Advanced Search
Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents

LI ZiLong, FAN ChangYu, HUI Xiao, DENG XiuQin, SUN Bo, HAN XiaoJie, WANG AiGuo, WANG Gang. Research Progress and Trend of Bedding-parallel Fractures in Unconventional Sedimentary Reservoirs[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1150-1163. doi: 10.14027/j.issn.1000-0550.2022.124
Citation: LI ZiLong, FAN ChangYu, HUI Xiao, DENG XiuQin, SUN Bo, HAN XiaoJie, WANG AiGuo, WANG Gang. Research Progress and Trend of Bedding-parallel Fractures in Unconventional Sedimentary Reservoirs[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1150-1163. doi: 10.14027/j.issn.1000-0550.2022.124

Research Progress and Trend of Bedding-parallel Fractures in Unconventional Sedimentary Reservoirs

doi: 10.14027/j.issn.1000-0550.2022.124
cstr: 32268.14.cjxb.62-1038.2022.124
Funds:

National Natural Science Foundation of China 41972133

  • Received Date: 2022-06-12
  • Accepted Date: 2022-10-31
  • Rev Recd Date: 2022-09-28
  • Available Online: 2022-10-31
  • Publish Date: 2024-08-10
  • Significance  The widespread development of bedding-parallel fractures (BPFs) in sedimentary reservoirs is the key to improve the overall rock permeability and promote fluid flow, and it is increasingly important for unconventional hydrocarbon exploration and development.   [Progress]  Scholars at home and abroad have examined the characteristics of BPFs and their relationship with hydrocarbon migration and accumulation, identification and prediction, formation mechanism, and major controlling factors. The following conclusions have been made: (1) BPFs are characterized by high linear density and high horizontal permeability. The existence of BPFs is one of the basic conditions affecting the large-scale accumulation of hydrocarbons in unconventional sedimentary reservoirs. (2) Seismic inversion, image logging and conventional logging identification, fracture related major controlling factors prediction, geological parameter modeling, and numerical simulation prediction are commonly used to identify and predict fractures; however, there are still limitations in regards to low accuracy, high cost, and immature methods. With the application of scanning electron microscopy, automatic mineral quantitative analysis, nanometer and micron computed tomography (CT) scanning, and digital core technology, the study of BPFs has gradually entered the level of microscopization, visualization, and quantification. (3) The formation of BPFs is the result of complex factors such as sedimentary diagenesis, structure, overpressure and crystallization stress. (4) Sedimentary rock type, bedding type, mineral composition, and total organic carbon (TOC) content are the main internal factors affecting the development of BPFs. The development degree of fault and fold, the distance from fault core and fold axis, the depth of stratum burial, and the intensity of uplift and denudation are the main external factors affecting the development of BPFs.   [Conclusions and Prospects]  However, there are still lack of comprehensive, systematic and quantitative research on the comprehensive mechanism of BPFs formed by different types of sedimentary rocks and bedding, the establishment of fine identification and quantitative prediction models for different types of BPFs, and the determination of the specific relationship between BPFs and hydrocarbon migration or accumulation. These problems limit the exploration and development of fractured reservoirs to a certain extent, and are also important research directions of BPFs in the future.

  • [1] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979-1007.

    Zou Caineng, Yang Zhi, Zhu Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007.
    [2] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [3] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187.

    Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
    [4] Olson J E, Laubach S E, Lander R H. Natural fracture characteri-zation in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1535-1549.
    [5] 丁文龙,王兴华,胡秋嘉,等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展,2015,30(7):737-750.

    Ding Wenlong, Wang Xinghua, Hu Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750.
    [6] Prioul R, Jocker J. Fracture characterization at multiple scales using borehole images, sonic logs, and walkaround vertical seismic profile[J]. AAPG Bulletin, 2009, 93(11): 1503-1516.
    [7] 罗群,魏浩元,刘冬冬,等. 层理缝在致密油成藏富集中的意义、研究进展及其趋势[J]. 石油实验地质,2017,39(1):1-7.

    Luo Qun, Wei Haoyuan, Liu Dongdong, et al. Research significance, advances and trends on the role of bedding fracture in tight oil accumulation[J]. Petroleum Geology & Experiment, 2017, 39(1): 1-7.
    [8] 曾联波,吕文雅,徐翔,等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报,2022,43(2):180-191.

    Zeng Lianbo, Wenya Lü, Xu Xiang, et al. Development characteristics, formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2): 180-191.
    [9] 鞠玮,尤源,冯胜斌,等. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因[J]. 石油与天然气地质,2020,41(3):596-605.

    Ju Wei, You Yuan, Feng Shengbin, et al. Characte-ristics and genesis of bedding-parallel fractures in tight sandstone reservoirs of Chang 7 oil layer, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(3): 596-605.
    [10] Cobbold P R, Zanella A, Rodrigues N, et al. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20.
    [11] Imber J, Armstrong H, Clancy S, et al. Natural fractures in a United Kingdom shale reservoir analog, Cleveland Basin, northeast England[J]. AAPG Bulletin, 2014, 98(11): 2411-2437.
    [12] 刘冬冬,张晨,罗群,等. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝发育特征及控制因素[J]. 中国石油勘探,2017,22(4):36-47.

    Liu Dongdong, Zhang Chen, Luo Qun, et al. Development characteristics and controlling factors of natural fractures in Permian Lucaogou Formation tight reservoir in Jimsar Sag, Junggar Basin[J]. China Petroleum Exploration, 2017, 22(4): 36-47.
    [13] Li C H, Zhao L, Liu B, et al. Origin, distribution and implications on production of bedding-parallel fractures: A case study from the Carboniferous KT-Ⅰ Formation in the NT oilfield, Precaspian Basin, Kazakhstan[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107655.
    [14] 曾联波,王正国,肖淑容,等. 中国西部盆地挤压逆冲构造带低角度裂缝的成因及意义[J]. 石油学报,2009,30(1):56-60.

    Zeng Lianbo, Wang Zhengguo, Xiao Shurong, et al. The origin and geological significance of low dip-angle fractures in the thrust zones of the western basins of China[J]. Acta Petrolei Sinica, 2009, 30(1): 56-60.
    [15] 曾联波,肖淑蓉. 低渗透储集层中的泥岩裂缝储集体[J]. 石油实验地质,1999,21(3):266-269.

    Zeng Lianbo, Xiao Shurong. Fractures in the mudstone of tight reservoirs[J]. Experimental Petroleum Geology, 1999, 21(3): 266-269.
    [16] 高岗. 碳酸盐岩缝合线研究及油气地质意义[J]. 天然气地球科学,2013,24(2):218-226.

    Gao Gang. Research status and oil & gas geology significance of carbonate rock stylolite[J]. Natural Gas Geoscience, 2013, 24(2): 218-226.
    [17] Dumas S, Arnott R W C, Southard J B. Experiments on oscillatory-flow and combined-flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record[J]. Journal of Sedimentary Research, 2005, 75(3): 501-513.
    [18] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:81-90.

