HTML
-
沉积和成岩过程中,沿岩石的层理裂开的天然裂缝称为层理缝[7⁃8]。除砂岩、页岩等层状岩石外,一些学者也将泥岩、碳酸盐岩等以块状层理为主的沉积岩中的部分水平裂缝定义为层理缝[10⁃13]。砂岩中还发育一部分产状近水平的构造缝,它们通常与层理面小角度相交,具有镜面擦痕、阶步或“饼裂”现象,是在断层挤压逆冲或近水平剪切滑动下形成的[14];在构造挤压和伸展作用下会形成沿泥岩软弱面发育的、具有镜面擦痕特征的低角度滑脱裂缝,这种软弱面通常为应力分布的异常部位,与岩层面大致平行[15];碳酸盐岩中发育的水平缝合线,具有锯齿状特征,为压溶成因,也与沉积层理无关[16]。Cobbold et al.[10]统计了世界范围内110个含油气盆地的层理缝及其充填物特征,认为大多数层理缝与油气运移和流体超压密切相关。
目前,国内外关于层理缝的研究集中体现在以下三个方面:一是对于层理及层理缝[8,17⁃24]的发育特征,开展了大量的分析描述工作;二是针对层理缝的形成机制,从沉积成岩[8,12,19,25⁃27]、超压[21,25,28⁃31]、构造[20,25,30,32⁃35]和结晶应力[36⁃38]等方面进行了探讨;三是归纳总结了层理缝与油气运移和聚集的关系,认识到层理缝对油气富集成藏的重要意义[7⁃8,23,39⁃40](表1)。但是,对于容易形成层理缝的沉积岩和层理类型、不同类型层理缝的精细表征、层理缝的识别与预测、层理缝与油气运移和聚集的具体关系等,尚且缺乏全面、系统、动态及定量化的研究。
盆地 层位 沉积相 岩性 层理类型 充填物 成因机制、影响因素 储渗作用 文献 四川盆地 三叠系须家河组 三角洲平原分支河道、 三角洲前缘分流河道 砂岩 平行层理、斜层理 泥质、有机质、硅质、黄铁矿 构造挤压成因,沉积微相类型、水流方向、 砂体厚度控制 储集 [25] 奥陶系五峰组—龙马溪组 半深水—浅水的陆棚环境 海相页岩 页理 沥青质、有机质,黄铁矿、 方解石 机械压实、有机质生烃增压 储集渗流 [39] 侏罗系上沙溪庙组 三角洲分支河道 致密砂岩 水平纹层、低角度斜层理 石英、方解石 异常高压、构造抬升 储集 [30] 鄂尔多斯盆地 三叠系延长组长6—长8 分流河道、水下分流河道、 三角洲、湖泊相 砂岩、页岩 平行层理 方解石、石英、沥青 地层抬升剥蚀、 机械压实与失水收缩 渗流,储集 [8⁃9,22⁃23] 二叠系山西组 分流河道、水下分流河道、河口坝 砂岩 交错层理 沥青质、炭屑、泥质 酸性水或烃类溶蚀 渗流 [26] 渤海湾盆地 古近系沙河街组 湖泊相 湖湘页岩 页理 方解石、黏土 溶蚀、超压、渗透力 储集 [31] 古近系孔店组 冲积扇和河湖相 砂岩 沉积环境、成岩作用 储集与渗流 [29] 准噶尔盆地 二叠系芦草沟组 三角洲前缘、滨湖、浅湖、滩坝、 远砂坝、砂质滩、席状砂 碳酸盐岩、 砂岩、页岩 平行层理 石英、方解石、泥质、 长石、沥青 沉积成岩、地层抬升, 生烃排酸溶蚀成因,沉积微相主控 储集与渗流 [12,33] 侏罗系 三角洲前缘的水下分支河道 砂岩 斜层理 沥青 烃类溶蚀、异常高压、断层 储集 [32] 柴达木盆地 新生界 冲积平原、冲积扇、扇三角洲、 河流相以及湖相 泥质岩 块状层理 石膏 地层抬升剥蚀 [34] 三塘湖盆地 二叠系芦草沟组 湖湾浅湖或半深湖—深湖亚相 碳酸盐岩、砂岩 纹层 有机酸溶蚀、碳酸钙体积收缩 储集 [27] 松辽盆地 白垩系青山口组和 沙河子组 半深湖—深湖相 陆相页岩 页理 黏土矿物、方解石 异常高压、构造抬升 储集 [24,40] 魁北克—阿巴拉契亚构造带(加拿大) 奥陶系 深海斜坡相 石灰岩、泥质灰岩、 页岩 块状层理 方解石、石英 断层、褶皱 渗流 [35] 滨里海盆地 (哈萨克斯坦) 石炭系KT-I组 浅海陆棚相、三角洲相 碳酸盐岩 块状层理 断层、褶皱、不同岩性垂直变化率 储集与渗流 [13] 内乌肯盆地(阿根廷) 晚侏罗世至早白垩世 基底斜坡相 碳酸盐岩、页岩 纤维状方解石、石膏、石英脉 流体超压等 [10,19,21,28] Table 1. Bedding-parallel fractures in typical petroliferous basins
[1] | 邹才能, 杨智, 朱如凯, 2015: 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 89, 979-1007. | Zou Caineng, Yang Zhi, Zhu Rukai, 2015: Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 89, 979-1007. |
[2] | 邱振, 邹才能, 2020: 非常规油气沉积学:内涵与展望[J]. 沉积学报, 38, 1-29. | Qiu Zhen, Zou Caineng, 2020: Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 38, 1-29. |
[3] | 邹才能, 朱如凯, 吴松涛, 2012: 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报, 33, 173-187. | Zou Caineng, Zhu Rukai, Wu Songtao, 2012: Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 33, 173-187. |
[4] | Olson J E, Laubach S E, Lander R H, 2009: Natural fracture characteri-zation in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 93, 1535-1549. | |
[5] | 丁文龙, 王兴华, 胡秋嘉, 2015: 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 30, 737-750. | Ding Wenlong, Wang Xinghua, Hu Qiujia, 2015: Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 30, 737-750. |
[6] | Prioul R, Jocker J, 2009: Fracture characterization at multiple scales using borehole images, sonic logs, and walkaround vertical seismic profile[J]. AAPG Bulletin, 93, 1503-1516. | |
