Advanced Search
Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents

ZHAO ChunJuan, XU ShuJuan, CHEN HongGang, DAI ChunMeng, LI DeYong. Sedimentary Facies Types and Evolution Models of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1460-1478. doi: 10.14027/j.issn.1000-0550.2022.106
Citation: ZHAO ChunJuan, XU ShuJuan, CHEN HongGang, DAI ChunMeng, LI DeYong. Sedimentary Facies Types and Evolution Models of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1460-1478. doi: 10.14027/j.issn.1000-0550.2022.106

Sedimentary Facies Types and Evolution Models of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin

doi: 10.14027/j.issn.1000-0550.2022.106
cstr: 32268.14.cjxb.62-1038.2022.106
Funds:

National Natural Science Foundation of China 42376060

National Natural Science Foundation of China 41806073

Natural Science Foundation of Shandong Province ZR2023MD050

  • Received Date: 2022-06-30
  • Accepted Date: 2022-10-01
  • Rev Recd Date: 2022-08-17
  • Available Online: 2022-10-01
  • Publish Date: 2024-08-10
  • Objective    The tight glutenite reservoir of the Shahezi Formation in the Xujiazi Fault Depression has great potential for natural gas exploration and is expected to become the key replacement field of deep volcanic gas reservoir exploration in Daqing oilfield.     Methods    The distribution of sedimentary facies and evolution models of the Shahezi Formation in the Xujiaweizi Fault Depression were studied using comprehensive core, logging, and seismic data.     [Results and Conclusions]    The results show that there are braided river delta, fan delta, far shore turbidite fan with supply channel, near shore subaqueous fan, slump turbidite fan in front of fan delta, shallow lake-semi-deep lake, and deep lake deposits in the Shahezi Formation of the Xujiaweizi Fault Depression. The gentle slope belt on the east side of the Anda, Xudong, and Zhaozhou Depressions received the detritus from the Zhaodong-Chaoyanggou basement paleo-uplift and developed braided river delta deposits; locally developed lacustrine turbidite fan deposits were formed by distant source supply channels. The western steep slope belts such as the Anda-Xudong, Xuxi, and Zhaozhou Depressions received coarse debris from the Central fault uplift area and developed a fan delta depositional system, which was characterized by near source and short flow. Nearshore subaqueous fan depositions were locally developed, and due to the instability of fan delta depositional bodies developed on the edge of lake basin, slump turbidite fan depositions were formed in front of fan delta depositional bodies.

  • [1] 张玉银. 溶蚀作用对火山岩有效储层形成的控制作用:以松辽盆地徐家围子断陷营城组为例[J]. 石油与天然气地质,2018,39(3):587-593.

    Zhang Yuyin. Controlling effect of dissolution on valid volcanic reservoir formation: A case study of the Yingcheng Formation in the Xujiaweizi Fault Depression, Songliao Basin[J]. Oil & Gas Geology, 2018, 39(3): 587-593.
    [2] 王成. 徐家围子断陷火山岩储层孔隙演化[J]. 大庆石油地质与开发,2014,33(2):1-5.

    Wang Cheng. Pore evolution of the volcanic reservoirs in Xujiaweizi Fault Depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(2): 1-5.
    [3] 王文广,郑民,卢双舫,等. 徐家围子断陷火山岩气藏主控因素及有利区[J]. 东北石油大学学报,2015,39(4):45-53,78.

    Wang Wenguang, Zheng Min, Lu Shuangfang, et al. Main controlling factors and favorable area prediction of gas reservior of deep volcanic rock in Xujiaweizi Fault Depression[J]. Journal of Northeast Petroleum University, 2015, 39(4): 45-53, 78.
    [4] 刘超. 松辽盆地徐家围子地区沙河子组气源岩与致密砂砾岩气资源潜力评价[J]. 天然气地球科学,2017,28(3):429-438.

