Advanced Search
Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents

WANG ZhaoDuo, HUANG ChunChang, ZHOU YaLi, CHEN YingLu, SHANG RuiQing, ZHA XiaoChun, PANG JiangLi. Surface Processes Indicated by Grain Size of Holocene Palaeoflood Sedimentary Sequences in the Ruhe, a Tributary of the Huaihe River[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1268-1278. doi: 10.14027/j.issn.1000-0550.2022.130
Citation: WANG ZhaoDuo, HUANG ChunChang, ZHOU YaLi, CHEN YingLu, SHANG RuiQing, ZHA XiaoChun, PANG JiangLi. Surface Processes Indicated by Grain Size of Holocene Palaeoflood Sedimentary Sequences in the Ruhe, a Tributary of the Huaihe River[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1268-1278. doi: 10.14027/j.issn.1000-0550.2022.130

Surface Processes Indicated by Grain Size of Holocene Palaeoflood Sedimentary Sequences in the Ruhe, a Tributary of the Huaihe River

doi: 10.14027/j.issn.1000-0550.2022.130
cstr: 32268.14.cjxb.62-1038.2022.130
Funds:

National Natural Science Foundation of China 42171092

Natural Science Foundation of Gansu Province 23JRRA1660

Talent Introduction Foundation of Gansu Academy of Sciences QD2023-04

  • Received Date: 2022-03-01
  • Accepted Date: 2022-10-28
  • Available Online: 2022-10-28
  • Publish Date: 2024-08-10
  • Results  From this sedimentary sequence, four EM components with different provenance and sedimentary significance were analyzed by the nonparametric method. With the exception of the modern flood sediment and fine sand layers of the floodplain facies, the other layers in each stratigraphic soil unit exhibited characteristics of mixing and superposition of multi-EM components.   Conclusions  Combined with the comprehensive analysis of the macroscopic characteristics and physical and chemical properties in the field, the EM 1 component were shown to represent the far distal source aeolian sediments of the northwest monsoon dust storm and the products of the weathering and soil transformation, and the EM 2 component represents the proximal sediment of the loose sediment sandstorm in the northeast wind blown Yellow River flood plain. The EM 3 components represented the sediments of the suspended sediment of the river flood in the high water level stagnation environment, and the EM 4 components were the floodplain water of the river in the channel Sediment under dynamic action. This shows that the end member analysis of the whole sample grain size can more clearly reflect the diverse sedimentary dynamic characteristics of the Ruhe River Basin. This study has important scientific significance for a profound understanding of the evolution of the Holocene environment and surface processes in the Huaihe River Basin.   [Objective and Methods]  For a profound understanding of the evolution of the Holocene environment and surface processes in the Huaihe River Basin. Through a detailed field investigation in the Huaihe River Basin, a Holocene loess soil stratigraphic profile with multiple layers of paleo-flood stagnant sediments was found at the front of the first-level river terrace in the Zhushixiang section of the upper reaches of the Ruhe River. The section was observed and measured in detail, stratigraphic division and stratified sampling were conducted, and various index analysis and research are performed in the laboratory. In this study, based on the previous study of sedimentological properties and dating, the end member (EM) analysis method was used to analyze the grain size components and further reveal the provenance of this palaeoflood sediment sequence and the change law of its sedimentary dynamic characteristics.

  • [1] 丁一汇. 论河南“75.8”特大暴雨的研究:回顾与评述[J]. 气象学报,2015,73(3):411-424.

    Ding Yihui. On the study of the unprecedented heavy rainfall in Henan province during 4-8 August 1975[J]. Acta Meteorologica Sinica, 2015, 73(3): 411-424.
    [2] 郭生练,刘章君,熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报,2016,47(3):302-314.

    Guo Shenglian, Liu Zhangjun, Xiong Lihua. Advances and assessment on design flood estimation methods[J]. Journal of Hydraulic Engineering, 2016, 47(3): 302-314.
    [3] Kochel R C, Baker V R. Paleoflood hydrology[J]. Science, 1982, 215(4531): 353-361.
    [4] Baker V R. Paleoflood hydrology and extraordinary flood events[J]. Journal of Hydrology, 1987, 96(1/2/3/4): 79-99.
    [5] 葛兆帅,杨达源,李徐生,等. 晚更新世晚期以来的长江上游古洪水记录[J]. 第四纪研究,2004,24(5):555-560.

    Ge Zhaoshuai, Yang Dayuan, Li Xusheng, et al. The paleoflooding record along the up-reaches of the Changjiang River since the Late Pleistocene Epoch[J]. Quaternary Sciences, 2004, 24(5): 555-560.
    [6] 朱诚,郑朝贵,马春梅,等. 长江三峡库区中坝遗址地层古洪水沉积判别研究[J]. 科学通报,2005,50(20):2240-2250.

    Zhu Cheng, Zheng Chaogui, Ma Chunmei, et al. Identifying paleoflood deposits archived in Zhongba Site, the Three Gorges reservoir region of the Yangtze River, China[J]. Chinese Science Bulletin, 2005, 50(20): 2240-2250.
    [7] 谢远云,李长安,王秋良,等. 江汉平原近3000年来古洪水事件的沉积记录[J]. 地理科学,2007,27(1):81-84.