[7] | 罗群, 魏浩元, 刘冬冬, 2017: 层理缝在致密油成藏富集中的意义、研究进展及其趋势[J]. 石油实验地质, 39, 1-7. | Luo Qun, Wei Haoyuan, Liu Dongdong, 2017: Research significance, advances and trends on the role of bedding fracture in tight oil accumulation[J]. Petroleum Geology & Experiment, 39, 1-7. |
[8] | 曾联波, 吕文雅, 徐翔, 2022: 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 43, 180-191. | Zeng Lianbo, Wenya Lü, Xu Xiang, 2022: Development characteristics, formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 43, 180-191. |
[9] | 鞠玮, 尤源, 冯胜斌, 2020: 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因[J]. 石油与天然气地质, 41, 596-605. | Ju Wei, You Yuan, Feng Shengbin, 2020: Characte-ristics and genesis of bedding-parallel fractures in tight sandstone reservoirs of Chang 7 oil layer, Ordos Basin[J]. Oil & Gas Geology, 41, 596-605. |
[10] | Cobbold P R, Zanella A, Rodrigues N, 2013: Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 43, 1-20. | |
[11] | Imber J, Armstrong H, Clancy S, 2014: Natural fractures in a United Kingdom shale reservoir analog, Cleveland Basin, northeast England[J]. AAPG Bulletin, 98, 2411-2437. | |
[12] | 刘冬冬, 张晨, 罗群, 2017: 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝发育特征及控制因素[J]. 中国石油勘探, 22, 36-47. | Liu Dongdong, Zhang Chen, Luo Qun, 2017: Development characteristics and controlling factors of natural fractures in Permian Lucaogou Formation tight reservoir in Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 22, 36-47. |
[13] | Li C H, Zhao L, Liu B, 2021: Origin, distribution and implications on production of bedding-parallel fractures: A case study from the Carboniferous KT-Ⅰ Formation in the NT oilfield, Precaspian Basin, Kazakhstan[J]. Journal of Petroleum Science and Engineering, 196, 107655-. | |
[14] | 曾联波, 王正国, 肖淑容, 2009: 中国西部盆地挤压逆冲构造带低角度裂缝的成因及意义[J]. 石油学报, 30, 56-60. | Zeng Lianbo, Wang Zhengguo, Xiao Shurong, 2009: The origin and geological significance of low dip-angle fractures in the thrust zones of the western basins of China[J]. Acta Petrolei Sinica, 30, 56-60. |
[15] | 曾联波, 肖淑蓉, 1999: 低渗透储集层中的泥岩裂缝储集体[J]. 石油实验地质, 21, 266-269. | Zeng Lianbo, Xiao Shurong, 1999: Fractures in the mudstone of tight reservoirs[J]. Experimental Petroleum Geology, 21, 266-269. |
[16] | 高岗, 2013: 碳酸盐岩缝合线研究及油气地质意义[J]. 天然气地球科学, 24, 218-226. | Gao Gang, 2013: Research status and oil & gas geology significance of carbonate rock stylolite[J]. Natural Gas Geoscience, 24, 218-226. |
[17] | Dumas S, Arnott R W C, Southard J B, 2005: Experiments on oscillatory-flow and combined-flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record[J]. Journal of Sedimentary Research, 75, 501-513. | |
[18] | 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:81-90. | Zhu Xiaomin. Sedimentary petrology[M]. 4nd ed. Beijing: Petroleum Industry Press, 2008: 81-90. |
