HTML
-
2010年和2017年两次分别独立采样测试,得到库车河剖面有机碳同位素地层曲线(图3),数据见表1。根据有机碳同位素地层曲线的变化特征,从下至上划分为三段(图3)。第一段(塔里奇克组13~33层):约170 m厚,属塔里奇克组中上部。δ13Cwood主要分布范围-24.5‰至-26.5‰,总体上较稳定。第二段(塔里奇克组34~37层):约20 m厚,是塔里奇克组顶部。在此段内δ13Cwood出现了两次强烈的波动。第一次在35层底部,达2.1‰;第二次位于37层近顶部,负偏至-26.2‰后,在1 m的地层厚度内正向偏移至-22.5‰,随后急剧负偏至-26.6‰,本段内达到了4.1‰的波动幅度。第三段(阿合组38~49层):约80 m厚,为阿合组的下部。本段总体呈较轻的δ13Cwood特征,约-25.5‰至-27.4‰。并在43层底部处出现了整个剖面上的碳同位素最低值(-27.4‰);在38层顶部也记录到了一次快速负偏,幅度达1.4‰,在1 m厚范围内由-25.8‰负偏至-27.2‰。
Figure 3. Lithostratigraphy, organic carbon⁃isotope curves, and sporo⁃pollen occurrence across the Triassic⁃Jurassic boundary, Kuqa River section (data of sporo⁃pollen occurrence combined from Wang et al.[59])
样品编号 层号 厚度/m δ13Corg/(‰,PDB) 样品编号 层号 厚度/m δ13Corg/(‰,PDB) KQ10-23 46~49 81.63 -27.0 KQ2(04) 13~14 -172.10 -25.5 KQ10-22 46~49 75.32 -26.7 KQ17-y01 43~45 61.48 -25.4 KQ10-21 46~49 75.02 -26.0 KQ17-y02 43~45 57.21 -25.9 KQ10-20 46~49 71.38 -26.8 KQ17-y03 43~45 55.01 -25.7 KQ10-17 41~42 33.17 -27.4 KQ17-y04 43~45 52.71 -25.3 KQ10-16 41~42 32.17 -26.7 KQ17-y05 43~45 50.89 -26.0 KQ10-15 39~40 22.30 -26.6 KQ17-y06 43~45 43.81 -26.2 KQ10-14 39~40 21.50 -25.7 KQ17-y07 43~45 39.96 -25.4 KQ10-13 39~40 20.70 -26.0 KQ17-y08 43~45 37.14 -27.1 KQ10-12 39~40 15.90 -26.7 KQ17-y09 41~42 32.55 -26.2 KQ10-11 39~40 12.69 -26.3 KQ17-y10 41~42 31.78 -26.4 KQ10-10 39~40 12.54 -27.2 KQ17-34 41~42 29.14 -25.6 KQ10-9 39~40 12.19 -25.8 KQ17-32 39~40 22.10 -26.5 KQ17(04) 38 8.08 -25.6 KQ17-f16 38 3.00 -25.6 KQ10-7 38 6.84 -26.1 KQ17-x42(2) 38 0.30 -25.4 KQ10-6 38 4.73 -25.7 KQ17-x42 38 0.25 -24.4 KQ10-5 38 1.43 -26.1 KQ17-x41 38 0.15 -25.0 KQ10-4 38 1.03 -26.6 KQ17-x40 37 -0.35 -25.2 KQ10-3 38 0.98 -22.5 KQ17-f12 36 -8.29 -24.8 KQ10-2 38 0.78 -26.3 KQ17-f04 34 -19.92 -25.9 KQ10-1 36 -9.55 -25.1 KQ17-x39 34 -20.40 -23.6 KQ10-162 35 -18.55 -25.1 KQ17-x38 34 -22.40 -26.0 KQ10-164 34 -20.75 -24.3 KQ17-x37-1 34 -22.80 -22.5 KQ10-165 34 -22.40 -23.7 KQ17-x31 25~31 -44.54 -24.9 KQ17(04) 34 -23.28 -25.8 KQ17-x32 25~31 -45.33 -24.2 KQ10-168 32~33 -34.95 -25.8 KQ17-x29 25~31 -51.6 -25.6 KQ10-171(31-1) 25~31 -40.52 -26.0 KQ17-x25 22~24 -88.60 -26.4 KQ10-172(30-1) 25~31 -43.11 -24.7 KQ17-x18-2 19~21 -99.72 -24.0 KQ10-173(29-1) 25~31 -46.47 -26.5 KQ17-x17 17~18 -101.46 -25.7 KQ15(04) 25~31 -79.8 -25.4 KQ17-x16 17~18 -102.33 -25.5 KQ14(04) 19~21 -93.34 -25.1 KQ17-x13 17~18 -104.94 -25.8 KQ12(04) 19~21 -97.89 -25.6 KQ17-x11 17~18 -107.03 -25.2 KQ8(04) 15~16 -111.07 -26.5 KQ17-x08 15~16 -114.09 -25.3 KQ7(04) 15~16 -118.93 -25.7 KQ17-c6 13~14 -143.31 -25.7 KQ4(04) 15~16 -142.80 -25.2 2017年采样结果显示(图3),在35层内、39层下部、43层底部发生了较显著的碳同位素偏移。其中,在35层的碳同位素波动幅度达3.5‰,可与第一次采样中35层底部的δ13Cwood波动相对比;在39层下部的δ13Cwood负偏至-26.3‰,波动幅度达2.0‰,与第一次结果有较好的可重复性;43底部的δ13Cwood负偏至-27.2‰,特征同样可以与第一次结果对比,为本剖面的负偏极值。两次独立地采样的数据结果有较好的可重复性。从碳同位素曲线可以看出,以38层底为界线,之上的碳同位素整体呈现显著的负偏,平均幅度为2‰左右;38层底界恰好与地层记录中多种植物孢粉灭绝界面和首现的界面吻合(图3)。
[1] | Sepkoski J J. Patterns of Phanerozoic extinction: A perspective from global data bases[M]//Walliser O H. Global events and event stratigraphy in the Phanerozoic. Berlin, Heidelberg: Springer, 1996: 53-80. | |
[2] | McGhee G R, Clapham M E, Sheehan P M, 2013: A new ecological-severity ranking of major Phanerozoic biodiversity crises[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 260-270. | |
[3] | Pálfy J, Smith P L, 2000: Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism[J]. Geology, 28, 747-750. | |
[4] | Hesselbo S P, Robinson S A, Surlyk F, 2002: Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism?[J]. Geology, 30, 251-254. | |
[5] | Lucas S G, Tanner L H, 2007: Tetrapod biostratigraphy and biochronology of the Triassic-Jurassic transition on the southern Colorado Plateau, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 242-256. | |
