang, Wang Hongyong, et al. The mechanism on formation of fluorene series compounds[J]. Acta Sedimentologica Sinica, 1999, 17(4): 655-658.
    [48] Amrani A, Zhang T W, Ma Q S, et al. The role of labile sulfur compounds in thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2960-2972.
    [49] Jin X, Wu J, Silva R C, et al. Alternate routes to sustainable energy recovery from fossil fuels reservoirs. Part 1. Investigation of high-temperature reactions between sulfur oxy anions and crude oil[J]. Fuel, 2021, 302: 121050.
    [50] 吴治君,罗斌杰,王有孝,等. 塔里木盆地原油中二苯并噻吩的分布及主力油源岩类型判识[J]. 沉积学报,1995,13(3):98-106.

    Wu Zhijun, Luo Binjie, Wang Youxiao, et al. Distribution of dibenzothiophenes in crude oils from Tarim Basin and identification of major source rock types[J]. Acta Sedimentologica Sinica, 1995, 13(3): 98-106.
    [51] Claypool G E, Mancini E A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama[J]. AAPG Bulletin, 1989, 73(7): 904-924.
    [52] Rooney M A, Claypool G E, Chung H M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3/4): 219-232.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  / Tables(2)

Article Metrics

Article views(81) PDF downloads(21) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-07-08
  • Revised:  2022-10-14
  • Accepted:  2022-11-04
  • Published:  2024-08-10

Influence of Gypsum on the Distribution of Aromatic Molecules During Catagenesis and Its Geochemical Significance

doi: 10.14027/j.issn.1000-0550.2022.132
Funds:

Funding of CNPC 2018D-500804

National Natural Science Foundation of China 41403049

National Natural Science Foundation of China 42273052

National Science and Technology Major Project 2016ZX05007-002

Abstract: 

Objective  The reactions between sulfates and sedimentary organic matter are typical organic⁃inorganic interactions in sedimentary basins. During the early stage of catagenesis, the thermal evolution of sedimentary organic matters would be influenced by the presence of sulfate. Investigations on thermal evolution of aromatic fraction compositions in the corresponding system will improve the understanding its geochemical behaviors.   Methods  In this study, the effect of sulfate on the thermal evolution of kerogen was investigated by hydrous pyrolysis. The source rock and the corresponding sulfur-bearing kerogen were sampled from the Pingliang Formation on the southwestern margin of the Ordos Basin.   Results  Experimental results showed that the presence of sulfate promotes the yields of soluble organic matters, as well as the generation peak of aromatic fractions in the early stage. Moreover, the organosulfur compounds, might be oxidized by sulfate during the early stage of catagenesis, which led to the decreasing of generation of dibenzothiophene. It would result in the significant discrepancies of aromatic fraction compositions between two group experiments. Therefore, there was a stage of oxidative degradation between sulfate and sedimentary organic matter before hydrocarbon generation peak. In this stage, the majority of production is polar organic compounds, such as oxygen-bearing compounds. Dibenzothiophene was derived from organosulfur compounds.   Conclusions  These understandings enlarged the reaction region between sulfate and sedimentary organic matters to the gypsum-bearing source rock during catagenesis with lower thermal stress.

WU Jia, WANG Yuan, QI Wen, SHI ShengBao, JIANG FuJie, ZHANG ChunLin. Influence of Gypsum on the Distribution of Aromatic Molecules During Catagenesis and Its Geochemical Significance[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1401-1410. doi: 10.14027/j.issn.1000-0550.2022.132
Citation: WU Jia, WANG Yuan, QI Wen, SHI ShengBao, JIANG FuJie, ZHANG ChunLin. Influence of Gypsum on the Distribution of Aromatic Molecules During Catagenesis and Its Geochemical Significance[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1401-1410. doi: 10.14027/j.issn.1000-0550.2022.132
  • 传统的油气生成理论指出,石油和天然气的形成是沉积有机质在地质时间尺度上发生的向烃类转化的复杂化学反应过程,受时间、温压条件及干酪根性质等因素的控制[1]。随着对生烃过程认识的不断深化,学者们发现地下无机环境也对沉积有机质的演化及其组成存在重要影响[26]。例如,通过封闭体系下烃源岩和干酪根含水热解和无水热解的对比研究,发现水可以参与干酪根生烃过程,并为生烃提供氢元素[79]。同样,一系列对比实验研究了黏土矿物、无机盐类和金属元素等无机组分对沉积有机质生烃过程的影响及其程度,结果表明这些无机物在该过程中可以作为反应物或催化剂[1015]。碳酸盐岩储层地质观察和热模拟实验研究还揭示了膏岩与原油之间的热化学硫酸盐还原(Thermochemical Sulfate Reduction,TSR)反应会破坏原油,生成H2S、CO2和固体沥青,并使原油品质降低[1619]