    Xie Yuanyun, Li Chang'an, Wang Qiuliang, et al. Sedimentary records of paleoflood events during the last 3000 years in Jianghan plain[J]. Scientia Geographica Sinica, 2007, 27(1): 81-84.
    [8] 张俊娜,夏正楷. 中原地区4ka BP前后异常洪水事件的沉积证据[J]. 地理学报,2011,66(5):685-697.

    Zhang Junna, Xia Zhengkai. Deposition evidences of the 4 ka BP flood events in central China plains[J]. Acta Geographica Sinica, 2011, 66(5): 685-697.
    [9] 王军,高红山,潘保田,等. 早全新世沙沟河古洪水沉积及其对气候变化的响应[J]. 地理科学,2010,30(6):943-949.

    Wang Jun, Gao Hongshan, Pan Baotian, et al. Pleoflood sediment of Shagou river and its response to the climate change during Early Holocene[J]. Scientia Geographica Sinica, 2010, 30(6): 943-949.
    [10] 吴立,朱诚,李枫,等. 江汉平原钟桥遗址地层揭示的史前洪水事件[J]. 地理学报,2015,70(7):1149-1164.

    Wu Li, Zhu Cheng, Li Feng, et al. Prehistoric flood events recorded at the Zhongqiao neolithic site in the Jianghan plain, central China[J]. Acta Geographica Sinica, 2015, 70(7): 1149-1164.
    [11] 张信宝. 青海民和喇家遗址的古地震与古溃决洪水质疑[J]. 山地学报,2017,35(3):255-256.

    Zhang Xinbao. On the debate about the evidences of the ancient earthquake and the outburst great flood at Qinghai Minhe Lajia ruins[J]. Mountain Research, 2017, 35(3): 255-256.
    [12] 王敏杰,郑洪波,谢昕,等. 长江流域600年来古洪水:水下三角洲沉积与历史记录对比[J]. 科学通报,2010,55(34):3320-3327.

    Wang Minjie, Zheng Hongbo, Xie Xin, et al. A 600-year flood history in the Yangtze River drainage: Comparison between a subaqueous delta and historical records[J]. Chinese Science Bulletin, 2010, 55(34): 3320-3327.
    [13] Knox J C. Sensitivity of modern and Holocene floods to climate change[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 439-457.
    [14] Benito G, Lang M, Barriendos M, et al. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods[J]. Natural Hazards, 2004, 31(3): 623-643.
    [15] Turzewski M D, Huntington K W, Licht A, et al. Provenance and erosional impact of Quaternary megafloods through the Yarlung-Tsangpo Gorge from zircon U-Pb geochronology of flood deposits, eastern Himalaya[J]. Earth and Planetary Science Letters, 2020, 535: 116113.
    [16] Borgohain B, Mathew G, Chauhan N, et al. Evidence of episodically accelerated denudation on the Namche Barwa massif (eastern Himalayan syntaxis) by megafloods[J]. Quaternary Science Reviews, 2020, 245: 106410.
    [17] 黄春长,庞奖励,查小春,等. 黄河流域关中盆地史前大洪水研究:以周原漆水河谷地为例[J]. 中国科学(D辑):地球科学,2011,41(11):1658-1669.

    Huang Chunchang, Pang Jiangli, Zha Xiaochun, et al. Prehistorical floods in the Guanzhong Basin in the Yellow River drainage area: A case study along the Qishuihe River valley over the Zhouyuan loess tableland[J]. Science China (Seri. D): Earth Sciences, 2011, 41(11): 1658-1669.
    [18] 黄春长,李晓刚,庞奖励,等. 黄河永和关段全新世古洪水研究[J]. 地理学报,2012,67(11):1493-1504.

    Huang Chunchang, Li Xiaogang, Pang Jiangli, et al. Palaeoflood sedimentological and hydrological studies on the Yongheguan reach in the middle Yellow River[J]. Acta Geographica Sinica, 2012, 67(11): 1493-1504.
    [19] 黄春长. 若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示[J]. 地理学报,2021,76(3):612-625.

    Huang Chunchang. Palaeoflood deposits in the Zoige Basin and the enlightening on the formation of the Yellow River drainage system on the Tibetan Plateau[J]. Acta Geographica Sinica, 2021, 76(3): 612-625.
    [20] Huang C C, Pang J L, Zha X C, et al. Sedimentary records of extraordinary floods at the ending of the mid-Holocene Climatic Optimum along the upper Weihe River, China[J]. The Holocene, 2012, 22(6): 675-686.
    [21] Huang C C, Pang J L, Zha X C, et al. Extraordinary hydro-climatic events during the period AD 200-300 recorded by slackwater deposits in the upper Hanjiang River valley, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 274-283.
    [22] Zhang Y Z, Huang C C, Pang J L, et al. Holocene palaeoflood events recorded by slackwater deposits along the middle Beiluohe River valley, middle Yellow River Basin, China[J]. Boreas, 2015, 44(1): 127-138.
    [23] Guo Y Q, Huang C C, Zhou Y L, et al. Sedimentary record and luminescence chronology of palaeoflood events along the Gold Gorge of the upper Hanjiang River, middle Yangtze River Basin, China[J]. Journal of Asian Earth Sciences, 2018, 156: 96-110.
    [24] Wang X L, Yang H, Kitch J L, et al. Grain-size characteristics in Lake Fuxian sediments: Implication for dry-humid transformation of Indian summer monsoon over the past 150 years[J]. Journal of Asian Earth Sciences: X, 2021, 6: 100073.
    [25] Dingle E H, Kusack K M, Venditti J G. The gravel-sand transition and grain size gap in river bed sediments[J]. Earth-Science Reviews, 2021, 222: 103838.
    [26] Lu H Y, Wang X Y, Wang X Y, et al. Formation and evolution of Gobi desert in central and eastern Asia[J]. Earth-Science Reviews, 2019, 194: 251-263.
    [27] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549.
    [28] Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1/2): 39-62.
    [29] Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202(3): 409-424.
    [30] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180.
    [31] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
    [32] Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741.
    [33] 张晓东,季阳,杨作升,等. 南黄海表层沉积物粒度端元反演及其对沉积动力环境的指示意义[J]. 中国科学(D辑):地球科学,2015,45(10):1515-1523.