[19] | Ravier E, Martinez M, Pellenard P, 2020: The milankovitch fingerprint on the distribution and thickness of bedding-parallel veins (beef) in source rocks[J]. Marine and Petroleum Geology, 122, 104643-. | |
[20] | 陈迎宾, 郑冰, 袁东山, 2013: 大邑构造须家河组气藏裂缝发育特征及主控因素[J]. 石油实验地质, 35, 29-35. | Chen Yingbin, Zheng Bing, Yuan Dongshan, 2013: Characteristics and main controlling factors of fractures in gas reservoir of Xujiahe Formation, Dayi structure[J]. Petroleum Geology & Experiment, 35, 29-35. |
[21] | Zanella A, Cobbold P R, Rojas L, 2014: Beef veins and thrust detachments in Early Cretaceous source rocks, foothills of Magallanes-Austral Basin, southern Chile and Argentina: Structural evidence for fluid overpressure during hydrocarbon maturation[J]. Marine and Petroleum Geology, 55, 250-261. | |
[22] | 唐小梅, 曾联波, 岳锋, 2012: 鄂尔多斯盆地三叠系延长组页岩油储层裂缝特征及常规测井识别方法[J]. 石油天然气学报, 34, 95-99. | Tang Xiaomei, Zeng Lianbo, Yue Feng, 2012: Fracture characterization and identification by conventional logs of shale reservoirs in Ordos Basin[J]. Journal of Oil and Gas Technology, 34, 95-99. |
[23] | 李鑫海, 崔耀科, 穆睿, 2021: 致密砂岩中层理缝的赋存特征及其与油气分布的关系[J]. 地球科学前沿, 11, 384-393. | Li Xinhai, Cui Yaoke, Mu Rui, 2021: Occurrence characte-ristics and relation on oil and gas distribution of bedding fractures in tight gas sand[J]. Advances in Geosciences, 11, 384-393. |
[24] | Gong L, Wang J, Gao S, 2021: Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 203, 108655-. | |
[25] | 吴建发, 赵圣贤, 范存辉, 2021: 川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系[J]. 石油学报, 42, 428-446. | Wu Jianfa, Zhao Shengxian, Fan Cunhui, 2021: Fracture characteristics of the Longmaxi Formation shale and its relationship with gas-bearing properties in Changning area, southern Sichuan[J]. Acta Petrolei Sinica, 42, 428-446. |
[26] | 张君峰, 兰朝利, 2006: 鄂尔多斯盆地榆林—神木地区上古生界裂缝和断层分布及其对天然气富集区的影响[J]. 石油勘探与开发, 33, 172-177. | Zhang Junfeng, Lan Chaoli, 2006: Fractures and faults distribution and its effect on gas enrichment areas in Ordos Basin[J]. Petroleum Exploration and Development, 33, 172-177. |
[27] | 柳波, 吕延防, 孟元林, 2015: 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发, 42, 598-607. | Liu Bo, Yanfang Lü, Meng Yuanlin, 2015: Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 42, 598-607. |
[28] | Ukar E, Lopez R G, Gale J F W, 2017: New type of kinematic indicator in bed-parallel veins, Late Jurassic-Early Cretaceous Vaca Muerta Formation, Argentina: E-W shortening during Late Cretaceous vein opening[J]. Journal of Structural Geology, 104, 31-47. | |
[29] | Zhang J G, Jiang Z X, Wang S Q, 2021: Bedding-parallel calcite veins as a proxy for shale reservoir quality[J]. Marine and Petroleum Geology, 127, 104975-. | |
[30] | 吴志均, 唐红君, 安凤山, 2003: 川西新场致密砂岩气藏层理缝成因探讨[J]. 石油勘探与开发, 30, 109-111. | Wu Zhijun, Tang Hongjun, An Fengshan, 2003: Causese of bedding fractures of tight sand gas-reservoir in Xinchang, west Sichuan region[J]. Petroleum Exploration and Development, 30, 109-111. |