    Zhu Xiaomin. Sedimentary petrology[M]. 4nd ed. Beijing: Petroleum Industry Press, 2008: 81-90.
    [19] Ravier E, Martinez M, Pellenard P, et al. The milankovitch fingerprint on the distribution and thickness of bedding-parallel veins (beef) in source rocks[J]. Marine and Petroleum Geology, 2020, 122: 104643.
    [20] 陈迎宾,郑冰,袁东山,等. 大邑构造须家河组气藏裂缝发育特征及主控因素[J]. 石油实验地质,2013,35(1):29-35.

    Chen Yingbin, Zheng Bing, Yuan Dongshan, et al. Characteristics and main controlling factors of fractures in gas reservoir of Xujiahe Formation, Dayi structure[J]. Petroleum Geology & Experiment, 2013, 35(1): 29-35.
    [21] Zanella A, Cobbold P R, Rojas L. Beef veins and thrust detachments in Early Cretaceous source rocks, foothills of Magallanes-Austral Basin, southern Chile and Argentina: Structural evidence for fluid overpressure during hydrocarbon maturation[J]. Marine and Petroleum Geology, 2014, 55: 250-261.
    [22] 唐小梅,曾联波,岳锋,等. 鄂尔多斯盆地三叠系延长组页岩油储层裂缝特征及常规测井识别方法[J]. 石油天然气学报,2012,34(6):95-99.

    Tang Xiaomei, Zeng Lianbo, Yue Feng, et al. Fracture characterization and identification by conventional logs of shale reservoirs in Ordos Basin[J]. Journal of Oil and Gas Technology, 2012, 34(6): 95-99.
    [23] 李鑫海,崔耀科,穆睿,等. 致密砂岩中层理缝的赋存特征及其与油气分布的关系[J]. 地球科学前沿,2021,11(3):384-393.

    Li Xinhai, Cui Yaoke, Mu Rui, et al. Occurrence characte-ristics and relation on oil and gas distribution of bedding fractures in tight gas sand[J]. Advances in Geosciences, 2021, 11(3): 384-393.
    [24] Gong L, Wang J, Gao S, et al. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108655.
    [25] 吴建发,赵圣贤,范存辉,等. 川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系[J]. 石油学报,2021,42(4):428-446.

    Wu Jianfa, Zhao Shengxian, Fan Cunhui, et al. Fracture characteristics of the Longmaxi Formation shale and its relationship with gas-bearing properties in Changning area, southern Sichuan[J]. Acta Petrolei Sinica, 2021, 42(4): 428-446.
    [26] 张君峰,兰朝利. 鄂尔多斯盆地榆林—神木地区上古生界裂缝和断层分布及其对天然气富集区的影响[J]. 石油勘探与开发,2006,33(2):172-177.

    Zhang Junfeng, Lan Chaoli. Fractures and faults distribution and its effect on gas enrichment areas in Ordos Basin[J]. Petroleum Exploration and Development, 2006, 33(2): 172-177.
    [27] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607.

    Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
    [28] Ukar E, Lopez R G, Gale J F W, et al. New type of kinematic indicator in bed-parallel veins, Late Jurassic-Early Cretaceous Vaca Muerta Formation, Argentina: E-W shortening during Late Cretaceous vein opening[J]. Journal of Structural Geology, 2017, 104: 31-47.
    [29] Zhang J G, Jiang Z X, Wang S Q, et al. Bedding-parallel calcite veins as a proxy for shale reservoir quality[J]. Marine and Petroleum Geology, 2021, 127: 104975.
    [30] 吴志均,唐红君,安凤山. 川西新场致密砂岩气藏层理缝成因探讨[J]. 石油勘探与开发,2003,30(2):109-111.

    Wu Zhijun, Tang Hongjun, An Fengshan. Causese of bedding fractures of tight sand gas-reservoir in Xinchang, west Sichuan region[J]. Petroleum Exploration and Development, 2003, 30(2): 109-111.
    [31] Liu H M, Zhang S, Song G Q, et al. A discussion on the origin of shale reservoir inter-laminar fractures in the Shahejie Formation of Paleogene, Dongying Depression[J]. Journal of Earth Science, 2017, 28(6): 1064-1077.
    [32] 贺振建,刘宝军,王朴. 准噶尔盆地永进地区侏罗系层理缝成因及其对储层的影响[J]. 油气地质与采收率,2011,18(1):15-17.

    He Zhenjian, Liu Baojun, Wang Pu. Genesis of bedding fractures and its influences on reservoirs in Jurassic, Yongjin area, Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(1): 15-17.
    [33] 梁成钢,谢建勇,陈依伟,等. 吉木萨尔凹陷芦草沟组页岩储集层裂缝成因及耦合关系[J]. 新疆石油地质,2021,42(5):521-528.

    Liang Chenggang, Xie Jianyong, Chen Yiwei, et al. Genesis and coupling relationship of fractures in shale reservoir of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2021, 42(5): 521-528.
    [34] 李剑,曾联波,林煜,等. 柴达木盆地西部新生界水平裂缝及其构造意义[J]. 石油与天然气地质,2020,41(6):1222-1232.

    Li Jian, Zeng Lianbo, Lin Yu, et al. Horizontal fractures of the Cenozoic in western Qaidam Basin and their tectonic implication[J]. Oil & Gas Geology, 2020, 41(6): 1222-1232.
    [35] Séjourné S, Malo M, Savard M M, et al. Multiple origin and regional significance of bedding parallel veins in a fold and thrust belt: The example of a carbonate slice along the Appalachian structural front[J]. Tectonophysics, 2005, 407(3/4): 189-209.
    [36] Nollet S, Urai J L, Bons P D, et al. Numerical simulations of polycrystal growth in veins[J]. Journal of Structural Geology, 2005, 27(2): 217-230.
    [37] Gratier J P, Frery E, Deschamps P, et al. How travertine veins grow from top to bottom and lift the rocks above them: The effect of crystallization force[J]. Geology, 2012, 40(11): 1015-1018.
    [38] Zanella A, Cobbold P R, Rodrigues N, et al. Source rocks in foreland basins: A preferential context for the development of natural hydraulic fractures[J]. AAPG Bulletin, 2021, 105(4): 647-668.
    [39] 金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.

    Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
    [40] 柳波,孙嘉慧,张永清,等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发,2021,48(3):521-535.