    Liu Chao. Source rocks and tight conglomerate gas resource potential evaluation in Shahezi Formation of Xujiaweizi Depression, Songliao Basin[J]. Natural Gas Geoscience, 2017, 28(3): 429-438.
    [5] 印长海,杨亮,杨步增. 松辽盆地北部沙河子组致密气勘探及下步攻关方向[J]. 大庆石油地质与开发,2019,38(5):135-142.

    Yin Changhai, Yang Liang, Yang Buzeng. Tight gas exploration and the next research direction for Shahezi Formation in north Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 135-142.
    [6] 张大智,初丽兰,周翔,等. 松辽盆地北部徐家围子断陷沙河子组致密气储层成岩作用与成岩相特征[J]. 吉林大学学报(地球科学版),2021,51(1):22-34.

    Zhang Dazhi, Chu Lilan, Zhou Xiang, et al. Diagenesis and diagenesis facies of tight gas reservoir of Shahezi Formation, in Xujiaweizi Fault Depression of north Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 22-34.
    [7] 刘庆辉. 安达南部地区沙河子组地层致密砂砾岩储层特征与预测[J]. 长江大学学报(自科版),2014,11(16):38-40.

    Liu Qinghui. Characteristics and prediction of tight glutenite reservoir in Shahezi Formation in southern part of Anda[J]. Journal of Yangtze University (Nature Science Edition), 2014, 11(16): 38-40.
    [8] 蔡全升,胡明毅,胡忠贵,等. 强烈断陷期小型湖盆沉积充填演化特征:以松辽盆地徐家围子断陷宋站地区沙河子组为例[J]. 石油与天然气地质,2017,38(2):259-269.

    Cai Quansheng, Hu Mingyi, Hu Zhonggui, et al. Sedimentary filling evolution of small-scale lake basins during intensive faulting: An example from the Shahezi Formation of Songzhan region in Xujiaweizi Fault Depression, Songliao Basin[J]. Oil & Gas Geology, 2017, 38(2): 259-269.
    [9] 赵福海,孙国庆,张野,等. 松辽盆地徐西北部地区沙河子组细分层序格架下的沉积特征[J]. 大庆石油地质与开发,2022,41(1):11-22.

    Zhao Fuhai, Sun Guoqing, Zhang Ye, et al. Sedimentary characteristics of subdivided sequence framework of Shahezi Formation in northwest Xujiaweizi area of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(1): 11-22.
    [10] 王志宏,李建明,王延斌,等. 徐家围子断陷沙河子组煤层发育特征及分布预测[J]. 中国煤炭地质,2015,27(1):13-17,39.

    Wang Zhihong, Li Jianming, Wang Yanbin, et al. Shahezi Formation coal seam development features and distribution prediction in Xujiaweizi Fault Depression[J]. Coal Geology of China, 2015, 27(1): 13-17, 39.
    [11] 吕鹏佶,柳成志,颜康,等. 松辽盆地徐家围子断陷沙河子组地震相研究[J]. 地质与资源,2014,23(4):330-334.

    Pengji Lü, Liu Chengzhi, Yan Kang, et al. Study on the seismic facies of the Shahezi Formation in Xujiaweizi Fault Depression in Songliao Basin[J]. Geology and Resources, 2014, 23(4): 330-334.
    [12] 张元高,陈树民,张尔华,等. 徐家围子断陷构造地质特征研究新进展[J]. 岩石学报,2010,26(1):142-148.

    Zhang Yuangao, Chen Shumin, Zhang Erhua, et al. The new progress of Xujiaweizi Fault Depression characteristics of structural geology research[J]. Acta Petrologica Sinica, 2010, 26(1): 142-148.
    [13] 蔡来星,卢双舫,巩兴会,等. 徐家围子断陷南部沙河子组层序地层格架及沉积特征[J]. 大庆石油地质与开发,2015,34(2):26-33.

    Cai Laixing, Lu Shuangfang, Gong Xinghui, et al. Sequence stratigraphic framework and sedimentary characteristics for Shahezi Formation in south Xujiaweizi Fault Depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(2): 26-33.
    [14] 殷进垠,刘和甫,迟海江. 松辽盆地徐家围子断陷构造演化[J]. 石油学报,2002,23(2):26-29.