    Zhang Xiaodong, Ji Yang, Yang Zuosheng, et al. End member inversion of surface sediment grain size in the south Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China (Seri. D): Earth Sciences, 2015, 45(10): 1515-1523.
    [34] 钟宁,蒋汉朝,李海兵,等. 岷江上游新磨村湖相沉积物粒度端元反演及其记录的构造和气候事件[J]. 地质学报,2020,94(3):968-981.

    Zhong Ning, Jiang Hanchao, Li Haibing, et al. End member inversion of Xinmocun lacustrine sediments in the upper reaches of the Minjiang River and its recorded tectonic and climate events[J]. Acta Geologica Sinica, 2020, 94(3): 968-981.
    [35] 朱海,张玉芬,李长安. 端元分析在长江武汉段古洪水识别中的应用[J]. 沉积学报,2020,38(2):297-305.

    Zhu Hai, Zhang Yufen, Li Chang’an. The application of end-member analysis in identification of paleo-floods in Wuhan section of the Yangtze River[J]. Acta Sedimentologica Sinica, 2020, 38(2): 297-305.
    [36] Ha H J, Chang T S, Ha H K. Using end-member analysis to determine sediment dispersal and depositional processes on the Heuksan mud belt, southwest Korean shelf[J]. Geo-Marine Letters, 2021, 41(1): 7.
    [37] 梁爱民,屈建军,董治宝,等. 库姆塔格沙漠沉积物粒度端元特征及其物源启示[J]. 中国沙漠,2020,40(2):33-42.

    Liang Aimin, Qu Jianjun, Dong Zhibao, et al. The characteristic of grain size end members in Kumtagh Desert and its implication for sediment source[J]. Journal of Desert Research, 2020, 40(2): 33-42.
    [38] 李越,宋友桂,宗秀兰,等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报,2019,74(1):162-177.

    Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74(1): 162-177.
    [39] 陈莹璐,黄春长,张玉柱,等. 汝河全新世古洪水沉积学与光释光测年研究[J]. 地质学报,2017,91(10):2351-2367.

    Chen Yinglu, Huang Chunchang, Zhang Yuzhu, et al. Sedimentology and OSL dating study of the Holocene palaeoflood on the Ruhe River[J]. Acta Geologica Sinica, 2017, 91(10): 2351-2367.
    [40] 马茜茜,肖建华,姚正毅. 风成沉积物3种粒度参数计算方法比较[J]. 中国沙漠,2020,40(4):95-102.

    Ma Qianqian, Xiao Jianhua, Yao Zhengyi. A comparative study on the three calculation methods of grain-size parameters for aeolian sediments[J]. Journal of Desert Research, 2020, 40(4): 95-102.
    [41] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in sedimentology. Oxford: Blackwell Science Publishing, 1988: 63-85.
    [42] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
    [43] Huang C C, Pang J L, Su H X, et al. Holocene environmental change inferred from the loess-palaeosol sequences adjacent to the floodplain of the Yellow River, China[J]. Quaternary Science Reviews, 2009, 28(25/26): 2633-2646.
    [44] Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the Lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(3)

Article Metrics

Article views(106) PDF downloads(45) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-03-01
  • Accepted:  2022-10-28
  • Published:  2024-08-10

Surface Processes Indicated by Grain Size of Holocene Palaeoflood Sedimentary Sequences in the Ruhe, a Tributary of the Huaihe River

doi: 10.14027/j.issn.1000-0550.2022.130
Funds:

National Natural Science Foundation of China 42171092

Natural Science Foundation of Gansu Province 23JRRA1660

Talent Introduction Foundation of Gansu Academy of Sciences QD2023-04

Abstract: 