    通常认为,油藏TSR反应是一种在较高热应力下方可发生的次生蚀变现象。目前,研究较多的是该过程的含硫产物。例如,H2S[2022]、噻吩类或硫代金刚烷等含硫有机物[2329]、高度芳构化且富硫的固体沥青[3031]等。基于地质观察和热模拟研究对这些含硫产物行为的认识,目前认为油藏TSR反应可划分为两个阶段:第一阶段为非催化反应阶段,始于H2S的出现,终于H2S的加速生成;第二阶段为催化反应阶段,H2S与烃类生成不稳定含硫有机物(Labile Sulfur Compounds,LSC),产生自催化效应,加速反应进行[32]。此后,Amrani et al.[23]和Meshoulam et al.[24]对比了TSR反应过程中苯并噻吩类(benzothiophenes, BTs)和二苯并噻吩类化合物(dibenzothiophenes, DBTs)的硫同位素差异,提出用Δδ34S(BTs-DBTs)来判断TSR反应进行的阶段。需要注意的是,该指标合理应用的前提是所涉及的含硫化合物均是TSR反应中硫酸盐被还原后参与反应形成的产物。

    然而,在后生作用阶段,硫酸盐会氧化沉积有机质,对有机质生烃有促进作用[11,3335]。该过程的主要营力是温度,属于热应力作用下的硫酸盐与沉积有机质相互作用过程,其产物以可溶有机质为主,气体产率极低,同时会生成有机含硫化合物(Organosulfur Compounds,OSCs)。由于此时的硫酸盐尚未被还原成低价态的S,故不会参与OSCs的生成过程。因此,在热应力较低时,硫酸盐与沉积有机质的相互作用方式理应不同于热应力较高时的反应机理,对应的OSCs的地化行为也会不同。本研究通过热模拟实验,研究膏岩对有机硫含量较高干酪根热演化产物中典型芳烃化合物分布的影响,明确了在后生作用阶段早期膏岩与沉积有机质的反应性,并提出膏岩与沉积有机质相互作用阶段划分的新方式。

  • 实验样品为鄂尔多斯盆地西南缘平凉组含膏烃源岩。X射线衍射检测烃源岩样品含65.5%硬石膏、33.3%白云石、1.7%菱铁矿和0.5%石英。粉碎筛至100~200 目后,加入过量稀盐酸加温处理,除去白云石和菱铁矿等无机碳。用去离子水洗净剩余粉末,并在80 ℃下烘至恒重,得到以硬石膏为主的矿物颗粒粉末,作为与干酪根同沉积的膏岩样品用于后续实验(简称“膏岩”)。对应的干酪根样品由中国石化中原油田公司勘探开发研究院制备,其TOC为70.48%,总硫含量为3.94%。岩石热解测试显示干酪根样品的氢指数为482 mg/g TOC,Tmax为432 ℃,表明其为II型低熟干酪根。

  • 本研究设置了两组对照实验。实验A组用酸处理后的膏岩与干酪根混合制成样品(质量比1∶1),其TOC为43.78%;实验B组为对照组,以原始平凉组干酪根为样品。

    本研究所有的含水热解实验,均在中国石油大学(北京)油气资源与工程全国重点实验室采用ST-120-II金管热模拟装置完成。黄金管长60 mm,内径5.50 mm,壁厚0.25 mm。金管预先在丁烷—空气焰中加热至800 ℃以除去残余在金管表面的有机质,再用PUK U4显微镜氩弧焊机(Lampert Werktechnik)将一端封闭。实验所用样品和去离子水的准确质量是通过电子天平称量得到的,测量精度为1 mg。

    样品和去离子水放入金管后,用氩气吹扫金管内部5 min以除去空气,之后将黄金管开口端密封。密封后的金管放入不锈钢高压釜中,每个高压釜先在30 min内升至250 ℃,再以2 ℃/h升至目标温度,恒温24 h。实验设计4个目标温度点,温度间隔为48 °C,温度范围为300 °C~444 °C。为了防止金管因实验过程中产生的气体产物的热膨胀而破裂,每个高压釜的内部压力保持在30 MPa。