[31] | Liu H M, Zhang S, Song G Q, 2017: A discussion on the origin of shale reservoir inter-laminar fractures in the Shahejie Formation of Paleogene, Dongying Depression[J]. Journal of Earth Science, 28, 1064-1077. | |
[32] | 贺振建, 刘宝军, 王朴, 2011: 准噶尔盆地永进地区侏罗系层理缝成因及其对储层的影响[J]. 油气地质与采收率, 18, 15-17. | He Zhenjian, Liu Baojun, Wang Pu, 2011: Genesis of bedding fractures and its influences on reservoirs in Jurassic, Yongjin area, Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 18, 15-17. |
[33] | 梁成钢, 谢建勇, 陈依伟, 2021: 吉木萨尔凹陷芦草沟组页岩储集层裂缝成因及耦合关系[J]. 新疆石油地质, 42, 521-528. | Liang Chenggang, Xie Jianyong, Chen Yiwei, 2021: Genesis and coupling relationship of fractures in shale reservoir of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 42, 521-528. |
[34] | 李剑, 曾联波, 林煜, 2020: 柴达木盆地西部新生界水平裂缝及其构造意义[J]. 石油与天然气地质, 41, 1222-1232. | Li Jian, Zeng Lianbo, Lin Yu, 2020: Horizontal fractures of the Cenozoic in western Qaidam Basin and their tectonic implication[J]. Oil & Gas Geology, 41, 1222-1232. |
[35] | Séjourné S, Malo M, Savard M M, 2005: Multiple origin and regional significance of bedding parallel veins in a fold and thrust belt: The example of a carbonate slice along the Appalachian structural front[J]. Tectonophysics, 407, 189-209. | |
[36] | Nollet S, Urai J L, Bons P D, 2005: Numerical simulations of polycrystal growth in veins[J]. Journal of Structural Geology, 27, 217-230. | |
[37] | Gratier J P, Frery E, Deschamps P, 2012: How travertine veins grow from top to bottom and lift the rocks above them: The effect of crystallization force[J]. Geology, 40, 1015-1018. | |
[38] | Zanella A, Cobbold P R, Rodrigues N, 2021: Source rocks in foreland basins: A preferential context for the development of natural hydraulic fractures[J]. AAPG Bulletin, 105, 647-668. | |
[39] | 金之钧, 胡宗全, 高波, 2016: 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 23, 1-10. | Jin Zhijun, Hu Zongquan, Gao Bo, 2016: Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 23, 1-10. |
[40] | 柳波, 孙嘉慧, 张永清, 2021: 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 48, 521-535. | Liu Bo, Sun Jiahui, Zhang Yongqing, 2021: Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 48, 521-535. |
[41] | Laubach S E, 2003: Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 87, 561-579. | |
[42] | Hooker J N, Laubach S E, Marrett R, 2014: A universal power-law scaling exponent for fracture apertures in sandstones[J]. GSA Bulletin, 126, 1340-1362. | |
[43] | Marrett R, Ortega O J, Kelsey C M, 1999: Extent of power-law scaling for natural fractures in rock[J]. Geology, 27, 799-802. | |
[44] | Liu D D, Zhang C, Pan Z K, 2020: Natural fractures in carbonate-rich tight oil reservoirs from the Permian Lucaogou Formation, southern Junggar Basin, NW China: Insights from fluid inclusion microthermometry and isotopic geochemistry[J]. Marine and Petroleum Geology, 119, 104500-. | |