    Liu Bo, Sun Jiahui, Zhang Yongqing, et al. Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535.
    [41] Laubach S E. Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003, 87(4): 561-579.
    [42] Hooker J N, Laubach S E, Marrett R. A universal power-law scaling exponent for fracture apertures in sandstones[J]. GSA Bulletin, 2014, 126(9/10): 1340-1362.
    [43] Marrett R, Ortega O J, Kelsey C M. Extent of power-law scaling for natural fractures in rock[J]. Geology, 1999, 27(9): 799-802.
    [44] Liu D D, Zhang C, Pan Z K, et al. Natural fractures in carbonate-rich tight oil reservoirs from the Permian Lucaogou Formation, southern Junggar Basin, NW China: Insights from fluid inclusion microthermometry and isotopic geochemistry[J]. Marine and Petroleum Geology, 2020, 119: 104500.
    [45] Salem A C, Naruk S J, Solum J G. Impact of natural fractures on production from an unconventional shale: The Delaware Basin Wolfcamp shale[J]. AAPG Bulletin, 2022, 106(1): 1-20.
    [46] Kulander B R, Dean S L, Ward Jr B J. Fractured core analysis: Interpretation, logging, and use of natural and induced fractures in core[M]. McLean: American Association of Petroleum Geologists, 1990.
    [47] Lash G G, Engelder T. An analysis of horizontal microcracking during catagenesis: Example from the Catskill delta complex[J]. AAPG Bulletin, 2005, 89(11): 1433-1449.
    [48] Rodrigues N, Cobbold P R, Loseth H, et al. Widespread bedding-parallel veins of fibrous calcite ('beef') in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): Evidence for overpressure and horizontal compression[J]. Journal of the Geological Society, 2009, 166(4): 695-709.
    [49] 刘喜武,刘宇巍,刘志远,等. 陆相页岩油甜点地球物理表征研究进展[J]. 石油与天然气地质,2019,40(3):504-511.

    Liu Xiwu, Liu Yuwei, Liu Zhiyuan, et al. Progresses in geophysical characterization of continental shale oil sweet spots[J]. Oil & Gas Geology, 2019, 40(3): 504-511.
    [50] 陈双全,钟庆良,李忠平,等. 水平层理缝岩石物理建模及其地震响应特征[J]. 石油与天然气地质,2020,41(6):1273-1281,1287.

    Chen Shuangquan, Zhong Qingliang, Li Zhongping, et al. Petrophysical modeling of horizontal bedding-parallel fractures and its seismic response characteristics[J]. Oil & Gas Geology, 2020, 41(6): 1273-1281, 1287.
    [51] 刘海浩,丁拼搏,李向阳. 含水平缝薄互层储层地震响应特征物理模拟[J]. 地球物理学报,2021,64(8):2927-2940.

    Liu Haihao, Ding Pinbo, Li Xiangyang. Physical modeling of seismic responses in thin interbedded reservoirs with horizontal fractures[J]. Chinese Journal of Geophysics, 2021, 64(8): 2927-2940.
    [52] van der Voet E, Muchez P, Laenen B, et al. Characterizing carbonate reservoir fracturing from borehole data: A case study of the Viséan in northern Belgium[J]. Marine and Petroleum Geology, 2020, 111: 375-389.
    [53] Jiang L W, Zhang L, Luo Y F, et al. Revealing the natural fracture system in the Longmaxi shale gas reservoir, Sichuan Basin, China[C]//Proceedings of offshore technology conference. Houston, Texas, USA: OnePetro, 2022.
    [54] Fernández-Ibáñez F, DeGraff J M, Ibrayev F. Integrating borehole image logs with core: A method to enhance subsurface fracture characterization[J]. AAPG Bulletin, 2018, 102(6): 1067-1090.
    [55] 黄继新,彭仕宓,王小军,等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报,2006,27(6):65-69.

    Huang Ji-xin, Peng Shimi, Wang Xiaojun, et al. Applications of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 2006, 27(6): 65-69.
    [56] da Rocha H O, da Costa J L S, Carrasquilla A A G, et al. Permeability estimation and analysis of fracture networks using resistivity logs in an offshore Aptian carbonate reservoir pre-salt, in the southeastern Santos Basin[J]. Journal of Applied Geophysics, 2021, 184: 104241.
    [57] 王珂,张荣虎,戴俊生,等. 低渗透储层裂缝研究进展[J]. 地球科学与环境学报,2015,37(2):44-58.

    Wang Ke, Zhang Ronghu, Dai Junsheng, et al. Review on low-permeability reservoir fracture[J]. Journal of Earth Sciences and Environment, 2015, 37(2): 44-58.
    [58] Lai J, Liu B C, Li H B, et al. Bedding parallel fractures in fine-grained sedimentary rocks: Recognition, formation mechanisms, and prediction using well log[J]. Petroleum Science, 2022, 19(2): 557-569.
    [59] 罗贞耀. 用侧向资料计算裂缝张开度的初步研究[J]. 地球物理测井,1990,14(2):83-92.

    Luo Zhenyao. Preliminary study on the calculation of fracture aperture using laterolog log[J]. Well Logging Technology, 1990, 14(2): 83-92.
    [60] Aghli G, Soleimani B, Moussavi-Harami R, et al. Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs[J]. Journal of Petroleum Science and Engineering, 2016, 142: 152-162.
    [61] 刘伟新,卢龙飞,魏志红,等. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质,2020,42(3):378-386.

    Liu Weixin, Lu Longfei, Wei Zhihong, et al. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 378-386.
    [62] 谢小敏,李利,袁秋云,等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试,2021,40(1):50-60.

    Xie Xiaomin, Li Li, Yuan Qiuyun, et al. Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50-60.
    [63] 曹小朋. 页岩油储层微观特征分析与流动模拟[J]. 深圳大学学报(理工版),2021,38(6):605-612.

    Cao Xiaopeng. Microscopic characteristics analysis and flow simulation of shale oil reservoir[J]. Journal of Shenzhen University (Science and Engineering), 2021, 38(6): 605-612.
    [64] Wang Q Y, Li Y H, Yang W, et al. Finite element simulation of multi-scale bedding fractures in tight sandstone oil reservoir[J]. Energies, 2019, 13(1): 131.
    [65] 周彤,王海波,李凤霞,等. 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发,2020,47(5):1039-1051.

    Zhou Tong, Wang Haibo, Li Fengxia, et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5): 1039-1051.
    [66] Alzayer Y A. Differential compaction fractures in carbonate mound complexes: Pioneering numerical models applied to outcrops and subsurface reservoirs[D]. Austin: The University of Texas at Austin, 2018.
    [67] Cooke M L, Mollema P N, Pollard D D, et al. Interlayer slip and joint localization in the east Kaibab monocline, Utah: Field evidence and results from numerical modelling[M]//Cosgrove J W, Ameen M S. Forced folds and fractures. London: Geological Society of London, 1999: 23-49.
    [68] Sanz P F, Pollard D D, Allwardt P F, et al. Mechanical models of fracture reactivation and slip on bedding surfaces during folding of the asymmetric anticline at Sheep Mountain, Wyoming[J]. Journal of Structural Geology, 2008, 30(9): 1177-1191.
    [69] Smart K J, Ferrill D A, Morris A P. Impact of interlayer slip on fracture prediction from geomechanical models of fault-related folds[J]. AAPG Bulletin, 2009, 93(11): 1447-1458.
    [70] Jessell M W, Willman C E, Gray D R. Bedding parallel veins and their relationship to folding[J]. Journal of Structural Geology, 1994, 16(6): 753-767.
    [71] Lajtai E Z. A mechanistic view of some aspects of jointing in rocks[J]. Tectonophysics, 1977, 38(3/4): 327-338.
    [72] Tavani S, Storti F, Lacombe O, et al. A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal regions of thrust wedges[J]. Earth-Science Reviews, 2015, 141: 82-104.
    [73] Younes A, Engelder T. Fringe cracks: Key structures for the interpretation of progressive Alleghanian deformation of the Appalachian Plateau[J]. Geological Society of America Bulletin, 1999, 111(2): 219-239.
    [74] 曾联波,朱如凯,高志勇,等. 构造成岩作用及其油气地质意义[J]. 石油科学通报,2016,1(2):191-197.