  • 热模拟实验结束后,将金管剪成两段,连同产物放入装有4 mL二氯甲烷的收集瓶中并超声震荡萃取有机质10 min。萃取后的产物过滤后挥干,恒重可溶有机质产量。用正己烷过滤沥青质,将除去沥青质后的溶液注入装有吸附剂(硅胶和氧化铝)的柱色层中,用石油醚溶剂洗脱出饱和烃,用二氯甲烷与石油醚(V/V=2∶1)混合溶剂洗脱出芳烃,用二氯甲烷加甲醇洗脱出非烃[3637]

  • 气相色谱—质谱(GC-MS)检测在中国石油大学(北京)油气资源与探测国家重点实验室完成,仪器设备为Agilent 6890GC-5975i MS气质联用仪,配置HP-5MS(5%的苯基甲基聚硅氧烷)弹性石英毛细柱(60 m×0.25 mm×0.25 μm)。色谱分离采用程序升温,GC柱温度初始设定为80 ℃,恒温1 min,以3 ℃/min的升温速率升至310 ℃,并恒温保持20 min,载气为He,流量为1 mL/min,平均柱流速为26 cm/s;进样方式采用不分流进样,进样口温度保持在300 °C。质谱分析中离子源采用电子轰击(EI)方式,电离电压70 eV,离子源温度230 ℃,质量扫描范围m/z=50~600,数据采集以全扫描(SCAN)+选择离子(SIM)方式同时采集。

  • 从300 ℃到348 ℃,随温度升高,含膏岩组和不含膏岩组的可溶有机质产率均有所增加(表1),且两组实验在348 ℃时可溶有机质产率均达到最大值,但含膏岩组可溶有机质产率最大值(A组237 mg/g TOC)较不含膏岩组(B组167 mg/g TOC)更高。从348 ℃到396 ℃,两组实验的可溶有机质产率均降低,且含膏岩的A组降低幅度更大。444 ℃时,两组实验的可溶有机质产率达到最低值。

    实验编号温度/℃Easy%Ro/%干酪根/mg膏岩/mg可溶有机质产量/mg可溶有机质产率/(mg/g TOC)芳烃产量/mg芳烃产率/(mg/g TOC)
    A13000.6653532.1560.411
    A23480.9452528.72372.363
    A33961.4955553.0770.615
    A44442.2934341.0420.833
    B13000.66541.539
    B23480.94516.01671.542
    B33961.49504.71332.262
    B44442.29491.749
    注:—表示不含或未检出。

    Table 1.  Experimental conditions and yields of soluble organic matter and aromatic hydrocarbon fractions

    A组含膏岩的实验中,芳烃产率在348 ℃时达到最大值63 mg/g TOC,之后随温度升高而降低,到444 ℃时降低至33 mg/g TOC;而在B组不含膏岩的实验中,芳烃产率在396 ℃时才达到最大值62 mg/g TOC,在444 ℃时芳烃族组分低于检出限(表1)。

  • 热模拟实验后的芳烃馏分进行GC-MS检测。通过对照文献中相关化合物的相对保留时间指数和标准图谱,对本研究中芳烃族组分的二苯并噻吩(DBT)、菲(Ph)和芴(Fl)进行了鉴定[38]。其中,在质核比(m/z)为184的质量色谱图上鉴定了DBT,在m/z为178的质量色谱图上鉴定了Ph,在m/z为166的质量色谱图上鉴定了Fl。

    本文根据热模拟产物的GC-MS检测结果,对二苯并噻吩、菲、芴进行了积分,计算得到不同成熟度下二苯并噻吩/菲(DBT/Ph)和二苯并噻吩/芴(DBT/Fl)的比值变化见表2。随着实验热应力的增加,含膏岩的A组实验中,DBT/Ph从1.05先减小至0.02,在Easy%Ro达到2.71%时又增大至0.26;不含膏岩的B组实验中,DBT/Ph随成熟度增加从1.05持续减小至0.02。然而,对应的DBT/FL在A组实验中持续降低(18.64~3.12),而在B组实验中先快速增大,后又快速降低。

    实验编号温度/℃Easy%Ro/%二苯并噻吩/菲(DBT/Ph)二苯并噻吩/菲(DBT/Fl)
    A13000.661.0518.64
    A23480.940.0818.49
    A33961.490.0215.40
    A44442.290.263.12
    B13000.661.042.83
    B23480.940.0821.59
    B33961.490.0441.90
    B44442.290.029.57