    Yin Jinyin, Liu Hefu, Chi Haijiang. Evolution and gas-accumulation of Xujiaweizi Depression in Songliao Basin[J]. Acta Petrolei Sinica, 2002, 23(2): 26-29.
    [15] 夏斌,邱亮斌,蔡周荣,等. 徐家围子断陷应力场变化特征及“S”型构造格局成因探讨[J]. 天然气地球科学,2011,22(3):415-419.

    Xia Bin, Qiu Liangbin, Cai Zhourong, et al. Characteristics of stress field and mechanism of "S" structure pattern in Xujiaweizi Rift Sag[J]. Natural Gas Geoscience, 2011, 22(3): 415-419.
    [16] 蔡全升,胡明毅,胡忠贵,等. 松辽盆地徐家围子北部宋站地区沙河子组地震相与沉积相解释应用[J]. 西安石油大学学报(自然科学版),2017,32(4):1-10.

    Cai Quansheng, Hu Mingyi, Hu Zhonggui, et al. Seismic facies and sedimentary interpretation of Shahezi Formation in Songzhan region, northern Xujiaweizi Fault Depresion, Songliao Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2017, 32(4): 1-10.
    [17] 钟安宁,周翔. 松辽盆地徐家围子断陷沙河子组物源与沉积体系分析[J]. 沉积学报,2020,38(3):610-619.

    Zhong Anning, Zhou Xiang. Provenance and sedimentary system analysis of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 610-619.
    [18] McPherson J G, Shanmugam G, Moiola R J. Fan-deltas and braid deltas: Varieties of coarse-grained deltas[J]. GSA Bulletin, 1987, 99(3): 331-340.
    [19] 罗佳强,任延广,吴朝东,等. 松辽盆地徐家围子断陷营四段沉积相研究[J]. 石油实验地质,2010,32(2):140-146.

    Luo Jiaqiang, Ren Yanguang, Wu Chaodong, et al. Research of sedimentary facies of Forth member of Yingcheng Formation in Xujiaweizi Fault Depression in the Songliao Basin[J]. Petroleum Geology & Experiment, 2010, 32(2): 140-146.
    [20] 刘磊,钟怡江,陈洪德,等. 中国东部箕状断陷湖盆扇三角洲与辫状河三角洲对比研究[J]. 沉积学报,2015,33(6):1170-1181.

    Liu Lei, Zhong Yijiang, Chen Hongde, et al. Contrastive research of fan deltas and braided river deltas in half-graben rift lake basin in east China[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1170-1181.
    [21] 黄薇,吴海波,李军辉,等. 海—塔盆地中部断陷带南屯组沉积体系配置及有利相带分析[J]. 沉积学报,2016,34(1):120-128.

    Huang Wei, Wu Haibo, Li Junhui, et al. Study on the sedimentary system and favorable facies of Nantun Formation in the middle zone of Hailaer-Tamtsag Basin[J]. Acta Sedimentologica Sinica, 2016, 34(1): 120-128.
    [22] 张志坚. 松辽盆地北部泰康地区高台子油层四砂组沉积微相特征[J]. 大庆石油地质与开发,2005,24(3):11-13.

    Zhang Zhijian. Microfacies characteristics of No. 4 sand beds group of Gaotaizi reservoirs in Taikang area of north Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2005, 24(3): 11-13.
    [23] 刘文锋,张小栓,刘瑾铭,等. 玛湖凹陷西斜坡区三叠系白碱滩组沉积特征[J]. 沉积学报,2022,40(1):192-202.

    Liu Wenfeng, Zhang Xiaoshuan, Liu Jinming, et al. Sedimentary characteristics of the Triassic Baijiantan Formation in the western slope area of the Mahu Depression[J]. Acta Sedimentologica Sinica, 2022, 40(1): 192-202.
    [24] 李维锋,高振中,彭德堂,等. 库车坳陷中生界三种类型三角洲的比较研究[J]. 沉积学报,1999,17(3):430-434.