Results  From this sedimentary sequence, four EM components with different provenance and sedimentary significance were analyzed by the nonparametric method. With the exception of the modern flood sediment and fine sand layers of the floodplain facies, the other layers in each stratigraphic soil unit exhibited characteristics of mixing and superposition of multi-EM components.   Conclusions  Combined with the comprehensive analysis of the macroscopic characteristics and physical and chemical properties in the field, the EM 1 component were shown to represent the far distal source aeolian sediments of the northwest monsoon dust storm and the products of the weathering and soil transformation, and the EM 2 component represents the proximal sediment of the loose sediment sandstorm in the northeast wind blown Yellow River flood plain. The EM 3 components represented the sediments of the suspended sediment of the river flood in the high water level stagnation environment, and the EM 4 components were the floodplain water of the river in the channel Sediment under dynamic action. This shows that the end member analysis of the whole sample grain size can more clearly reflect the diverse sedimentary dynamic characteristics of the Ruhe River Basin. This study has important scientific significance for a profound understanding of the evolution of the Holocene environment and surface processes in the Huaihe River Basin.   [Objective and Methods]  For a profound understanding of the evolution of the Holocene environment and surface processes in the Huaihe River Basin. Through a detailed field investigation in the Huaihe River Basin, a Holocene loess soil stratigraphic profile with multiple layers of paleo-flood stagnant sediments was found at the front of the first-level river terrace in the Zhushixiang section of the upper reaches of the Ruhe River. The section was observed and measured in detail, stratigraphic division and stratified sampling were conducted, and various index analysis and research are performed in the laboratory. In this study, based on the previous study of sedimentological properties and dating, the end member (EM) analysis method was used to analyze the grain size components and further reveal the provenance of this palaeoflood sediment sequence and the change law of its sedimentary dynamic characteristics.

WANG ZhaoDuo, HUANG ChunChang, ZHOU YaLi, CHEN YingLu, SHANG RuiQing, ZHA XiaoChun, PANG JiangLi. Surface Processes Indicated by Grain Size of Holocene Palaeoflood Sedimentary Sequences in the Ruhe, a Tributary of the Huaihe River[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1268-1278. doi: 10.14027/j.issn.1000-0550.2022.130
Citation: WANG ZhaoDuo, HUANG ChunChang, ZHOU YaLi, CHEN YingLu, SHANG RuiQing, ZHA XiaoChun, PANG JiangLi. Surface Processes Indicated by Grain Size of Holocene Palaeoflood Sedimentary Sequences in the Ruhe, a Tributary of the Huaihe River[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1268-1278. doi: 10.14027/j.issn.1000-0550.2022.130
  • 淮河支流汝河发源于伏牛山区,从历史时期以来,汝河流域暴雨洪水灾害频繁发生,往往使得沿岸地区蒙受重大的生命财产损失。其中“1975.8河南驻马店特大洪水垮坝事件”是规模巨大的毁灭性暴雨洪灾事件。据当时测算,在板桥以上流域3天降水量可达1 008 mm,洪量达6.97×108 m3,洪峰流量达1.3×104 m3/s[1]。为了掌握汝河流域超长尺度暴雨洪水规模与发生规律,需要获得历史和史前时期暴雨洪水水文数据资料[2]。在史料记载缺失或不全的前提下,可从古洪水水文学角度,研究河岸黄土古土壤地层序列,从中鉴别古洪水沉积层,识别河流特大洪水事件,测定其发生年代,重建超长尺度洪水的洪峰水位和流量,延长洪水频率曲线,从而为流域水资源开发利用和防洪减灾提供基础性数据资料[34]。近30~40年以来,国内外古洪水水文学研究迅速发展,取得了一系列重要的研究成果[516]。近年来,我们在黄河和长江流域做了比较系统的古洪水水文学调查研究工作[1723],从沉积学角度提出了全新世古洪水沉积物的野外宏观特征和理化指标特征识别方法,并基于14C和OSL技术测年断代,建立全新世黄土古土壤沉积物地层年代框架,采用水文模型重建古洪水水文学数据资料。同时,深入探讨古洪水事件与气候变化的关系,丰富了我国重要河流超长尺度洪水资料数据库,推动了古洪水水文学学科发展。

    粒度是揭示沉积物在沉积过程中的有效信息指标,其特征往往反映沉积动力、沉积环境和物源特征[2426]。尽管古洪水滞流沉积物(Slack Water Deposit,SWD)和风成沉积物具有不同的沉积动力,但是不同区域上由于受到物源因素等多元化的动力因素叠加作用,不同区域上相应的古洪水SWD粒度特征也是变化多样的,这就给借助粒度判别SWD造成一定的困难。在一个沉积区域,如果沉积动力复杂、物源非单一,其沉积物往往是多种动力和物源综合作用的结果,所以混合粒级组分往往反映总体的沉积学特征[27]。通常,一组沉积物样品往往能够综合反映多种动力作用,由于每一个样品所处位置等条件的不同,其形成过程中受到各动力的强弱有所差异,每一种动力均会使得样品呈现出自然频率曲线特征,粒度自然频率曲线为多个动力组分的叠加[27]。如果从统计学意义上把多元化的沉积动力组分分离出来,更有利于识别单一动力及物源特征。由此有了粒度端元分析模型[27],并经过不断改进[2832],近年来在海洋沉积物、湖泊沉积物、古河道、黄土剖面等沉积学粒度分析中得到比较广泛的应用[3338],在解析复杂动力及物源判断上取得了良好的效果。

    本文在对淮河支流汝河诸市乡(ZSX)剖面沉积物粒度、元素地球化学、OSL测年分析工作的基础上[39],考虑把多种复杂动力进行端元提取,解析研究剖面不同土壤沉积物地层单元可能的沉积动力组分,解释各土壤沉积物地层单元沉积物粒度指示的沉积动力学意义,进一步深刻理解研究剖面土壤沉积物地层序列记录的地表过程变化规律。

  • 汝河水系属于淮河上游北部重要支流,这里受到伏牛山地形的影响,属于暴雨中心地带,在新蔡县的班台水文站处与小洪河交汇,之后至洪河口汇入淮河干流,河道主流全长约223 km,流域面积约7 376 km2图1)。