    Zeng Lianbo, Zhu Rukai, Gao Zhiyong, et al. Structural diagenesis and its petroleum geological significance[J]. Petroleum Science Bulletin, 2016, 1(2): 191-197.
    [75] Cobbold P R, Rodrigues N. Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’ and ‘cone-in-cone’)[J]. Geofluids, 2007, 7(3): 313-322.
    [76] Ismat Z. Evolution of fracture porosity and permeability during folding by cataclastic flow: Implications for syntectonic fluid flow[J]. Rocky Mountain Geology, 2012, 47(2): 133-155.
    [77] Engelder T, Behr R A. Skempton’s poroelastic relaxation: The mechanism that accounts for the distribution of pore pressure and exhumation-related fractures in black shale of the Appalachian Basin[J]. AAPG Bulletin, 2021, 105(4): 669-694.
    [78] Fowler T J. Flexural-slip generated bedding-parallel veins from central Victoria, Australia[J]. Journal of Structural Geology, 1996, 18(12): 1399-1415.
    [79] Laubach S E, Mace R E, Nance H S. Fault and joint swarms in a normal fault zone[M]//Rossmanith H P. Mechanics of jointed and faulted rock. Rotterdam: Balkema, 1995: 305-309.
    [80] Laubach S E, Olson J E, Gross M R. Mechanical and fracture stratigraphy[J]. AAPG Bulletin, 2009, 93(11): 1413-1426.
    [81] Ameen M S, Buhidma I M, Rahim Z. The function of fractures and in-situ stresses in the Khuff reservoir performance, onshore fields, Saudi Arabia[J]. AAPG Bulletin, 2010, 94(1): 27-60.
    [82] Harwood R J. Oil and gas generation by laboratory pyrolysis of kerogen[J]. AAPG Bulletin, 1977, 61(12): 2082-2102.
    [83] Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation[J]. AAPG Bulletin, 1997, 81(6): 1023-1041.
    [84] 柳广弟. 石油地质学[M]. 5版. 北京:石油工业出版社,2018:179-182.

    Liu Guangdi. Petroleum geology[M]. 5th ed. Beijing: Petroleum Industry Press, 2018: 179-182.
    [85] 王剑,周路,刘金,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩层系甜点体烃类可流动性影响因素[J]. 天然气地球科学,2022,33(1):116-124.

    Wang Jian, Zhou Lu, Liu Jin, et al. Influencing factors of hydrocarbon mobility in sweet spot of the Lucaogou Formation shale in Jimusar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(1): 116-124.
    [86] Swanson S K. Lithostratigraphic controls on bedding-plane fractures and the potential for discrete groundwater flow through a siliciclastic sandstone aquifer, southern Wisconsin[J]. Sedimentary Geology, 2007, 197(1/2): 65-78.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(1)

Article Metrics

Article views(149) PDF downloads(72) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-06-12
  • Revised:  2022-09-28
  • Accepted:  2022-10-31
  • Published:  2024-08-10

Research Progress and Trend of Bedding-parallel Fractures in Unconventional Sedimentary Reservoirs

doi: 10.14027/j.issn.1000-0550.2022.124
Funds:

National Natural Science Foundation of China 41972133

Abstract: 

Significance  The widespread development of bedding-parallel fractures (BPFs) in sedimentary reservoirs is the key to improve the overall rock permeability and promote fluid flow, and it is increasingly important for unconventional hydrocarbon exploration and development.   [Progress]  Scholars at home and abroad have examined the characteristics of BPFs and their relationship with hydrocarbon migration and accumulation, identification and prediction, formation mechanism, and major controlling factors. The following conclusions have been made: (1) BPFs are characterized by high linear density and high horizontal permeability. The existence of BPFs is one of the basic conditions affecting the large-scale accumulation of hydrocarbons in unconventional sedimentary reservoirs. (2) Seismic inversion, image logging and conventional logging identification, fracture related major controlling factors prediction, geological parameter modeling, and numerical simulation prediction are commonly used to identify and predict fractures; however, there are still limitations in regards to low accuracy, high cost, and immature methods. With the application of scanning electron microscopy, automatic mineral quantitative analysis, nanometer and micron computed tomography (CT) scanning, and digital core technology, the study of BPFs has gradually entered the level of microscopization, visualization, and quantification. (3) The formation of BPFs is the result of complex factors such as sedimentary diagenesis, structure, overpressure and crystallization stress. (4) Sedimentary rock type, bedding type, mineral composition, and total organic carbon (TOC) content are the main internal factors affecting the development of BPFs. The development degree of fault and fold, the distance from fault core and fold axis, the depth of stratum burial, and the intensity of uplift and denudation are the main external factors affecting the development of BPFs.   [Conclusions and Prospects]  However, there are still lack of comprehensive, systematic and quantitative research on the comprehensive mechanism of BPFs formed by different types of sedimentary rocks and bedding, the establishment of fine identification and quantitative prediction models for different types of BPFs, and the determination of the specific relationship between BPFs and hydrocarbon migration or accumulation. These problems limit the exploration and development of fractured reservoirs to a certain extent, and are also important research directions of BPFs in the future.

LI ZiLong, FAN ChangYu, HUI Xiao, DENG XiuQin, SUN Bo, HAN XiaoJie, WANG AiGuo, WANG Gang. Research Progress and Trend of Bedding-parallel Fractures in Unconventional Sedimentary Reservoirs[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1150-1163. doi: 10.14027/j.issn.1000-0550.2022.124
Citation: LI ZiLong, FAN ChangYu, HUI Xiao, DENG XiuQin, SUN Bo, HAN XiaoJie, WANG AiGuo, WANG Gang. Research Progress and Trend of Bedding-parallel Fractures in Unconventional Sedimentary Reservoirs[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1150-1163. doi: 10.14027/j.issn.1000-0550.2022.124
  • 非常规沉积储层的主要研究对象是相对细粒的沉积(物)岩,包括泥页岩、致密砂岩、碳酸盐岩等,以及包含不同组分的混积岩[13]。非常规沉积储层储集空间以纳米级孔喉为主,裂缝能够明显改善储层物性,为油气提供储集空间和渗流通道[1,45],一些研究表明,储层的最终可采储量取决于天然裂缝的类型、产状、密度和有效性等[6]。因此,有效地识别和评价裂缝发育模式及其地下的分布特征,对油气的勘探开发具有重要意义[7]。大量的勘探实践和研究表明,以碎屑岩和碳酸盐岩为主的沉积储层中普遍发育层理缝,尤其是非常规沉积储层中层理缝与油气运移聚集规律的研究程度制约着油气的勘探发现[78]。然而,目前对于层理缝的精细表征、识别及预测、形成机制与主控因素,及其对油气运聚的控制机理和时空关系的研究相对于构造裂缝还比较薄弱,没有清晰的认识[79]