[6] | Akikuni K, Hori R S, Vajda V, 2010: Stratigraphy of Triassic-Jurassic boundary sequences from the Kawhia coast and Awakino gorge, Murihiku Terrane, New Zealand[J]. Stratigraphy, 7, 7-24. | |
[7] | de Lamotte D F, Fourdan B, Leleu S, 2015: Style of rifting and the stages of Pangea breakup[J]. Tectonics, 34, 1009-1029. | |
[8] | McElwain J C, Beerling D J, Woodward F I, 1999: Fossil plants and global warming at the Triassic-Jurassic boundary[J]. Science, 285, 1386-1390. | |
[9] | Retallack G J, 2001: A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles[J]. Nature, 411, 287-290. | |
[10] | Beerling D J, Berner R A, 2002: Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event[J]. Global Biogeochemical Cycles, 16, 1036-. | |
[11] | Steinthorsdottir M, Jeram A J, McElwain J C, 2011: Extremely elevated CO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 418-432. | |
[12] | Hallam A, 2001: A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 23-37. | |
[13] | Lindström S, Erlström M, 2006: The Late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic-Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 339-372. | |
[14] | Hallam A, Wignall P B, 1999: Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 48, 217-250. | |
[15] | Pálfy J, Demény A, Hass J, 2001: Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary[J]. Geology, 29, 1047-1050. | |
[16] | Greene S E, Martindale R C, Ritterbush K A, 2012: Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary[J]. Earth-Science Reviews, 113, 72-93. | |
[17] | Jaraula C M B, Grice K, Twitchett R J, 2013: Elevated pCO2[J]. Geology, 41, 955-958. | |
[18] | Hesselbo S P, Robinson S A, Surlyk F, 2004: Sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain[J]. Journal of the Geological Society, 161, 365-379. | |
[19] | Kiessling W, Aberhan M, Brenneis B, 2007: Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 201-222. | |
[20] | van de Schootbrugge B, Tremolada F, Rosenthal Y, 2007: End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 126-141. | |
[21] | van de Schootbrugge B, Quan T M, Lindström S, 2009: Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism[J]. Nature Geoscience, 2, 589-594. | |
[22] | Bonis N R, Ruhl M, Kürschner W M, 2010: Climate change driven black shale deposition during the end-Triassic in the western Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 151-159. | |
[23] | Ruhl M, Deenen M H L, Abels H A, 2010: Astronomical constraints on the duration of the Early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK)[J]. Earth and Planetary Science Letters, 295, 262-276. | |
[24] | Belcher C M, Mander L, Rein G, 2010: Increased fire activity at the Triassic/Jurassic boundary in greenland due to climate-driven floral change[J]. Nature Geoscience, 3, 426-429. | |
[25] | Ruhl M, Kürschner W M, Krystyn L, 2009: Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria)[J]. Earth and Planetary Science Letters, 281, 169-187. | |
[26] | Ruhl M, Bonis N R, Reichart G J, 2011: Atmospheric carbon injection linked to end-Triassic mass extinction[J]. Science, 333, 430-434. | |
[27] | Whiteside J H, Olsen P E, Eglinton T, 2010: Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 6721-6725. | |
[28] | Bachan A, van de Schootbrugge B, Fiebig J, 2012: Carbon cycle dynamics following the end-Triassic mass extinction: Constraints from paired δ13carbδ13org[J]. Geochemistry, Geophysics, Geosystems, 13, -. | |
[29] | van de Schootbrugge B, Wignall P B, 2016: A tale of two extinctions: Converging end-Permian and end-Triassic scenarios[J]. Geological Magazine, 153, 332-354. | |