    Li Weifeng, Gao Zhenzhong, Peng Detang, et al. Comparative study of fan-deltas, braided-river deltas and meandering-river deltas of Mesozoic Erathem in Kuche Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 1999, 17(3): 430-434.
    [25] 廖新武,尹楠鑫,张倩萍. 垦利10-1油田沙三上亚段沉积相的识别及沉积相特征[J]. 科技通报,2019,35(6):24-31.

    Liao Xinwu, Yin Nanxin, Zhang Qianping. Sedimentary facies recognition and characteristics of the upper Third member of Shahejie Formation of Kenli 10-1 oilfield[J]. Bulletin of Science and Technology, 2019, 35(6): 24-31.
    [26] 牛文. 徐家围子断陷控陷断裂活动特征及其对断陷的控制作用[J]. 大庆石油地质与开发,2019,38(4):38-44.

    Niu Wen. Activity characteristics of the depression-controlling faults and their controlling actions on Xujiaweizi Fault Depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(4): 38-44.
    [27] 彭飚,金振奎,朱小二,等. 扇三角洲沉积模式探讨:以准噶尔盆地玛北地区下三叠统百口泉组为例[J]. 古地理学报,2017,19(2):315-326.

    Peng Biao, Jin Zhenkui, Zhu Xiao’er, et al. Discussion about depositional models of fan delta: A case study from the Lower Triassic Baikouquan Formation in Mabei area, Junggar Basin[J]. Journal of Palaeogeography, 2017, 19(2): 315-326.
    [28] 陈欢庆,王珏,胡海燕,等. 扇三角洲前缘沉积特征及对油藏有效开发的影响:以辽河西部凹陷某试验区于楼油层油藏为例[J]. 海洋地质与第四纪地质,2018,38(5):156-170.

    Chen Huanqing, Wang Jue, Hu Haiyan, et al. Depositional characteristics of fan delta deposits and their impacts to reservoir development: An example from Liaohe Basin[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 156-170.
    [29] 刘建锋,朱筱敏,王敏,等. 泌阳凹陷核桃园组三段上亚段滑塌浊积扇沉积特征[J]. 石油与天然气地质,2011,32(5):743-750,791.

    Liu Jianfeng, Zhu Xiaomin, Wang Min, et al. Sedimentary characteristics of slump turbidite fans in the upper Third member of the Hetaoyuan Formation in the Biyang Depression[J]. Oil & Gas Geology, 2011, 32(5): 743-750, 791.
    [30] 王旭丽,周江羽,马良,等. 伊通盆地岔路河断陷重力流沉积特征及油气勘探意义[J]. 石油实验地质,2008,30(1):26-31.

    Wang Xuli, Zhou Jiangyu, Ma Liang, et al. Gravity flow sedimentary characteristics and the significance of petroleum exploration in the Chaluhe Fault Depression, the Yitong Basin[J]. Petroleum Geology & Experiment, 2008, 30(1): 26-31.
    [31] 乔博,张昌民,杜家元,等. 珠江口盆地浅水区和深水区重力流沉积特征对比[J]. 岩性油气藏,2011,23(2):59-63.

    Qiao Bo, Zhang Changmin, Du Jiayuan, et al. Contrast of gravity flows between shallow water and deep water in Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2011, 23(2): 59-63.
    [32] 陶倩倩,周家雄,孙文钊,等. 滑塌浊积扇内幕结构及成因:以涠西南凹陷流一段上亚段为例[J]. 石油地球物理勘探,2019,54(2):423-432.

    Tao Qianqian, Zhou Jiaxiong, Sun Wenzhao, et al. Internal structures and genetic mechanism of slump turbidite fans: An example of the E2l1 in Weixinan Sag[J]. Oil Geophysical Prospecting, 2019, 54(2): 423-432.
    [33] 历玉英,付晓飞,张明学. 松辽盆地徐家围子断陷断裂变形特征及控藏机理[J]. 天然气地球科学,2012,23(6):979-988.