    层理缝在非常规油气成藏过程中是“运移”还是“聚集”的作用?层理缝在油气输导体系中扮演的角色是什么?这些问题尚存争议。无论是有效提高储层储集空间、抑或是改善储层渗滤性能或者在一定程度上作为油气运移的通道,均决定了层理缝研究的必要性和迫切性。

    因此,本文聚焦于非常规沉积储层研究领域,依据国内外学者对沉积岩层理缝的相关研究,并结合笔者对鄂尔多斯盆地延长组致密砂岩、马家沟组碳酸盐岩研究成果,对非常规沉积储层层理缝的研究进展及趋势进行了系统的总结,以期为层理缝研究提供借鉴意义。

  • 沉积和成岩过程中,沿岩石的层理裂开的天然裂缝称为层理缝[78]。除砂岩、页岩等层状岩石外,一些学者也将泥岩、碳酸盐岩等以块状层理为主的沉积岩中的部分水平裂缝定义为层理缝[1013]。砂岩中还发育一部分产状近水平的构造缝,它们通常与层理面小角度相交,具有镜面擦痕、阶步或“饼裂”现象,是在断层挤压逆冲或近水平剪切滑动下形成的[14];在构造挤压和伸展作用下会形成沿泥岩软弱面发育的、具有镜面擦痕特征的低角度滑脱裂缝,这种软弱面通常为应力分布的异常部位,与岩层面大致平行[15];碳酸盐岩中发育的水平缝合线,具有锯齿状特征,为压溶成因,也与沉积层理无关[16]。Cobbold et al.[10]统计了世界范围内110个含油气盆地的层理缝及其充填物特征,认为大多数层理缝与油气运移和流体超压密切相关。

    目前,国内外关于层理缝的研究集中体现在以下三个方面:一是对于层理及层理缝[8,1724]的发育特征,开展了大量的分析描述工作;二是针对层理缝的形成机制,从沉积成岩[8,12,19,2527]、超压[21,25,2831]、构造[20,25,30,3235]和结晶应力[3638]等方面进行了探讨;三是归纳总结了层理缝与油气运移和聚集的关系,认识到层理缝对油气富集成藏的重要意义[78,23,3940]表1)。但是,对于容易形成层理缝的沉积岩和层理类型、不同类型层理缝的精细表征、层理缝的识别与预测、层理缝与油气运移和聚集的具体关系等,尚且缺乏全面、系统、动态及定量化的研究。

    盆地层位沉积相岩性层理类型充填物成因机制、影响因素储渗作用文献
    四川盆地三叠系须家河组三角洲平原分支河道、 三角洲前缘分流河道砂岩平行层理、斜层理泥质、有机质、硅质、黄铁矿构造挤压成因,沉积微相类型、水流方向、 砂体厚度控制储集[25]
    奥陶系五峰组—龙马溪组半深水—浅水的陆棚环境海相页岩页理沥青质、有机质,黄铁矿、 方解石机械压实、有机质生烃增压储集渗流[39]
    侏罗系上沙溪庙组三角洲分支河道致密砂岩水平纹层、低角度斜层理石英、方解石异常高压、构造抬升储集[30]
    鄂尔多斯盆地三叠系延长组长6—长8分流河道、水下分流河道、 三角洲、湖泊相砂岩、页岩平行层理方解石、石英、沥青地层抬升剥蚀、 机械压实与失水收缩渗流,储集[89,2223]
    二叠系山西组分流河道、水下分流河道、河口坝砂岩交错层理沥青质、炭屑、泥质酸性水或烃类溶蚀渗流[26]
    渤海湾盆地古近系沙河街组湖泊相湖湘页岩页理方解石、黏土溶蚀、超压、渗透力储集[31]
    古近系孔店组冲积扇和河湖相砂岩沉积环境、成岩作用储集与渗流[29]
    准噶尔盆地二叠系芦草沟组三角洲前缘、滨湖、浅湖、滩坝、 远砂坝、砂质滩、席状砂碳酸盐岩、 砂岩、页岩平行层理石英、方解石、泥质、 长石、沥青沉积成岩、地层抬升, 生烃排酸溶蚀成因,沉积微相主控储集与渗流[12,33]
    侏罗系三角洲前缘的水下分支河道砂岩斜层理沥青烃类溶蚀、异常高压、断层储集[32]
    柴达木盆地新生界冲积平原、冲积扇、扇三角洲、 河流相以及湖相泥质岩块状层理石膏地层抬升剥蚀[34]
    三塘湖盆地二叠系芦草沟组湖湾浅湖或半深湖—深湖亚相碳酸盐岩、砂岩纹层有机酸溶蚀、碳酸钙体积收缩储集[27]
    松辽盆地白垩系青山口组和 沙河子组半深湖—深湖相陆相页岩页理黏土矿物、方解石异常高压、构造抬升储集[24,40]
    魁北克—阿巴拉契亚构造带(加拿大)奥陶系深海斜坡相石灰岩、泥质灰岩、 页岩块状层理方解石、石英断层、褶皱渗流[35]
    滨里海盆地 (哈萨克斯坦)石炭系KT-I组浅海陆棚相、三角洲相碳酸盐岩块状层理断层、褶皱、不同岩性垂直变化率储集与渗流[13]
    内乌肯盆地(阿根廷)晚侏罗世至早白垩世基底斜坡相碳酸盐岩、页岩纤维状方解石、石膏、石英脉流体超压等[10,19,21,28]

    Table 1.  Bedding-parallel fractures in typical petroliferous basins

  • 层理是在水动力条件发生强弱变化的条件下,沉积物的成分、结构、颜色等沿垂向发生变化而显现出来的成层构造[18],层理的类型和特征制约着层理缝的形成[20,23,26]。纹层是层理的基本组成单位,是在特定沉积环境演化与气候变迁条件下形成[27,31],沉积环境的周期性变化,影响着水动力强弱的改变,也为不同矿物成分的沉淀和纹层的形成提供了前提条件[19]

    通常以0.1 mm的裂缝孔径作为划分宏观裂缝与微观裂缝的界限,微观裂缝需要借助显微镜才能观察到[4142],因此,与沉积层理相关的裂缝也可以从宏观尺度和微观尺度进行分析。层理缝常发育在纹层、层理和岩性界面,产状与层理或纹层面接近一致。从分形的角度来看,沿纹层面发育的微观层理缝可以认为是宏观层理缝的雏形,因为它们在结构上具有自相似性。一些学者认为岩石中存在一个从微观到宏观的裂缝族群,对裂缝进行量化时,会发现它们包含较多的小裂缝和较少的大裂缝,因此,微观层理缝和宏观层理缝的数量遵循一定的幂函数关系[4143]