    Figure 1.  Geographical location of profile ZSX and the Ruhe River water system map

    汝河水系位处河南省中部的低山丘陵向淮河平原过渡地带,汝南沙口以上属于汝河上游流域,主要为浅山地貌特征,汝南沙口以下属于中下游流域,主要为低平洼地和河间冲积平原地貌特征。汝河流域水系在形状呈上宽下窄,河道呈现弯曲特征,在沙口以上的上游地段河床比降为0.21‰,沙口至班台的中下游河段河床比降0.15‰,地形和河道呈现的上陡下缓特点,使得排洪能力低、流路不畅。河流含沙量较低,多年平均值介于0.03~1.69 kg/m3。本研究区流域属于北亚热带季风区向暖温带季风区过渡地带,同时受到地形的影响,具有显著的“无降雨旱、有降雨涝、强降雨洪”的不均衡降雨特点。多年来,年均气温介于11 ℃~16 ℃,受控于地形地貌以及季风气候的影响,洪灾频发。总体上,年内主要降水分布于6—9月份。本流域洪水主要由暴雨形成,自20世纪以来,在淮河流域曾出现过十多次由暴雨形成的洪峰高、流量大、影响范围广的大洪水[1,39]

  • 汝河上游流经驻马店诸市乡(ZSX)段的宽广平原地带,这个河段从总体来看,其河槽相对比较稳定,宽度介于150~200 m,平水位大致低于平原面10 m。野外考察期间属于枯水期,其河水面宽30~40 m,沿河道有河漫滩分布,高出平水面2~3 m。河流一级阶地高出平水位8~10 m,在底部可见分选良好的河漫滩相中细沙层。上部发育全新世风成黄土古土壤沉积层,其层次分布清晰,沉积学特征明显,尚未明显受到人类扰动影响。

    野外实地考察过程当中,在汝河上游诸市乡段一级河流阶地前沿的全新世风成黄土古土壤沉积层剖面中,发现了古洪水SWD层(图2)。选择ZSX剖面开展研究,通过高精度GPS对河水面与剖面顶部海拔测量,并且采用卷尺测量核定剖面顶部河拔为9 m。通过详细的野外宏观特征观察分析,结合地层沉积学以及土壤学特征判别,划分了汝河ZSX剖面基本土壤沉积物地层框架,将ZSX剖面划分为9个地层单元(图3)。在此基础上,对沉积地层单元进行沉积样品的采集并编号,并带回实验室进行粒度分析及地球化学测试分析。与此同时,在各层古洪水滞流沉积物层顶部和底部的风成沉积层中,采集了6个OSL年代样品。并在研究剖面附近的河漫滩表面采集现代洪水SWD样品1个,用作对比。

    Figure 2.  Field characteristics of the Holocene loess⁃soil with palaeoflood SWD in profile ZSX along the Ruhe River

    Figure 3.  Petro⁃stratigraphic subdivisions and sedimentary characteristics of the Holocene loess⁃soil profile containing palaeoflood SWD at site ZSX along the Ruhe River

  • 在野外宏观观察进行分层描述的基础上,采集了各土壤沉积物地层单元对应的代表性沉积学样品,并进行了粒度测试。样品测试工作在陕西师范大学地理科学与旅游学院土壤沉积物与环境变化实验室进行。在样品前处理过程中,首选将所采集样品放在实验室自然风干。然后对风干样品在陶瓷研磨钵中进行粗研磨,充分混合搅拌均匀后称取0.3~0.5 g放入蒸馏水清洗干净的玻璃烧杯中,并贴上带有编号的标签,加少量水用玻璃棒搅拌均匀,随后分别加入过量的HCl(10%)和H2O2(10%),并适当加热,直到没有气泡产生,以去除样品中所含的碳酸盐和有机质。最后添加蒸馏水静置沉淀72 h,并用吸管缓慢吸掉上层清水,反复多次,pH试纸检测溶液呈中性为止,准备上机测试。在上机测试前,需要加入六偏磷酸钠溶液,并在超声波振荡器中震荡20 min使得样品颗粒物充分分散。最后在马尔文激光粒度仪上进行分析,在实验过程中,将遮光度控制在8%~12%,反复测三次,仪器误差控制在4%以下,取平均值。关于OSL测年工作已有专文论述[39],本文不再赘述。

  • 根据测试结果,绘制出ZSX剖面各土壤沉积物地层单元代表样品的粒度自然频率分布曲线(图4)。从曲线形态来看,各土壤沉积物地层单元代表样品粒度频率曲线河漫滩相中细沙和其他土壤沉积物地层差异较大,且呈明显的双峰特点。河漫滩相中细沙主峰粒级组分分布在沙质200~300 μm范围,次峰粒级组分分布在粗粉沙质30~50 μm范围。说明该沉积组分具有显著的不同物源叠加或不同强弱的沉积动力作用过程叠加特点。其他土壤沉积物地层单元的粒级频率曲线主峰分布在25~50 μm粗粉沙质范围。而现代洪水沉积层粒度频率曲线相对更尖锐,粒级更集中,说明相比较其他土壤沉积物地层来源,物源上和沉积动力上比较单一,且分选良好。除河漫滩相中细沙层和现代洪水沉积层外,其他土壤沉积物地层曲线形态相对比较接近,其各自代表的沉积环境动力学意义,需要进一步的解析判别。