    Li Yuying, Fu Xiaofei, Zhang Mingxue. Fault deformation features and reservoir-controlling mechanisms of Xujiaweizi Fault Depression in Songliao Basin[J]. Natural Gas Geoscience, 2012, 23(6): 979-988.
    [34] 马正武,官大勇,王启明,等. 辽中凹陷古近系东三段湖底扇沉积特征及控制因素[J]. 岩性油气藏,2022,34(2):131-140.

    Ma Zhengwu, Guan Dayong, Wang Qiming, et al. Sedimentary characteristics and controlling factors of sublacustrine fans of the Third member of Paleogene Dongying Formation in Liaozhong Sag[J]. Lithologic Reservoirs, 2022, 34(2): 131-140.
    [35] 王星星,朱筱敏,张明君,等. 洪浩尔舒特凹陷下白垩统近岸水下扇沉积特征[J]. 沉积学报,2015,33(3):568-577.

    Wang Xingxing, Zhu Xiaomin, Zhang Mingjun, et al. Sedimentary characteristics of near-shore subaqueous fans of the Lower Cretaceous in the Honghaoershute Depression[J]. Acta Sedimentologica Sinica, 2015, 33(3): 568-577.
    [36] 李存磊,张金亮,宋明水,等. 基于沉积相反演的砂砾岩体沉积期次精细划分与对比:以东营凹陷盐家地区古近系沙四段上亚段为例[J]. 地质学报,2011,85(6):1008-1018.

    Li Cunlei, Zhang Jinliang, Song Mingshui, et al. Fine division and correlation of glutenite sedimentary periods based on sedimentary facies inversion: A case study from the Paleogene strata of upper Es4 in the Yanjia area, Dongying Depression[J]. Acta Geologica Sinica, 2011, 85(6): 1008-1018.
    [37] 吴群,杨云飞,王树芳. 南阳凹陷黑龙庙地区近岸水下扇沉积特征研究[J]. 西南石油大学学报(自然科学版),2020,42(1):33-44.

    Wu Qun, Yang Yunfei, Wang Shufang. Sedimentary characteristics of nearshore subaqueous fans in the Heilongmiao area of the Nanyang Sag[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(1): 33-44.
    [38] 李霞,范宜仁,杨立伟,等. 测井曲线小波变换特性在层序地层划分中的应用[J]. 大庆石油地质与开发,2006,25(4):112-115.

    Li Xia, Fan Yiren, Yang Liwei, et al. Application of wavelet inversion characteristics of logging curve in the classification of sequence stratigraphy[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(4): 112-115.
    [39] 杨勇强,邱隆伟,陈世悦,等. 基于小波能量谱系图及小波曲线的层序地层划分[J]. 石油地球物理勘探,2011,46(5):783-789.

    Yang Yongqiang, Qiu Longwei, Chen Shiyue, et al. Sequence stratigraphy identification based on wavelet energy spectrum and wavelet curve[J]. Oil Geophysical Prospecting, 2011, 46(5): 783-789.
    [40] 赵伟,邱隆伟,姜在兴,等. 断陷湖盆萎缩期浅水三角洲沉积演化与沉积模式:以东营凹陷牛庄洼陷古近系沙三段上亚段和沙二段为例[J]. 地质学报,2011,85(6):1019-1027.