[30] | Guex J, Bartolini A, Atudorei V, 2004: High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada)[J]. Earth and Planetary Science Letters, 225, 29-41. | |
[31] | Ward P D, Garrison G H, Haggart J W, 2004: Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction[J]. Earth and Planetary Science Letters, 224, 589-600. | |
[32] | van de Schootbrugge B, Payne J L, Tomasovych A, 2008: Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event[J]. Geochemistry, Geophysics, Geosystems, 9, -. | |
[33] | Tanner L H, 2010: Cyclostratigraphic record of the Triassic: A critical examination[J]. Geological Society, 334, 119-137. | |
[34] | Whiteside J H, Grogan D S, Olsen P E, 2011: Climatically driven biogeographic provinces of Late Triassic tropical pangea[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 8972-8977. | |
[35] | Hillebrandt A V, Krystyn L, Kürschner W M, 2013: The global stratotype sections and point (GSSP) for the base of the Jurassic system at Kuhjoch (Karwendel Mountains, northern Calcareous Alps, Tyrol, Austria)[J]. Episodes, 36, 162-198. | |
[36] | Tanner L H. The Late Triassic world: Earth in a time of transition[M]. Cham: Springer, 2018: 91-125. | |
[37] | Williford K H, Ward P D, Garrison G H, 2007: An extended organic carbon-isotope record across the Triassic-Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 290-296. | |
[38] | Marzoli A, Bertrand H, Knight K B, 2004: Synchrony of the central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis[J]. Geology, 32, 973-976. | |
[39] | Hesselbo S P, Jenkyns H C, Duarte L V, 2007: Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal)[J]. Earth and Planetary Science Letters, 253, 455-470. | |
[40] | Deenen M H L, Ruhl M, Bonis N R, 2010: A new chronology for the end-Triassic mass extinction[J]. Earth and Planetary Science Letters, 291, 113-125. | |
[41] | Dal Corso J, Mietto P, Newton R J, 2012: Discovery of a major negative δ13[J]. Geology, 40, 79-82. | |
[42] | Davies J H F L, Marzoli A, Bertrand H, 2017: End- Triassic mass extinction started by intrusive CAMP activity[J]. Nature Communications, 8, 15596-. | |
[43] | Zaffani M, Jadoul F, Rigo M, 2018: A new Rhaetian δ13org[J]. Earth-Science Reviews, 178, 92-104. | |
[44] | Farquhar G D, O’Leary M H, Berry J A, 1982: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 9, 121-137. | |
[45] | Farquhar G D, Hubrick K T, Condon A G, et al. Carbon isotope fractionation and plant water-use efficiency[M]//Rundel P W, Ehleringer J R, Nagy K A. Stable isotopes in ecological research. New York: Springer-Verlag, 1989: 21-40. | |
[46] | Jahren A H, Arens N C, Harbeson S A, 2008: Prediction of atmospheric δ132[J]. Reviews of Geophysics, 46, -. | |
[47] | Lomax B H, Knight C A, Lake J A, 2012: An experimental evaluation of the use of C3δ13δ132[J]. Geochemistry, Geophysics, Geosystems, 13, Q0AI03-. | |
[48] | Benner R, Fogel M L, Sprague E K, 1987: Depletion of 13[J]. Nature, 329, 708-710. | |
[49] | Spiker E C, Hatcher P G, 1987: The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood[J]. Geochimica et Cosmochimica Acta, 51, 1385-1391. | |
[50] | Mazeas L, Budzinski H, Raymond N, 2002: Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation[J]. Organic Geochemistry, 33, 1259-1272. | |
[51] | Morasch B, Richnow H H, Vieth A, 2004: Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds[J]. Applied and Environmental Microbiology, 70, 2935-2940. | |
[52] | Hasegawa T, 1997: Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 251-273. | |
[53] | Hasegawa T, Pratt L M, Maeda H, 2003: Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: A proxy for the isotopic composition of paleoatmospheric CO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 189, 97-115. | |