    Figure 4.  Frequency curve for the grain size distribution of Holocene loess⁃soil with palaeoflood SWD in profile ZSX

  • 通过粒度参数图解法和矩法计算方法比较[40],认为矩法计算结果更为精确全面,因此在本文中采用矩法粒度参数进行沉积学分析[41]。粒度参数是衡量沉积物粒度自然频率分布曲线特征的数据量化指标,这里通过中值粒径(Md)、平均粒径(Mz)、分选系数(δ)、偏度(Kg)、峰度(Ku)等粒度参数[42]来分析对比土壤沉积物地层单元的特点。中值粒径(Md)是沉积物粒度曲线累积频率在50%处所对应的粒级大小。平均粒径(Mz)表示沉积物各粒级与相应的百分含量加权平均计算获得的总体上反映样品颗粒物的粗细程度指标。分选系数(δ)通过粒级计算获得的方差值,衡量沉积物颗粒组分的均匀程度。偏度(Kg)是衡量自然频率曲线相对对称轴的偏离程度。峰度(Ku)是反映曲线顶端尖锐程度的指标。在诸市乡全新世黄土土壤夹古洪水滞流沉积物(SWD)ZSX剖面中,以自下而上出露的土壤沉积物地层单元来看,河漫滩相中细沙层代表样品的中值粒径为198.01 μm、平均粒径为137.49 μm、分选系数为3.70、偏度和峰度系数分别为-2.04和8.49,属于剖面单元中最粗颗粒物组分、分选性较差、偏度系数最大、峰度值较大,均说明该沉积物反映的是沉积动力最强且相对比较复杂的沉积环境。古洪水滞流沉积物层(SWD1)的中值粒径为27.49 μm、平均粒径为23.51 μm、分选系数为3.45、偏度和峰度系数分别为-1.17和7.26。过渡性黄土层代表样品中值粒径为25.48 μm、平均粒径为21.71 μm、分选系数为3.69、偏度和峰度系数分别为-1.29和6.43。全新世古土壤层下部代表样品中值粒径为22.62 μm、平均粒径为19.10 μm、分选系数为4.21、偏度和峰度系数分别为-0.85和4.72。古洪水滞流沉积物层(SWD2)代表样品的中值粒径为24.33 μm、平均粒径为20.70 μm、分选系数为3.48、偏度和峰度系数分别为-1.33和6.70。全新世古土壤层上部的代表样品的中值粒径为26.72 μm、平均粒径为21.43 μm、分选系数为4.43、偏度和峰度系数分别为-0.95和4.44。古洪水滞流沉积物层(SWD3)代表样品的中值粒径为28.67 μm,平均粒径为24.45 μm、分选系数为3.44、偏度和峰度系数分别为-1.56和7.62。近代黄土层代表样品中值粒径为29.93 μm、平均粒径为25.88 μm、分选系数为3.60、偏度和峰度系数分别为-1.37和6.68。现代表层土代表样品中值粒径为23.81 μm、平均粒径均值为20.46 μm、分选系数为3.76、偏度和峰度系数分别为-1.05和5.82。现代洪水沉积层SWD粒度与古洪水滞流沉积层SWD1~3相比较,显示出流域现代人类活动影响,水土流失比较严重(表1)。

    土壤沉积物地层单元Md/μmMz/μmδKgKu
    现代洪水沉积物层(SWD)33.7731.413.04-1.949.91
    现代表土层(MS)23.8120.463.76-1.055.82
    近代黄土层(L029.9325.883.6-1.376.68
    古洪水滞流沉积物层(SWD3)28.6724.453.44-1.567.62
    全新世古土壤层上部(S026.7221.434.43-0.954.44
    古洪水滞流沉积物层(SWD2)24.3320.703.48-1.336.70
    全新世古土壤层下部(S022.6219.104.21-0.854.72
    过渡性黄土层(Lt25.4821.713.69-1.296.43
    古洪水滞流沉积物层(SWD1)27.4923.513.45-1.477.26
    河漫滩相中细砂(T1-al198.01137.493.70-2.048.49

    Table 1.  Grain⁃size parameters of the Holocene loess⁃soil with palaeoflood SWD in profile ZSX along the Ruhe River

  • 对汝河ZSX剖面中的样品粒度分析数据进行沉积学粒级区间划分(表2)。可以明显地看出,除了河漫滩相中细沙沉积层代表样品以大于125 μm粒级为主要组分,含量可达80%,其他土壤沉积物地层单元粒级组分主要分布在16~63 μm粗粉沙质范围内,粗粉沙质粒级组分基本都在50%以上,其次为2~16 μm细粉沙质粒级组分,在此为沙质粒级组分,黏土质含量最少,所有样品均在8%以下。所以,超过剖面底部河漫滩砂质沉积物之外,这个覆盖层的土壤沉积物都属于粉砂质沉积物类型。

    土壤沉积物地层单元<2 μm2~16 μm16~63 μm>63 μm
    现代洪水沉积物层(SWD)5.8526.6555.0412.47
    现代表土层(MS)5.8526.6555.0412.47
    近代黄土层(L04.9018.5858.4918.03
    古洪水滞流沉积物层(SWD3)4.9218.0863.6313.35
    全新世古土壤层上部(S07.8723.9149.3418.87
    古洪水滞流沉积物层(SWD2)5.7023.4660.6510.18
    全新世古土壤层下部(S07.7927.3351.2513.65
    过渡性黄土层(Lt5.6822.7559.0212.53
    古洪水滞流沉积物层(SWD1)5.2018.5764.1412.11
    河漫滩相中细砂(T1-al1.764.8814.0179.37