    Zhao Wei, Qiu Longwei, Jiang Zaixing, et al. Depositional evolution and model of shallow-water delta in the rifting lacustrine basins during the shrinking stage: A case study of the Third member and Second member of Paleogene Shahejie Formation in the Niuzhuang subsag, Dongying Sag[J]. Acta Geologica Sinica, 2011, 85(6): 1019-1027.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Article Metrics

Article views(108) PDF downloads(46) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-06-30
  • Revised:  2022-08-17
  • Accepted:  2022-10-01
  • Published:  2024-08-10

Sedimentary Facies Types and Evolution Models of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin

doi: 10.14027/j.issn.1000-0550.2022.106
Funds:

National Natural Science Foundation of China 42376060

National Natural Science Foundation of China 41806073

Natural Science Foundation of Shandong Province ZR2023MD050

Abstract: 

Objective    The tight glutenite reservoir of the Shahezi Formation in the Xujiazi Fault Depression has great potential for natural gas exploration and is expected to become the key replacement field of deep volcanic gas reservoir exploration in Daqing oilfield.     Methods    The distribution of sedimentary facies and evolution models of the Shahezi Formation in the Xujiaweizi Fault Depression were studied using comprehensive core, logging, and seismic data.     [Results and Conclusions]    The results show that there are braided river delta, fan delta, far shore turbidite fan with supply channel, near shore subaqueous fan, slump turbidite fan in front of fan delta, shallow lake-semi-deep lake, and deep lake deposits in the Shahezi Formation of the Xujiaweizi Fault Depression. The gentle slope belt on the east side of the Anda, Xudong, and Zhaozhou Depressions received the detritus from the Zhaodong-Chaoyanggou basement paleo-uplift and developed braided river delta deposits; locally developed lacustrine turbidite fan deposits were formed by distant source supply channels. The western steep slope belts such as the Anda-Xudong, Xuxi, and Zhaozhou Depressions received coarse debris from the Central fault uplift area and developed a fan delta depositional system, which was characterized by near source and short flow. Nearshore subaqueous fan depositions were locally developed, and due to the instability of fan delta depositional bodies developed on the edge of lake basin, slump turbidite fan depositions were formed in front of fan delta depositional bodies.

ZHAO ChunJuan, XU ShuJuan, CHEN HongGang, DAI ChunMeng, LI DeYong. Sedimentary Facies Types and Evolution Models of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1460-1478. doi: 10.14027/j.issn.1000-0550.2022.106
Citation: ZHAO ChunJuan, XU ShuJuan, CHEN HongGang, DAI ChunMeng, LI DeYong. Sedimentary Facies Types and Evolution Models of the Shahezi Formation in the Xujiaweizi Fault Depression, Songliao Basin[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1460-1478. doi: 10.14027/j.issn.1000-0550.2022.106
  • 徐家围子断陷是位于松辽盆地北部具有西断东超结构的箕状断陷,多年来,徐西北地区深层天然气勘探主要以营城组火山岩为目的层进行研究[13]。沙河子组位于营城组之下,以致密砂砾岩为主,发育大量煤层、煤线,此前重点开展了其作为烃源岩的生烃研究而忽略了其丰富的致密气资源[4]。随着宋深9H、达深21HC、徐深1等井在沙河子组获得高产工业气流,沙河子组成为大庆油田深层火山岩气藏的重点接替领域[56]

    近几年徐家围子断陷沙河子组关于层序划分、沉积相分析、成藏特征等方面取得了一些认识,但受限于钻井深度、地震资料品质等,众多研究者对沙河子组的沉积相及沉积演化模式的认识还存在异议。刘庆辉[7]根据地震相并结合构造地质背景分析,将沙河子组划分为扇三角洲、辫状河三角洲、湖泊相等;蔡全升等[8]运用岩心、录井、测井以及地震资料,将沙河子组划分为扇三角洲、辫状河三角洲、湖泊相、火山碎屑岩、近岸水下扇等;赵福海等[9]则根据测井、地震相标志并结合单井相划分,确定沙河子组发育扇三角洲、辫状河三角洲及湖泊相等。对于徐家围子断陷沙河子组的沉积相划分,诸多学者都同意辫状河三角洲相和扇三角洲相的存在,但对其分布范围仍有不同的见解,蔡全升等[8]、王志宏等[10]认为扇三角洲于徐西陡坡带和徐东缓坡带均有发育,而吕鹏佶等[11]则认为扇三角洲仅发育于徐西陡坡带。