[54] | Hesselbo S P, Gröcke D R, Jenkyns H C, 2000: Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 406, 392-395. | |
[55] | Arens N C, Jahren A H, Amundson R, 2000: Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J]. Paleobiology, 26, 137-164. | |
[56] | Madden R A, Julian P R, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day Period[J]. Journal of the Atmospheric Sciences, 29, 1109-1123. | |
[57] | 沙金庚, 2005: 中国侏罗纪年代地层学研究的现状[J]. 地层学杂志, 29, 124-129. | Sha Jingeng. Current situation of the Jurassic chronostratigraphic studies in China[J]. Journal of Stratigraphy, 2005, 29(2): 124-129. |
[58] | Scotese C R, 2001: Paleogeographic map archive[J]. Paleomap Project, , -. | |
[59] | 王招明,钟瑞,赵培荣,等. 库车前陆盆地露头区油气地质[M]. 北京:石油工业出版社,2004. | Wang Zhaoming, Zhong Rui, Zhao Peirong, et al. Petroleum geology of outcrops areas in Kuche foreland basin[M]. Beijing: Petroleum Industry Press, 2004. |
[60] | 贾承造, 1999: 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质, 20, 177-183. | Jia Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183. |
[61] | 何登发, 贾承造, 李德生, 2005: 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 26, 64-77. | He Dengfa, Jia Chengzao, Li Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77. |
[62] | 李永安, 孙东江, 郑洁, 1999: 新疆及周边古地磁研究与构造演化[J]. 新疆地质, 17, 193-235. | Li Yong’an, Sun Dongjiang, Zheng Jie. Paleomagnetic study and tectonic evolution of Xinjiang and its neighboring regions[J]. Xinjiang Geology, 1999, 17(3): 193-235. |
[63] | 方大钧, 沈忠悦, 王朋岩, 2001: 塔里木地块古地磁数据表[J]. 浙江大学学报(理学版), 28, 92-99. | Fang Dajun, Shen Zhongyue, Wang Pengyan. Paleomagnetic data of Tarim block[J]. Journal of Zhejiang University (Science Edition), 2001, 28(1): 92-99. |
[64] | 邓胜徽,姚益民,叶得泉,等. 中国北方侏罗系(I)地层总述[M]. 北京:石油工业出版社,2003. | Deng Shenghui, Yao Yimin, Ye Dequan, et al. Jurassic system in the north of China (I)[M]. Beijing: Petroleum Industry Press, 2003. |
[65] | 刘兆生, 1999: 塔里木盆地北缘三叠纪孢粉组合[J]. 古生物学报, 38, 474-504. | Liu Zhaosheng. Triassic palynological assemblages from the northern margin in Tarim Basin of Xinjiang, NW China[J]. Acta Palaeontologica Sinica, 1999, 38(4): 474-504. |
[66] | 刘兆生, 1999: 塔里木盆地北缘晚三叠世孢粉组合及三叠系—侏罗系界线[J]. 地层学杂志, 23, 96-106. | Liu Zhaosheng. Palynological assemblage of the Late Triassic Tariqike Fm. and Triassic-Jurassic boundary on the northern margin of the Tarim Basin, Xinjiang[J]. Journal of Stratigraphy, 1999, 23(2): 96-106. |
[67] | Yang H P, Yan R, Chen H P, 2007: Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 86, 1781-1788. | |
[68] | Harmon M E, Krankina O N, Sexton J, 2000: Decomposition vectors: A new approach to estimating woody detritus decomposition dynamics[J]. Canadian Journal of Forest Research, 30, 76-84. | |
[69] | Fang Y N, Fang L H, Deng S H, 2021: Carbon isotope stratigraphy across the Triassic-Jurassic boundary in the high-latitude terrestrial Junggar Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577, 110559-. | |
[70] | 张新智, 方琳浩, 吴涛, 2022: 准噶尔盆地郝家沟剖面三叠纪—侏罗纪之交孢粉组合与古气候[J]. 地质科学, 57, 1-16. | Zhang Xinzhi, Fang Linhao, Wu Tao, et al. Palynological assemblages and palaeoclimate across the Triassic-Jurassic boundary in the Haojiagou section, southern Junggar Basin[J]. Chinese Journal of Geology, 2022, 57(4): 1-16. |
[71] | Zhang X Y, Lv P Z, Fang L H, 2022: Biomarker evidence for deforestation across the Triassic-Jurassic boundary in the high palaeolatitude Junggar Basin, northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 600, 111074-. | |
[72] | Hüsing S K, Beniest A, van der Boon A, 2014: Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian-Sinemurian; Somerset, UK)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 403, 43-56. | |