[45] | Salem A C, Naruk S J, Solum J G, 2022: Impact of natural fractures on production from an unconventional shale: The Delaware Basin Wolfcamp shale[J]. AAPG Bulletin, 106, 1-20. | |
[46] | Kulander B R, Dean S L, Ward Jr B J. Fractured core analysis: Interpretation, logging, and use of natural and induced fractures in core[M]. McLean: American Association of Petroleum Geologists, 1990. | |
[47] | Lash G G, Engelder T, 2005: An analysis of horizontal microcracking during catagenesis: Example from the Catskill delta complex[J]. AAPG Bulletin, 89, 1433-1449. | |
[48] | Rodrigues N, Cobbold P R, Loseth H, 2009: Widespread bedding-parallel veins of fibrous calcite ('beef') in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): Evidence for overpressure and horizontal compression[J]. Journal of the Geological Society, 166, 695-709. | |
[49] | 刘喜武, 刘宇巍, 刘志远, 2019: 陆相页岩油甜点地球物理表征研究进展[J]. 石油与天然气地质, 40, 504-511. | Liu Xiwu, Liu Yuwei, Liu Zhiyuan, 2019: Progresses in geophysical characterization of continental shale oil sweet spots[J]. Oil & Gas Geology, 40, 504-511. |
[50] | 陈双全, 钟庆良, 李忠平, 2020: 水平层理缝岩石物理建模及其地震响应特征[J]. 石油与天然气地质, 41, 1273-1281. | Chen Shuangquan, Zhong Qingliang, Li Zhongping, 2020: Petrophysical modeling of horizontal bedding-parallel fractures and its seismic response characteristics[J]. Oil & Gas Geology, 41, 1273-1281. |
[51] | 刘海浩, 丁拼搏, 李向阳, 2021: 含水平缝薄互层储层地震响应特征物理模拟[J]. 地球物理学报, 64, 2927-2940. | Liu Haihao, Ding Pinbo, Li Xiangyang, 2021: Physical modeling of seismic responses in thin interbedded reservoirs with horizontal fractures[J]. Chinese Journal of Geophysics, 64, 2927-2940. |
[52] | van der Voet E, Muchez P, Laenen B, 2020: Characterizing carbonate reservoir fracturing from borehole data: A case study of the Viséan in northern Belgium[J]. Marine and Petroleum Geology, 111, 375-389. | |
[53] | Jiang L W, Zhang L, Luo Y F, et al. Revealing the natural fracture system in the Longmaxi shale gas reservoir, Sichuan Basin, China[C]//Proceedings of offshore technology conference. Houston, Texas, USA: OnePetro, 2022. | |
[54] | Fernández-Ibáñez F, DeGraff J M, Ibrayev F, 2018: Integrating borehole image logs with core: A method to enhance subsurface fracture characterization[J]. AAPG Bulletin, 102, 1067-1090. | |
[55] | 黄继新, 彭仕宓, 王小军, 2006: 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报, 27, 65-69. | Huang Ji-xin, Peng Shimi, Wang Xiaojun, 2006: Applications of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 27, 65-69. |
[56] | da Rocha H O, da Costa J L S, Carrasquilla A A G, 2021: Permeability estimation and analysis of fracture networks using resistivity logs in an offshore Aptian carbonate reservoir pre-salt, in the southeastern Santos Basin[J]. Journal of Applied Geophysics, 184, 104241-. | |