    本文在前人研究的基础上,对徐家围子断陷的22口钻井取心进行了详细的观察与描述,绘制了22口井的单井沉积相分析剖面图,统计了91口井的测井与录井数据,以沙河子组SQ1~SQ4的砂体厚度和砂地比等地质资料为约束,结合单井相分析、连井沉积相分析以及地震反射特征等对徐家围子断陷沙河子组的沉积特征展开研究,明确其沉积相的类型、分布范围和展布规律,建立沉积演化模式,以期为徐家围子断陷致密气藏勘探区带的目标优选及勘探工作提供地质依据。

  • 徐家围子断陷位于松辽盆地北部的东南断陷区内,西以宋西断裂、徐西断裂与中央隆起带相接,东与肇东—朝阳沟背斜带呈斜坡过渡,整体具有西断东超、西陡东缓的特点[12],内部可划分出徐西凹陷、安达凹陷、徐东凹陷、肇州凹陷以及徐东斜坡带等次级构造单元[10]图1a)。徐家围子断陷碎屑物源来自于西部中央隆起带和东部肇东—朝阳沟背斜,表现为双向物源并存、沉积继承发育的特征[13]

    Figure 1.  (a) Tectonic distribution for the Xujiaweizi Fault Depression (after reference [10]); (b) the comprehensive stratigraphic histogram of the Shahezi Formation (after reference [8])

    前人研究表明,徐家围子断陷主要形成于晚侏罗—早白垩世早期,徐家围子断陷经历了孕育、发展和萎缩三个构造演化阶段,分别对应火石岭组沉积时期、沙河子组沉积时期、营城组沉积时期,断陷的整个构造演化阶段明显受到徐西、宋西、徐东等深大断裂带的控制[12,14]。火石岭组主要发育火山岩,此时徐家围子地区因西太平洋板块向东亚板块的斜向俯冲运动,表现为东西向拉张环境,深部断裂广泛发育。沙河子组沉积时期,俯冲运动进一步增强,徐家围子断陷进入强烈断陷阶段,具有“近物源、相变快、岩性杂”的特点,形成了大套灰黑色、黑色泥岩/煤层与粗粒碎屑岩互层的沉积岩相组合。营城组沉积期,由于板块俯冲方向发生了转变,研究区的应力状态也发生变化,表现为挤压应力环境,研究区进入断陷萎缩阶段[15]

    沙河子组是形成于徐家围子强烈断陷期的一套以砾岩、含砾砂岩、粗砂岩为主,含炭质泥岩、暗色泥岩的湖泊相沉积,自下而上可分为SQ1、SQ2、SQ3和SQ4四个三级层序[1617]图1b)。

  • 根据研究区110余块岩样的岩石薄片和铸体薄片统计资料,沙河子组岩石类型主要为砾岩、砂质砾岩、砂岩、含砾砂岩以及泥岩等。

    沙河子组砾岩和砂质砾岩主要为中细砾岩,多具砂质砾状或砾状结构,砾径分布区间主要为2~10 mm,最大可达18 mm,颗粒分选性偏差,但磨圆度较好,主要为次圆状。风化程度中等偏深,接触方式主要为点接触,部分为点—线和线接触。胶结类型主要为孔隙胶结和孔隙—薄膜胶结。砾石成分主要为流纹岩和安山岩等中酸性喷发岩、凝灰岩等火山碎屑岩以及片岩、千枚岩、石英岩等变质岩类,砾石间多充填泥质、凝灰质以及碳酸盐质填隙物(图2)。

    Figure 2.  Thin section analysis for the rock and composition division of sandstone in the Shahezi Formation, Xujiaweizi Fault Depression