    在地层未发生明显褶皱和倒转作用的地区,除斜层理形成的层理缝外,大多数层理缝近水平发育,倾角通常小于5°[30,44]。层理缝在野外露头中多呈开启状态,长度可达数十米[10,13,28],被充填或有石油渗出的层理缝的延伸长度更加直观;在垂直井和水平井的岩心上,开启的层理缝长度为几厘米至1 m不等[8,21,45]。层理缝的线密度变化较大,岩心中从每米数条到一百多条(图1a~c),而具有线状油迹或串珠状油斑显示的微观层理缝间隔仅几毫米(图1c~f)。在露头、岩心和成像测井中常见层理缝与较高角度的天然裂缝(图1a)伴生形成相互交织的网状裂缝,它们是油气在非常规储层中运移的优势通道[12]。因为钻井取心过程或以前的研究、运输活动可能导致岩心的不连续和层理缝开度的增加[25,46],因此层理缝在岩心中的开度不能反映其在地下的真实状态。

    Figure 1.  Bedding⁃parallel fractures in tight sandstones from the Yanchang Formation in the northern Sanbian area of Ordos Basin

  • 层理缝的有效性与其充填程度密切相关,方解石、石膏、石英脉、沥青脉和黄铁矿(表1)是常见的充填物,被充填层理缝的连续性是可变的[23,47]。Ukar et al.[28]和Rodrigues et al.[48]在阿根廷Neuquén盆地Arroyo Mulichinco地区Vaca Muerta组黑色页岩中发现被方解石充填的层理缝占岩石体积的10%,厚1 mm~16 cm(平均厚度为5 cm),局部延伸超过100 m。Zhang et al.[29]认为四川盆地、渤海湾盆地和南襄盆地页岩层理缝内充填的大量方解石脉体与超压、有机质和脆性矿物有关,并且与不发育方解石脉体的部分相比拥有更高的孔隙度、渗透率和油气含量。Lash et al.[47]在美国纽约州西部上泥盆统Dunkirk页岩中发现80%的微观层理缝被沥青充填,根据沥青作为唯一的层理缝填充材料,推测层理缝是在干酪根转化为沥青的同时形成的,并且促进了油气的侧向初次运移。笔者在鄂尔多斯盆地三边北地区和志丹—靖边地区延长组的致密砂岩中,发现层理缝含有大量的串珠状油斑和固体沥青(图1b,c),薄片中的荧光显示也主要出现在微观层理缝内(图1g~i),表明大多数层理缝是与油气运移和聚集相关的有效裂缝,除沥青外,部分微观层理缝内也发现了方解石;马家沟组碳酸盐岩中也存在大量的缝合线(图2a)及水平层理缝(图2b~e),在层理缝内存在较多的方解石、石膏以及近1 cm厚的盐晶体(图2b)充填现象,并且盐晶体存在大量的盐溶孔洞。

    Figure 2.  Stylolite and bedding⁃parallel fractures in carbonate rocks from the Majiagou Formation in the Mizhi area of Ordos Basin

  • 目前对层理缝的识别方法可以分为间接识别和直接识别两种。间接识别主要是通过地震反演[4951]、成像测井[5255]和常规测井识别[53,56]。地震反演技术常用于识别大规模的断裂和断层,对中高角度的构造缝也具有一定的识别效果[54,57],而地震方法对中、小尺度的裂缝(包括层理缝)的响应易被其他地质因素隐藏,导致应用效果不理想[5]。成像测井是目前除岩心外,研究地下层理缝的主要技术手段,在成像测井中(图3),层理通常表现为一组平行或近平行的电导率异常区域,异常区域范围较大,层理缝通常平行于层理,与层理的主要区别在于层理缝的边缘毛刺不均匀,开口程度会发生变化,构造裂缝常切穿层理[44,58]。未填充的层理缝被低电阻率泥浆渗透,在成像测井中呈现出深色水平线或低振幅正弦曲线[54],是油气运移和聚集的有效通道;而被沥青、方解石和石膏等填充的裂缝,其电阻率通常大于围岩的电阻率,颜色更明亮[5455]。尽管前人很少针对层理缝的常规测井识别方法开展过专门的研究,但是很早之前就注意到碳酸盐岩储层中不同角度的裂缝会对电阻率测井产生不同的影响[56,5960],由于双侧向电阻率测井拥有较强的聚焦能力,当发育近水平裂缝时,深浅侧向电阻率出现负差异。不同产状(倾角)裂缝发育段在常规测井上的响应特征具有一定的差异性,除电阻率测井外,声波时差、补偿中子、补偿密度、自然电位等测井均可以在一定程度上反映裂缝倾角特征[5,22]。但是裂缝引起的测井响应大多数是复杂的非线性关系,并且大部分层理缝在地下的开度很小,引起的测井响应十分微弱,容易被泥质夹层等引起的测井响应所掩盖,仅利用常规测井来准确识别层理缝还存在较大的困难。

    Figure 3.  Response characteristics of bedding⁃parallel fractures in image and conventional logs (modified from reference [53])

    近年来,除露头、岩心及薄片等直接观察方法外,扫描电镜[27,61]、XRD和矿物综合定量分析(QEMSCAN)[27,40,62]、微纳米CT扫描和数字岩心[40,63]等技术(图4)在微观层理缝的矿物组成,以及与孔隙组成的运移通道连通性等研究中得到广泛应用[25,27,40],使层理缝的研究逐渐进入精细化、定量化阶段,不仅可以用于微观层理缝的识别,对成因机制和影响因素分析也具有重要意义。扫描电镜技术可以提供微观层理缝的开度、延伸长度、溶蚀程度等二维特征(图4a~c);QEMSCAN可以定量分析纹层与纹层界面的元素和矿物组成、矿物颗粒大小和含量变化趋势、面孔率,以及特定矿物的分布特征等(图4d,e),提供了比XRD更全面的信息;CT扫描和数字岩心精细刻画技术能使三维缝—孔系统空间分布特征可视化(图4f,g)。但是精密仪器的使用,提高了技术要求和成本,难以利用这些方法在较大范围内进行层理缝识别。

    Figure 4.  Scanning electron microscopy (SEM)[61], QEMSCAN [62], CT scan and digital core analysis results of bedding⁃parallel fractures[63]

    层理缝相关主控因素预测法、地质参数建模及数值模拟预测法是目前在勘探和开发领域中常用的层理缝预测方法。前者通过拟合层理缝发育密度、开度、延伸长度等与各主控因素的数学关系,赋予各主控因素不同的权重系数,得到预测层理缝发育程度的综合公式[64];后者主要利用岩石弹性模量、泊松比、抗拉和抗剪强度、内摩擦角、三维应力条件及层理发育强度等参数,从构造应力学角度对层理缝的形成进行数值模拟[65]。然而,这种方法存在一定的局限性,例如需要精细的地质模型、过多的岩石力学参数和接近实际的边界条件[57],预测结果可以代表区域上层理缝发育趋势,但是单井尺度预测的准确度较低。