    Table 2.  Ratios of aromatic molecules in products of thermal simulation experiments

  • A组实验体系中的无机矿物是石英和硬石膏。其中,石英是化学惰性的,在热模拟实验中不会对生烃产生影响。因此,本研究中两组实验不同的现象主要是由硫酸盐引起的。在后生作用早期(Easy%Ro=0.66%~0.94%),膏岩的存在促进了干酪根的生烃,导致其可溶有机质产率有所增加(图1a)。这与前人的实验研究结果相一致。在无水开放体系中,Rock-Eval检测结果表明硫酸盐的加入会使得干酪根样品的S2增加,Tmax降低[11,33]。在含水半开放体系中,生排烃实验结果揭示了硫酸盐的存在也会导致生烃活化能明显降低,生油高峰提前[33,35,3940]。结合本研究的结果可知,无论在何种体系中,硫酸盐均可以促进干酪根热解生烃,其原因应该是硫酸盐与干酪根之间的直接反应,故必然影响反应后的产物化学组成。

    Figure 1.  Yields of products vs. thermal maturity

    基于可溶有机质产率可将本研究的生烃过程划分为两个阶段:生油高峰前(Easy%Ro=0.66%~0.94%)和生油高峰后(Easy%Ro=0.94%~1.49%)。这与生油高峰在Ro≈1.0%附近的传统认识相符。在生油高峰前,两个系列实验中的芳烃产率未见显著差异。但是,B组实验中芳烃产率的峰值出现在Easy%Ro=1.49%左右,而A组实验的芳烃产率峰值提前至Easy%Ro=0.94%附近。

    这种差异源自两方面的原因。一方面,芳烃族组分为沉积有机质在热应力作用下生成的,在温度低于350 ℃、TSR反应未明显发生时,不会显著消耗可溶有机质中的烃类化合物,使得芳烃族组分产率相对稳定。而当TSR反应显著发生后,可溶有机质产率出现拐点,芳烃族组分产率也一同降低[19]。另一方面,在生油高峰前也存在硫酸盐氧化降解有机质的反应,其产物多为含氧有机化合物,归于极性较高的非烃或沥青质族组分,所以可溶有机质产率增加主要由极性组分含量增加所致[34,41]。综上,热模拟实验结果证实硫酸盐和沉积有机质之间的反应程度与生油高峰存在一定的关联性,以H2S生成速率为标志划分的TSR反应阶段都在生油高峰之后。这与储层TSR反应生成H2S的温度门槛在100 ℃~120 ℃之上的地质观察研究结论是一致的[2,16,28,4244]

  • 基于上述对芳烃产率变化的分析,含膏岩体系中芳烃化合物的分布主要受热应力和硫酸盐两个因素的影响。二苯并噻吩类化合物(DBTs)作为一类典型的含硫分子标志物,在有机质热演化过程中其热稳定性较高。DBTs的形成往往需要无机硫源,但是无机硫变成有机硫主要集中在两个阶段:成岩作用阶段的BSR和次生蚀变作用的TSR。这两个过程均是无机环境中的硫酸盐为DBTs提供了硫源[19],故实验中硫酸盐理应可影响体系中DBTs的分布。简化TSR的反应体系中检测到DBTs的研究很多。但是对于自然体系,因DBTs的多成因路径,需要排除热应力的影响才能准确揭示DBTs在含硫酸盐体系中的变化规律。

    在芳烃化合物中,与DBTs结构类似的分子标志物还包括菲类化合物、芴类化合物、二苯并呋喃类化合物等。这些结构相似的物质往往具有相近的热稳定性。其中,菲类和芴类化合物也是烃类,不受其他杂原子来源的影响,可消除硫酸盐对两类物质净生成的影响。因此,可以通过二苯并噻吩/菲(DBT/Ph)和二苯并噻吩/芴(DBT/Fl)的变化揭示在排除热应力作用后,硫酸盐对典型芳烃分子标志物地球化学行为的影响。

  • DBT/Ph比值在两组实验中的变化趋势整体均呈现下降趋势(图2)。值得注意的是,在Easy%Ro≈1.0%之前,DBT/Ph呈现指数级下降。很可能是因为三环化合物的生成,其芳构化过程使得菲在此阶段大量生成,成为控制DBT/Ph比值的主因。即使DBT浓度受到硫酸盐的影响,相对大幅增长的菲含量,DBT的变化程度无法显现出来。