[57] | 王珂, 张荣虎, 戴俊生, 2015: 低渗透储层裂缝研究进展[J]. 地球科学与环境学报, 37, 44-58. | Wang Ke, Zhang Ronghu, Dai Junsheng, 2015: Review on low-permeability reservoir fracture[J]. Journal of Earth Sciences and Environment, 37, 44-58. |
[58] | Lai J, Liu B C, Li H B, 2022: Bedding parallel fractures in fine-grained sedimentary rocks: Recognition, formation mechanisms, and prediction using well log[J]. Petroleum Science, 19, 557-569. | |
[59] | 罗贞耀, 1990: 用侧向资料计算裂缝张开度的初步研究[J]. 地球物理测井, 14, 83-92. | Luo Zhenyao, 1990: Preliminary study on the calculation of fracture aperture using laterolog log[J]. Well Logging Technology, 14, 83-92. |
[60] | Aghli G, Soleimani B, Moussavi-Harami R, 2016: Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs[J]. Journal of Petroleum Science and Engineering, 142, 152-162. | |
[61] | 刘伟新, 卢龙飞, 魏志红, 2020: 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质, 42, 378-386. | Liu Weixin, Lu Longfei, Wei Zhihong, 2020: Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 42, 378-386. |
[62] | 谢小敏, 李利, 袁秋云, 2021: 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 40, 50-60. | Xie Xiaomin, Li Li, Yuan Qiuyun, 2021: Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 40, 50-60. |
[63] | 曹小朋, 2021: 页岩油储层微观特征分析与流动模拟[J]. 深圳大学学报(理工版), 38, 605-612. | Cao Xiaopeng, 2021: Microscopic characteristics analysis and flow simulation of shale oil reservoir[J]. Journal of Shenzhen University (Science and Engineering), 38, 605-612. |
[64] | Wang Q Y, Li Y H, Yang W, 2019: Finite element simulation of multi-scale bedding fractures in tight sandstone oil reservoir[J]. Energies, 13, 131-. | |
[65] | 周彤, 王海波, 李凤霞, 2020: 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发, 47, 1039-1051. | Zhou Tong, Wang Haibo, Li Fengxia, 2020: Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 47, 1039-1051. |
[66] | Alzayer Y A. Differential compaction fractures in carbonate mound complexes: Pioneering numerical models applied to outcrops and subsurface reservoirs[D]. Austin: The University of Texas at Austin, 2018. | |
[67] | Cooke M L, Mollema P N, Pollard D D, et al. Interlayer slip and joint localization in the east Kaibab monocline, Utah: Field evidence and results from numerical modelling[M]//Cosgrove J W, Ameen M S. Forced folds and fractures. London: Geological Society of London, 1999: 23-49. | |
[68] | Sanz P F, Pollard D D, Allwardt P F, 2008: Mechanical models of fracture reactivation and slip on bedding surfaces during folding of the asymmetric anticline at Sheep Mountain, Wyoming[J]. Journal of Structural Geology, 30, 1177-1191. | |
[69] | Smart K J, Ferrill D A, Morris A P, 2009: Impact of interlayer slip on fracture prediction from geomechanical models of fault-related folds[J]. AAPG Bulletin, 93, 1447-1458. | |
[70] | Jessell M W, Willman C E, Gray D R, 1994: Bedding parallel veins and their relationship to folding[J]. Journal of Structural Geology, 16, 753-767. | |