  • 对于影响层理缝发育的因素,可以从岩石自身物理属性和外部构造环境两个方面进行分析。层理类型和层理面的性质控制着层理缝强度[32,66],部分层理沉积了适量的泥质,在层间平行滑动时能够释放一些应力,不易形成层理缝;而另一些则抵抗层间平行滑动,发生破裂[6769]。黏土矿物含量对地层超压的发展具有明显的促进作用,Imber et al.[11]认为岩石黏土含量和正断层引起的应力场扰动可能是控制Cleveland盆地Cleveland Ironstone和Whitby Mudstone组层理缝发育和分布的主要因素,并且在Whitby Mudstone组富含黏土的沥青页岩中,层理缝的间距范围接近TOC、CaCO3和S的主要循环波长。笔者在鄂尔多斯盆地延长组致密砂岩地层中,观察到大量微观层理缝沿着云母解离缝和矿物粒间缝发育(图1d~f),其延伸长度与云母定向排列的长度具有较好的一致性,并且在岩心中的层理面上发现大量云母。因此,推测云母的大量富集是层理缝发育的主控因素之一。刘伟新等[61]在川东南地区五峰组—龙马溪组页岩中发现了纹层厚度越薄,层理缝发育强度越高的规律;页岩储层中层理缝的形成也受TOC含量的影响,Zhang et al.[29]认为2%的TOC丰度是页岩形成层理缝的阈值;曾联波等[8]发现页岩储层中TOC和黄铁矿含量高的层段,层理缝密度也较大,凝灰岩中层理缝的发育程度则与刚性玻屑含量呈正相关关系。不同岩性的垂直变化率也是影响层理缝发育程度的因素之一,主要原因可能是不同岩性之间存在较大的弹塑性差异,这个观点已经在碳酸盐岩储层中得到证实[13]

    外部构造环境对层理缝发育的影响主要是断层和褶皱发育程度,以及距断层核和褶皱轴的距离[13,35,6770]、地层埋藏深度和抬升剥蚀强度[34,71],甚至是可能影响气候和海平面振荡的米兰科维奇旋回等[19]。Li et al.[13]将断层相关层理缝划分为“剪切型层理缝”和“扩展型层理缝”,认为碳酸盐岩中剪切型层理缝的产生与断层活动过程中上下地层的差异性滑动有关。而断层两盘的“挂壁”式滑动将产生纵向应力,促进扩展型层理缝产生[72],距离断层核越近,推动地层滑动的趋势和纵向应力越强,层理缝的发育程度也越高。李剑等[34]和曾联波等[8]发现层理缝的密度、开启程度和延伸距离与地层抬升剥蚀的厚度具有正相关性,与地层埋藏深度有负相关性。Ravier et al.[19]通过系统性的矿物学和地球化学分析,揭示了米兰科维奇旋回作用对Neuquén盆地Vaca Muerta组泥岩中富有机质沉积物的沉积以及矿化层理缝的形成和分布的影响。

  • 层理缝的形成是一个复杂的过程,即使是单个裂缝也通常具有多期生长历史和多种成因机制[57,73],而目前大多数关于层理缝的研究均致力于描述单一的形成机制。由于层理缝与沉积层理密切相关,一些学者将层理缝划归为非构造成因的成岩裂缝,认为层理缝通常存在于具有层状结构的岩石中,这些裂缝的形成是由间歇性静水悬浮、沉积和叠加压实共同作用下形成的[5,8,74]。另外,层理面在沉积过程中富集碳屑、云母和泥质,会成为岩石中的弱面[26,47,66],在后期构造应力的作用下容易发生破裂。层理发育的沉积物在固结成岩过程中因遭受压实压溶、有机酸溶蚀和黏土矿物脱水等作用,形成沿纹层分布的溶蚀微裂缝和收缩微裂缝,随后逐渐扩展、连通,成岩作用越强,成岩裂缝的发育程度越高[8,25]

    从应力学角度分析,裂缝面应该与最小主应力垂直,因此,形成层理缝的条件应满足上覆垂向应力(Sv)小于最小水平主应力(Sh)[11,35,7577],除非层理是倾斜的或者岩性不均一[47]。当地层中发育断层、褶皱或超压,导致局部应力场发生改变,使岩石骨架的垂直有效应力变成拉伸状态,并超过层理面的抗拉强度(图5),使莫尔圆与破裂包络线相切,就会满足形成层理缝的应力学条件[11,35,75]。层间滑动被认为是层理缝的形成机制之一,一些层理类型在层间滑动过程中能够消散部分应力[12,66],Alzayer[66]的研究证明抵抗层间滑动的情况下裂缝强度更高;在断层和褶皱作用中,断层上下盘相对滑动和褶皱两翼弯曲滑移也能够促进层理缝的形成[13,35,7879]。一些学者从抬升剥蚀的角度解释了层理缝的构造作用成因,认为露头和近地表的层理缝,是抬升卸载成因[76,80];Lajtai[71]首先提出由于不同岩性地层,以及矿物和胶结物之间存在弹塑性差异,在地层抬升剥蚀过程中会产生残余应力,导致岩石产生破裂形成拉伸裂缝,随后有学者也有类似的论述[8,34,81]。Lash et al.[47]和Engelder et al.[77]从孔隙应力耦合的角度解释了在超压和大规模抬升剥蚀作用晚期,由于最小水平应力超过上覆负荷而形成水平裂缝。

    Figure 5.  Mechanism of horizontal fractures in porous brittle rock caused by vertical gradient overpressure (modified from references [10,75])

    促进地下深层产生异常高压的原因主要有以下几种:地层欠压实、黏土矿物脱水反应、侧向构造挤压、有机质生烃和原油裂解等[8284]。压实过程中由于压实流体未能及时排出或者排出受阻会产生欠压实超压,特别是在低渗透性富黏土沉积物快速沉降的过程中[8283]。因此,层理缝在易发生欠压实的富黏土页岩中传播的可能性更大[11,47]。在美国纽约州西部上泥盆统,Dunkirk页岩的层理缝主要发育在具有欠压实超压特征的下段,而在Dunkirk页岩的上段由于生物扰动造成了相对多孔和高渗,没有发现层理缝[47]。Zanella et al.[38]和Ismat[76]认为侧向挤压作用是形成层理缝的关键要素之一,也能使已经闭合的层理缝再次开启。Cobbold et al.[10]在对全球范围内110个沉积盆地的层理缝充填物的研究中发现,普遍存在的方解石脉体是烃源岩内部或者附近存在流体超压的典型标志。在烃源岩的成熟过程中,部分固体有机质将转化为流体碳氢化合物,这意味着岩石孔隙和流体压力的增加,尤其是原油通过裂解作用产生气体,更易形成异常高压[82]。大量的盆地分析实例和研究表明,有机质的成熟会导致流体超压和充填层理缝的发育。因此,大规模出现的充填层理缝也可以作为快速确定烃源岩是否成熟的标志[38]