    Figure 2.  Ratios of dibenzothiophene/phenanthrene vs. maturity in two groups of experiments

    Easy%Ro=1.49%之后,在不含膏岩组中DBT/Ph继续缓慢下降。相反,在含膏岩组中,由于TSR反应的启动,使得反应体系中累积了一定量的还原态S,其可能与联苯类化合物发生化合反应生成了新的DBT[37,4546],使得DBT/Ph的比值在含膏岩组中出现了较明显的升高。因此,DBT/Ph的比值变化可以反映高温下TSR反应启动后对芳烃分子分布的影响,但对热演化早期没有指示作用。

  • 在Easy%Ro=1.49%之前的B组实验中,DBT/Fl比值增大;在A组实验中,该比值减小。在Easy%Ro=1.49%之后,两个实验体系中的DBT/Fl比值均大幅下降至之前一半的水平(图3)。这与DBT和芴生成过程的地球化学行为有关。

    Figure 3.  Ratios of dibenzothiophene/fluorene vs. maturity

    相比于菲,芴有一个碳原子无法参与形成共轭大π键,导致热稳定性也低于菲。芴的化学结构与DBT相同,因此二者的热稳定性也相近,受到热应力的影响基本相同。另外,DBT的前身物是OSCs,而芴的前身物是烃类[47]。两种前身物的化学活性不同,故对化学环境的响应也有差异。

    对于A组实验,Easy%Ro=0.66%~1.49%,硫酸盐会在热应力作用下氧化有机质,且不稳定含硫有机物(LSCs)更容易与硫酸盐反应[48],加速了原始有机质中LSCs的氧化降解。作为DBT形成的前身物,LSCs含量的下降导致该阶段DBT的生成量减少,DBT/Fl比值减小。这种LSCs氧化降解反应随温度增加而加强,导致在Easy%Ro=0.94%~1.49%,硫酸盐对DBT生成的破坏作用更为显著,DBT/Fl比值进一步降低。

    在B组实验中,初始有机质中含有3.94%的有机硫。随着热演化的进行,初始有机质中的OSCs会逐渐形成DBTs,导致Easy%Ro=1.49%之前,DBT的净生成量在同一数量级水平上增加,DBT/Fl比值增加。Easy%Ro=1.49%之后,DBT/Fl下降的原因依然是DBT的丰度下降所致,其中A组实验DBT/Fl下降幅度稍小,是因为TSR反应的启动形成了一部分新的DBT。

    以上两种芳烃化合物比值的变化,揭示了硫酸盐对自然体系干酪根热演化过程的影响,尤其是在不同温度阶段对含硫化合物(DBTs)的生成所产生抑制和促进的两方面作用。在低温阶段破坏了DBT的前身物LSCs,在高温阶段由于还原态S的出现,使得DBT产率小幅增加。因此,对于低熟含S的沉积有机质体系,硫酸盐对其热降解的影响是贯穿整个热演化过程的。

  • Amrani et al.[23]设计了不同原油在CaSO4体系中的含水热解实验,以探究不同含硫化合物在TSR反应过程中的稳定硫同位素分馏现象。其实验结果表明,TSR反应初期BTs和DBTs之间的Δδ34S值相差较大,随着TSR反应程度的加深,该值逐渐减小。据此,Amrani et al.[23]提出用BTs和DBTs之间硫同位素差异来确定TSR反应发生的程度。同样,Meshoulam et al.[24]在使用不同种类的硫酸盐和模型化合物nC16模拟TSR反应时也发现,在实验中后期,实验体系中生成了BT和DBT,并且其单体S同位素的差值也与TSR反应的程度呈现一定的规律性变化。

    需要注意的是,在Meshoulam et al.[24]设计的反应体系中,不论使用何种硫酸盐进行TSR反应,在实验早期(<10 h,Easy%Ro<0.9%)时,产物中无法检测到BT和DBT[24]。但反应时长小于10 h时是有硫酸盐被消耗掉的,该过程应该是烃类和硫酸盐作用产生了一些含氧化合物[19,49]。另外,由于Meshoulam et al.[24]的实验中使用的模型化合物不含原始LSCs,这一阶段不会产生BTs和DBTs。那么,后期产生的DBTs中的硫元素只能来自硫酸盐的被还原。