    Table 2.  Grain⁃size distribution of the Holocene loess⁃soil with palaeoflood SWD in profile ZSX along the Ruhe River

  • 基于对ZSX剖面土壤沉积物类型划分及理解,进一步对样品粒度分析数据做端元分析[31]。将本剖面及现代洪水沉积物代表样品导入端元分析模型进行计算,选择Gen.Weibull参数法和非参数法两种计算结果进行比较,从各黄土古土壤沉积物地层的含量对比来看,认为非参数法分析所得结果能够更好地表现出相应的端元组分动力学意义。其原因可能是样品数量少,且不同端元组分具有不同的分布特点,所以自然状态下非参数拟合效果更好。由此,本文采用非参数法进行端元曲线拟合提取。从图5中看到,当取端元4是累积复相关系数近0.8,而角度离差趋于平稳。对于端元累积相关性,由于各端元组分之间为互相叠加构成,所以往往呈现出此消彼长的显著相关性,当提取出的端元组分累积相关性增长不明显时,可以认为后面提取出的端元为意义不明确的随机组分,角度离差中角度越趋于平稳,说明未提取的剩余信息量越少。综合来看,可提取出4~5个端元组分,在能够保证信息完成的前提下,为了更精准地判别端元组分动力学意义,基于尽量取少的原则,本文中选择4个端元组分进行分析。

    Figure 5.  Linear correlation and angular deviation of the grain⁃size end members in profile ZSX along the Ruhe River

    从各端元组分粒度频率分布曲线、帕塞加C-M图结合各端元曲线粒度参数综合来看(图6表3),其显著的差异性特征,代表了不同的动力特点,EM1到EM4中值粒径逐渐增大,对比C-M图,可以明显地看出,从左下角到右上角代表其搬运动力依次增强。EM1曲线形态比较对称、没有出现细尾或粗尾、明显左偏或右偏情况、接近正态分布,且其中值粒径和平均粒级分别为20.95 μm、16.77 μm,属于最细的端元组分,说明该组分代表了最弱的搬运沉积动力和远距离搬运,或者一种使得粒级组分风化成壤改造的动力。EM2曲线比EM1显示的粒级组分总体上要略微粗一些、峰稍微平缓、分选系数小,呈现的分选性略差、更加对称的特征,说明搬运动力更强或者物源上更近。C-M图上投影,两者极为接近,可以认为其沉积动力环境非常接近。EM3频率分布曲线上来看,粒级组分相比较EM1和EM2要更粗一些、曲线峰度高、粒级分布范围更窄、有粗尾,且在C-M图上的投影相比较EM1和EM2,其沉积动力环境要强。EM4曲线呈现出明显的不对称双峰模式,由于样品数量,无法将此双峰分离,故在此作为一个端元组分。

    Figure 6.  Grain⁃size distribution frequency curves and Passega’s C⁃M plot of the sediments of each end member in profile ZSX along the Ruhe River

    端元Md/μmMz/μmδKgKu
    EM120.9516.773.46-1.436.51
    EM225.8620.354.04-1.175.04
    EM334.1232.852.93-1.9911.20
    EM4197.79136.343.76-2.048.37

    Table 3.  Grain size parameters for end member components of the Holocene loess⁃soil with palaeoflood SWD in profile ZSX along the Ruhe River

    基于上述端元组分的特征,进一步结合其在各土壤沉积物地层单元中的含量(图7),对各端元组分可能所代表的动力学意义做推断。可以看出,河漫滩相中细沙地层单元中全部为端元4组分,现代洪水沉积物层(SWD)单元层中全部为端元3组分,端元4组分在其他土壤沉积物地层中均含量很少,基本可以忽略,端元3组分在古洪水沉积物层中含量总体来说比较高,所以依此推断,端元3组分应该是比较强的洪水作用搬运上游或者周边碎屑物质遇到河谷阻挡、水深变浅后,趋向于悬移质泥沙呈滞流的动力条件下形成,而由动态的流态到完全的滞流状态,在不同的地形地貌条件下,会呈现出多元化的中间状态,由此决定了在古洪水滞流沉积物层SWD1~3中端元3组分的变化。端元2组分和端元1组分没有表现出明显的此消彼长的关系,没有表现出在古土壤层中含量更高的特点,其比较高的分选性和细颗粒特征,应属于西北季风作用下的远源沙尘暴沉积,是典型黄土物质来源的组分。端元2组分分选性没有端元1组分好,沉积动力相比较强或者显示了近源的特点,基于前期对格大张(GDZ)剖面“新郑黄土”的研究成果认识[43],这里的端元2组分应主要属于区域东北风作用下从黄泛区搬运而来的近源物质,因为这种动力组分随着全新世中晚期以来的土壤沉积物地层中呈现出明显增加的趋势。需要考虑的是,在古洪水滞流沉积层中含有多个端元组分,往往受到了物源以及滞流沉积动力的影响。现代土壤层中表现出含有少量的河流洪水悬移质动力组分和河漫滩相细沙动力组分的特点,这可能是“1975.8”暴雨垮坝洪水泥沙沉积物掺杂到表土当中造成的结果。