[71] | Lajtai E Z, 1977: A mechanistic view of some aspects of jointing in rocks[J]. Tectonophysics, 38, 327-338. | |
[72] | Tavani S, Storti F, Lacombe O, 2015: A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal regions of thrust wedges[J]. Earth-Science Reviews, 141, 82-104. | |
[73] | Younes A, Engelder T, 1999: Fringe cracks: Key structures for the interpretation of progressive Alleghanian deformation of the Appalachian Plateau[J]. Geological Society of America Bulletin, 111, 219-239. | |
[74] | 曾联波, 朱如凯, 高志勇, 2016: 构造成岩作用及其油气地质意义[J]. 石油科学通报, 1, 191-197. | Zeng Lianbo, Zhu Rukai, Gao Zhiyong, 2016: Structural diagenesis and its petroleum geological significance[J]. Petroleum Science Bulletin, 1, 191-197. |
[75] | Cobbold P R, Rodrigues N, 2007: Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’ and ‘cone-in-cone’)[J]. Geofluids, 7, 313-322. | |
[76] | Ismat Z, 2012: Evolution of fracture porosity and permeability during folding by cataclastic flow: Implications for syntectonic fluid flow[J]. Rocky Mountain Geology, 47, 133-155. | |
[77] | Engelder T, Behr R A, 2021: Skempton’s poroelastic relaxation: The mechanism that accounts for the distribution of pore pressure and exhumation-related fractures in black shale of the Appalachian Basin[J]. AAPG Bulletin, 105, 669-694. | |
[78] | Fowler T J, 1996: Flexural-slip generated bedding-parallel veins from central Victoria, Australia[J]. Journal of Structural Geology, 18, 1399-1415. | |
[79] | Laubach S E, Mace R E, Nance H S. Fault and joint swarms in a normal fault zone[M]//Rossmanith H P. Mechanics of jointed and faulted rock. Rotterdam: Balkema, 1995: 305-309. | |
[80] | Laubach S E, Olson J E, Gross M R, 2009: Mechanical and fracture stratigraphy[J]. AAPG Bulletin, 93, 1413-1426. | |
[81] | Ameen M S, Buhidma I M, Rahim Z, 2010: The function of fractures and in-situ stresses in the Khuff reservoir performance, onshore fields, Saudi Arabia[J]. AAPG Bulletin, 94, 27-60. | |
[82] | Harwood R J, 1977: Oil and gas generation by laboratory pyrolysis of kerogen[J]. AAPG Bulletin, 61, 2082-2102. | |
[83] | Osborne M J, Swarbrick R E, 1997: Mechanisms for generating overpressure in sedimentary basins: A reevaluation[J]. AAPG Bulletin, 81, 1023-1041. | |
[84] | 柳广弟. 石油地质学[M]. 5版. 北京:石油工业出版社,2018:179-182. | Liu Guangdi. Petroleum geology[M]. 5th ed. Beijing: Petroleum Industry Press, 2018: 179-182. |
[85] | 王剑, 周路, 刘金, 2022: 准噶尔盆地吉木萨尔凹陷芦草沟组页岩层系甜点体烃类可流动性影响因素[J]. 天然气地球科学, 33, 116-124. | Wang Jian, Zhou Lu, Liu Jin, 2022: Influencing factors of hydrocarbon mobility in sweet spot of the Lucaogou Formation shale in Jimusar Sag, Junggar Basin[J]. Natural Gas Geoscience, 33, 116-124. |
[86] | Swanson S K, 2007: Lithostratigraphic controls on bedding-plane fractures and the potential for discrete groundwater flow through a siliciclastic sandstone aquifer, southern Wisconsin[J]. Sedimentary Geology, 197, 65-78. |