    然而,BTs和DBTs在热演化过程中的生成途径有多种。TSR反应是无机硫参与生成含硫有机物的途径之一。对于初始含有机硫的有机质来说,那些成熟度低且活性高的LSCs会经历热作用,通过环化形成噻吩环,再产生BTs和DBTs[2,50]。该过程也会发生硫同位素的分馏,但这种分馏效应并不涉及无机硫。有研究表明Chatom原油遭受了显著的TSR[25,5152],但Δδ34S(BTs-DBTs)的值却显示出轻微的TSR程度[23],造成这种差异性现象的原因很可能是受到了热演化过程有机来源BTs和DBTs的影响。

    因此,非TSR生成的BTs和DBTs会影响Δδ34S(BTs-DBTs),在使用该指标进行TSR反应程度判断时,理应注意其适用条件。对于原生OSCs含量较低的轻质油,其在储层中遭受的TSR蚀变作用强度可以用Δδ34S(BTs-DBTs)进行判断。而对于原始含OSCs的储层有机质来说,BTs和DBTs的成因包括了有机和无机来源,硫酸盐与有机质相互作用的阶段性比以往研究的认知更为复杂。Δδ34S(BTs-DBTs)只能适用于高温TSR反应阶段蚀变程度的判断,TSR反应发生的前期,硫酸盐对沉积有机质生烃过程的改造程度不能通过BTs和DBTs之间的硫同位素差异进行判断。

  • 目前人们对硫酸盐与沉积有机质相互作用的认识仍停留在储层中,认为是硫酸盐还原烃类产生H2S和CO2的过程。Zhang et al.[32]通过实验手段对TSR的反应机理进行了更加细致的划分,将TSR反应阶段分为三个阶段。然而,这种对TSR反应阶段的划分只考虑到了硫酸盐对烃类的改造,通过H2S浓度等判断TSR反应程度的方法忽略了前期硫酸盐直接与有机质作用的现象。然而,无论是地质观察,还是热模拟实验,均发现产物中含氧化合物的种类和比例也会随着硫酸盐与有机质反应程度的增加而增加[19,49]。这表明硫酸盐与有机质在反应早期会发生氧化降解,以生成含氧有机产物为主[34]

    本研究基于生烃过程中可溶有机质产率及芳烃分子标志物的变化特征,揭示硫酸盐与沉积有机质相互作用应细化为三个阶段。第一阶段,硫酸盐直接氧化降解沉积有机质,对应Easy%Ro=0.6%~1.0%,该阶段可溶有机质产率增加,以含氧化合物(醇、酚、羧酸等)的生成为主要特征,伴随着硫酸盐对LSCs的氧化降解作用,可能有来自LSCs分解形成的H2S出现,也会影响含硫分子标志物的生成。第二阶段,传统意义上的TSR反应启动或显著发生,Easy%Ro介于1.0%~1.5%,硫酸盐与可溶有机质作用,使得可溶有机质产率下降,同时生成了新的LSCs或价态更低的硫物种。第三阶段,Easy%Ro大于1.5%,在LSCs和H2S的催化作用下,TSR反应进程加快,产生大量H2S(图4)。

    Figure 4.  Stages of the interaction between sulfate and sedimentary organic matter

    由于沉积有机质热演化过程中后生作用阶段和变生作用阶段的主要营力都是热应力,因此,成岩作用阶段之后的硫酸盐与沉积有机质都应属于热化学硫酸盐还原反应的范畴。我们将其称之为广义TSR过程。TSR反应内涵的延伸,拓展了TSR反应过程发生的门槛和时空的限制,将TSR反应的研究范围从储层扩展到了含膏泥岩或者海相烃源岩地层。为解释对应地区后生作用阶段,对应烃源岩的特殊热演化行为提供了新的思考方向。

  • (1) 本研究通过热模拟实验证实,后生作用早期硫酸盐破坏LSCs是导致DBTs含量变化的潜在原因,这表明在有机质热演化早期膏岩矿物即可与沉积有机质发生相互作用。

    (2) 硫酸盐与沉积有机质的反应过程可划分为三个阶段。在TSR的非催化反应阶段之前,存在一个氧化降解阶段,其产物不以含硫化合物为特征,即第一阶段;第二阶段为传统意义上的TSR反应启动阶段;第三阶段是在还原性含硫化合物的催化作用下,TSR反应加速发生的阶段。该认识将硫酸盐与沉积有机质之间的相互作用从高温储层拓展至热应力更低的后生作用阶段含膏烃源岩中。

Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return