    Figure 7.  Percentage of each end member from the sediments in profile ZSX along the Ruhe River

    综合上述分析,可知其端元1组分代表西北季风沙尘暴远源风成沉积物及其风化成壤改造的产物,端元2组分代表了东北风吹扬黄泛平原松散沉积物沙尘暴的近源沉积物,端元3组分代表了河流洪水悬移质泥沙在高水位滞流环境条件下的沉积物,端元4组分为河流在河槽之内水动力作用下河漫滩冲积物。

  • 通过对ZSX剖面土壤沉积物地理与物源的解析,将有助于对其各个土壤沉积物地层单元所代表的地表过程做进一步的探讨。从地层剖面序列的沉积物性质和成因来看,虽然处于平原地区,汝河主流河道自全新世以来相对比较稳定,在晚更新世末期,汝河主河槽就是目前这样的走向,研究地点所处位置,属于河漫滩相沉积环境。在晚更新世向着全新世转折的阶段,正是全球性气候剧烈波动变化过程,在12.00~11.25 ka之间,汝河发生了特大洪水事件,在这里淤积形成了厚达0.5 m的古洪水滞流沉积物层(SWD1),其物源主要是流域暴雨洪水侵蚀地表形成大面积水土流失的产物,经过了河流长距离搬运分选沉积作用而形成。在全新世早期11.5~8.5 ka时期,河流下切导致该地段转化为河岸,脱离了河漫滩沉积环境。主要接受了西北季风远距离沙尘暴的沉积物,其中也有一些区域东北风搬运黄泛平原沉积物及汝河古洪水沉积物造成的近源沙尘暴沉积的组分。在全新世气候最适宜期8.50~4.20 ka期间,形成了发育良好的褐色土类古土壤层,主要是西北季风远源沙尘暴堆积的产物,以及东北区域风力吹扬黄泛平原沉积物近源沙尘暴的参与沉积组分。由于这个时期东南季风较强,西北季风和东北风都大大减弱,远源和近源沙尘暴过程都比较微弱,所以沉积速率相对比较缓慢,风化成壤作用占据主导地位。在4.20~4.00 ka阶段,汝河再次发生特大洪水事件,洪水漫溢出河岸堆积形成了厚达0.4 m的SWD2。而这个时期正处于全球性气候恶化突变的阶段[44]。在这期特大洪水事件结束之后,该区域风化成壤过程恢复,在4.00~3.20 ka之间,也形成了褐色土类古土壤,但是其沉积速率显著增大。况且其主要物源是区域东北风驱动近源沙尘暴的沉积物,也就是黄泛平原黄河洪水沉积物被风力二次搬运沉积的产物。在3.20~3.00 ka之间,汝河再次发生了特大洪水事件,悬移质泥沙堆积形成了厚达0.4 m的SWD3,端元分析显示其物源构成主要包括流域暴雨侵蚀导致水土流失的产物,尤其是远源沙尘暴和近源沙尘暴沉积物质经过河流洪水搬运分选沉积形成。这个时期处于全新世中期向晚期的转折过渡阶段,也就是全新世气候适宜期结束,气候迅速转型的阶段[44]。在3.00 ka以后,进入全新世晚期,气候条件比之以前已经变得相对比较干旱凉爽,同时,流域人类活动显著增强,黄河洪水泛滥频繁发生,黄泛平原遍布松散沉积物,由区域性东北风吹扬形成近源沙尘暴剧烈活动,形成了由黄泛沉积物二次沉积的近代风成黄土层。最近1.50 ka以来是现代土壤层堆积形成的时期,端元分析显示其主要是西北季风搬运的远源沙尘暴和黄泛平原东北风近源沙尘暴堆积的组分,也可能有“75.8”暴雨垮坝洪水沉积物的参与混合。

  • 本文研究汝河诸市乡河段河岸剖面各个层次代表性样品,样品数据不多的情况下,依然在端元分析组分提取的过程中,取得了比较好的效果。有效地呈现出了各代表土壤沉积物地层不同端元动力组分的叠加组合情况。

    (1) 汝河上游ZSX剖面全新世黄土土壤SWD可以提取出4个端元组分,通过土壤沉积物地层单元宏观特征特征及相应的组分含量等因素综合判断,认为其分别代表了西北远源沙尘暴风成沉积物和风化成壤改造产物、东北风吹扬黄泛平原沉积物形成的沙尘暴的近源沉积物、河流洪水携带地表泥沙长距离搬运后在高水位滞流环境的沉积物,以及河道内河漫滩水动力作用下的沙质沉积物。

    (2) 汝河主流河道在全新世以来比较稳定,河岸全新世时期各土壤沉积地层受到了多元化的沉积动力综合作用。汝河流域暴雨洪水灾害和气候变化关系密切,往往在气候突变或者气候恶化转型阶段易发特大暴雨洪水灾害。本文揭示出汝河遂平诸市乡河岸剖面记录的三期特大洪水事件,它们分别发生在12.00~11.25 ka、4.20~4.00 ka和3.20~3.00 ka三个阶段。这些时段正是全球气候恶化转折期,东亚季风大气环流状态不稳定,多极端性的异常变化,流域降水变率增大,容易发生特大暴雨洪水事件。

Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return