[73] | Fowell S J, Cornet B, Olsen P E. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup[M]//Klein G O. Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geological Society of America, 1994: 197-206. | |
[74] | Olsen P E, Kent D V, Sues H D, 2002: Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary[J]. Science, 296, 1305-1307. | |
[75] | Schaltegger U, Guex J, Bartolini A, 2008: Precise U-Pb Age Constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery[J]. Earth and Planetary Science Letters, 267, 266-275. | |
[76] | Schoene B, Guex J, Bartolini A, 2010: Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level[J]. Geology, 38, 387-390. | |
[77] | Bonis N R, Kürschner W M, 2012: Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary[J]. Paleobiology, 38, 240-264. | |
[78] | Ward P D, Garrison G H, Williford K H, 2007: The organic carbon isotopic and paleontological record across the Triassic-Jurassic boundary at the candidate GSSP section at Ferguson Hill, Muller Canyon, Nevada, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 281-289. | |
[79] | Hüsing S K, Deenen M H L, Koopmans J G, 2011: Magnetostratigraphic dating of the proposed Rhaetian GSSP at Steinbergkogel (Upper Triassic, Austria): Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 302, 203-216. | |
[80] | Percival L M E, Ruhl M, Hesselbo S P, 2017: Mercury evidence for pulsed volcanism during the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 7929-7934. | |
[81] | Kent D V, Olsen P E, Muttoni G, 2017: Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages[J]. Earth-Science Reviews, 166, 153-180. | |
[82] | Sha J G, Vajda V, Pan Y H, 2011: Stratigraphy of the Triassic-Jurassic boundary successions of the southern margin of the Junggar Basin, northwestern China[J]. Acta Geologica Semica (English Edition), 85, 421-436. | |
[83] | Sha J G, Olsen P E, Pan Y H, 2015: Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China)[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 3624-3629. | |
[84] | 卢远征, 邓胜徽, 2005: 新疆准噶尔盆地南缘郝家沟组和八道湾组底部孢粉组合及三叠系—侏罗系界线[J]. 地质学报, 79, 15-27. | Lu Yuanzheng, Deng Shenghui. Triassic-Jurassic sporopollen assemblages on the southern margin of the Junggar Basin, Xinjiang and the T-J boundary[J]. Acta Geologica Sinica, 2005, 79(1): 15-27. |
[85] | 卢远征, 邓胜徽, 2009: 准噶尔盆地南缘三叠纪—侏罗纪之交的古气候[J]. 古地理学报, 11, 652-660. | Lu Yuanzheng, Deng Shenghui. Palaeoclimate around the Triassic-Jurassic boundary in southern margin of Junggar Basin[J]. Journal of Palaeogeography, 2009, 11(6): 652-660. |
[86] | Shen J, Yin R S, Zhang S, 2022: Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic-Jurassic transition[J]. Nature Communications, 13, 299-. | |
[87] | Thibodeau A M, Ritterbush K, Yager J A, 2016: Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction[J]. Nature Communications, 7, 11147-. | |
[88] | Blackburn T J, Olsen P E, Bowring S A, 2013: Zircon U-Pb geochronology links the end-Triassic extinction with the central Atlantic magmatic province[J]. Science, 340, 941-945. | |
[89] | Schaller M F, Wright J D, Kent D V, 2011: Atmospheric PCO2[J]. Science, 331, 1404-1409. | |
[90] | Schaller M F, Wright J D, Kent D V, 2012: Rapid Emplacement of the Central Atlantic Magmatic province as a net sink for CO2[J]. Earth and Planetary Science Letters, 323-324, 27-39. | |
[91] | Schaefer K, Zhang T J, Bruhwiler L, 2011: Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus B: Chemical and Physical Meteorology, 63, 165-180. | |
[92] | Ciais P, Tagliabue A, Cuntz M, 2012: Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum[J]. Nature Geoscience, 5, 74-79. |