    一些实验已经证明了结晶应力在纤维状方解石、石膏等充填层理缝过程中的重要性,富含矿物质的溶液进入微观层理缝后逐渐沉淀、结晶、生长,在结晶应力的作用下微观层理缝逐渐扩展连通[3637]。大部分结晶矿物均具有垂直层理缝生长趋势,如世界范围内普遍发育的页岩层理缝内纤维状方解石脉体的垂向生长[10,29,38]、柴达木盆地新生界泥岩地层中石膏晶体垂直水平裂缝方向的生长[34]、鄂尔多斯盆地马家沟组碳酸盐岩中盐晶体的形成等,因此结晶应力可能是沉积岩层理缝的成因之一。

  • 明确层理缝与油气运聚成藏的关系是进行层理缝研究的根本目的。目前,研究裂缝对油气运移和聚集具体关系的主要技术手段是通过岩心渗流实验分析裂缝的存在对储层孔隙度和渗透率的影响。王剑等[85]证明流体沿层理面输送效率高于垂直层理面方向,渗透率通常沿层理方向最为连续,这是因为未形成裂缝的纹层对流体的垂向运移有一定的抑制作用。层理缝的发育,能够改善储层的物性特征[7],使储层的水平渗透率得到明显提升[39,86],对垂向渗透率也具有一定的改善作用[9]

    笔者分析了三边北地区延长组长6和长7发育层理缝、有纹层无层理缝和无纹层的致密砂岩岩心,分别顺层理缝方向、无纹层样品任意方向和垂直纹层方向进行孔隙度和渗透率测试(图6)。结果显示,无纹层样品的平均孔隙度和渗透率分别为7.14%和12.6×10-3 µm2;有纹层样品的平均孔隙度为6.23%,而垂直纹层方向,渗透率降低至4.4×10-3 µm2;与前两者相比,样品顺层理缝的方向平均渗透率分别提高了6.4倍和76.8倍,因此,三边北地区延长组大量发育的层理缝,明显提升了致密储层的水平渗透率。受层理缝延伸长度的限制,这种水平渗透率的提高可能是局部、散点式的,点与点之间由孔隙连通,即“缝孔耦合式”运移通道。虽然实测孔隙度的结果表明层理缝的发育仅使平均孔隙度提高了0.91%~1.82%,但是考虑到地层中存在大量的从宏观至微观的层理缝族群,层理缝对致密储层整体孔隙度的提高也是可观的。虽然层理缝可以作为油气成藏的优势运移通道[39],但在不同的成藏动力条件下,层理缝在成藏过程中所起的作用存在较大差异;并且与小尺度的岩心相比,油气的运移和聚集是大尺度的,常规的岩心渗流实验这样的一孔之见无法准确说明层理缝在非常规油气成藏过程中到底是“运移”还是“聚集”的作用。

    Figure 6.  Measured porosity and permeability of the Chang 6 and Chang 7 sandstone cores in the northern Sanbian area of Ordos Basin

  • 综上,国内外学者已经针对层理缝展开了大量的工作。虽然层状岩石中普遍发育层理缝的事实以及层理缝在非常规油气运聚成藏中的重要作用已被广泛认可,但是对于不同类型层理缝的形成机制仍然缺乏合理完善的科学解释,对形成层理缝的地质条件和主控因素等方面都存在诸多问题尚待解决。层理缝与油气“运移”或“聚集”关系的研究方法也不成熟,常规的薄片观察、X射线衍射、扫描电镜观察、岩心渗流实验等方法,仅能提供层理型岩石矿物组成的定性或半定量分析及层理缝与石油运移和聚集关系的模糊认识,不能满足矿物组分、含量变化趋势、赋存状态,以及层理缝发育特征与油气“运移”或“聚集”过程的直观定量分析。尽管部分学者针对裂缝的形成机制开展了岩石物理学实验,但是主要集中于较高角度的构造缝,对于层理缝仍没有较好的模拟方法。其存在的具体问题主要体现在以下几个方面。

    1) 不同类型沉积岩和层理缝的精细表征相对缺乏

    前人重点分析了不同类型沉积岩的形成环境以及不同类型层理形成过程中的水动力机制和沉积机制,但是对于不同类型沉积岩及相应层理缝的精细表征,不同层理缝的形成条件、矿物组成及形态特征是否存在差异,哪些类型的沉积岩和层理容易发育层理缝,均未给出明确的解释。

    2) 层理缝的测井识别表征与地质预测方法尚未成熟

    目前,成像测井图像是识别地下层理缝的主要资料,但是价格昂贵不易普遍使用。利用综合指数、小波分析、分形维数、机器学习等方法处理常规测井资料,识别中高角度构造缝的方法逐渐成熟,但对于低角度层理缝的测井识别研究仍处于起步阶段。特殊测井和常规测井相结合、实验分析和物理模拟相结合,着重开展地表、岩心和地下,宏观和微观,定性和定量研究,建立相应地质背景和层理缝成因及影响因素条件下的层理缝地质—测井解释模型,以及识别和预测方法是主要的发展趋势。

    3) 层理缝的形成机制及影响因素缺乏整体的动态认识

    以往的研究强调单一机制和因素对形成层理缝的影响,而真实的地质条件复杂多变,任何微弱的因素在经历长时间的地质作用后,均可能导致层理缝的形成。关键是如何建立预测模型对各种影响因素定量化,确定形成不同类型层理缝的综合作用机制。

    4) 层理缝与油气“运移”或“聚集”的关系不明确

    前人主要从岩心、薄片观察,岩心渗流实验、沙箱模拟实验、层理缝发育程度与油气产量关系等方面,初步得到层理缝与油气“运移”或“聚集”关系,且存在争议。另外,岩心渗流实验还不能满足直观可视化、定量分析层理缝与油气运移和聚集关系的需求,且缺乏将微观与宏观相结合的手段。通过地质研究—实际模拟—理论分析相结合的方式,将实时CT扫描、三轴应力分析以及油气渗滤模拟等实验相匹配,并综合考虑岩性、温度、围压、层理缝密度和油气充注速率等变量,将复杂的地质问题转化为可视化的理论模型,将传统油气运聚模型动态化,是明确层理缝与油气“运移”或“聚集”具体关系的可行方案。

  • (1) 层理缝的高线密度、高水平渗透率是影响非常规沉积储层油气富集的重要因素,层理缝发育区往往控制了非常规油气富集的甜点。明确层理缝在石油运移和聚集过程中的作用,有利于弥补裂缝型储层勘探和开发的短板。在非常规油气开发过程中,合理利用层理和层理缝的特性,选择不同的水力压裂改造方式,对于油气采收率的提高具有重要意义。

    (2) 关于不同岩性中层理缝的定义、成因机制、主控因素及其与油气运移和聚集关系等方面,国内外学者从不同角度和尺度进行了广泛而深刻的探讨。但对于容易形成层理缝的沉积岩和层理类型、不同类型层理缝的精细表征、层理缝的形成机制及其与油气运移和聚集的关系等,尚缺乏全面、系统、动态及定量化的研究。

    (3) 针对目前层理缝研究存在的突出问题,应该重点解决不同类型沉积岩和层理形成层理缝的综合机制及与非常规油气运移和聚集的关系、层理缝测井识别表征方法的探索、不同类型层理形成层理缝的差异性以及层理缝量化预测模型的建立。

Reference (86)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return