    按福克分类,沙河子组砂岩、含砾砂岩主要为长石岩屑质砂岩和岩屑长石质砂岩,少量为岩屑质砂岩和长石质砂岩(图2i)。碎屑中石英含量介于10%~50%,平均为21.02%;长石含量介于10%~53%,平均为32.29%,包括正长石、斜长石、钾长石三种;岩屑含量介于13%~66%,平均为46.70%,主要包括火成岩岩屑、沉积岩岩屑、变质岩岩屑等(图2)。砂岩中胶结物主要有黏土矿物、碳酸盐、石英等(图2),还包括少量的云母、黄铁矿、菱铁矿、硬石膏、重晶石、浊沸石等。杂基含量高,主要为泥质(平均含量7.1%)。

  • 通过详细的岩心观察与描述,结合测井资料、地震反射特征和砂体分布特征的判别,徐家围子断陷沙河子组发育辫状河三角洲、扇三角洲、具供给水道的远岸浊积扇、近岸水下扇、扇三角洲前端滑塌浊积扇等沉积相,断陷中心以浅湖—半深湖、深湖相沉积为主。

  • 辫状河三角洲是辫状河流推进到稳定水体中形成的粗碎屑三角洲[1819]。徐家围子断陷沙河子组沉积时期,安达、徐东以及肇州凹陷东侧缓坡带接受来自肇东—朝阳沟基底古隆起的碎屑物质而发育辫状河三角洲沉积,沉积序列中强牵引流与弱重力流沉积层序并存,可细分为辫状河三角洲平原、辫状河三角洲前缘和前三角洲亚相,徐家围子断陷沙河子组主要见辫状河三角洲平原和辫状河三角洲前缘亚相。

  • 辫状河三角洲平原主要由辫状河道、河道砂坝、河漫滩(泛滥平原)以及河道间、沼泽等沉积微相组成[20]。辫状河道以发育冲刷—侵蚀构造和滞留砾石层为特征(图3a),常见多期河道叠覆冲刷形成的砂砾质复合韵律层、碎屑流等[21],砾石颗粒分选差,呈叠瓦状排列,磨圆度较好(图3b),砾石层之上覆盖以底负载形式搬运的大型槽状交错层理(图3c)或斜层理砂砾岩、含砾砂岩和粗砂岩或块状层理粗砂岩、含砾砂岩(图4),自然伽马曲线表现为箱形和钟形(图5);河道砂坝常覆盖于辫状河道滞留层之上,以发育侧向加积的板状交错层理细砾岩、含砾砂岩、粗砂岩和顶部垂向加积的平行层理砂岩为特征(图3d),河漫滩和沼泽以粉砂岩、砂质泥岩、泥岩和煤层为主(图3e、图4)。

    Figure 3.  Sedimentary and structural characteristics in the Shahezi Formation, Xujiaweizi Fault Depression

    Figure 4.  Braided river delta facies sequence of the Shahezi Formation in the Xujiaweizi Fault Depression

    Figure 5.  Typical logging facies of a braided river delta from the Shahezi Formation in the Xujiaweizi Fault Depression

  • 辫状河三角洲前缘主要发育水下分流河道、河口砂坝、远砂坝、席状砂以及河道间、浅湖泥等沉积微相[22]。水下分流河道岩性主体为砂质砾岩、含砾粗砂岩和粗砂岩,砂砾岩层理发育不典型,以块状或板状层理为主,见多期河道的叠覆冲刷现象(图3f,g、图4),自然伽马曲线呈典型的箱形[23]图5)。河口砂坝和远砂坝沉积在沙河子组不发育,仅部分井段见反韵律的砂坝沉积(图4),测井曲线显示中幅漏斗形特征[24]图5),反映了较弱的湖盆水动力环境,其位于水下辫状河道的前缘和侧缘,底部与下伏泥岩呈突变接触,向上可出现板状交错层理中粗砂岩(图3h)、平行层理砂岩和沙纹层理粉细砂岩。席状砂主要分布于辫状河三角洲前缘的末端,是在沿岸流或回流影响下形成的薄层平行层理或沙纹层理细砂岩、粉砂岩[25]图3i)。

  • 徐家围子断陷西侧受徐西断裂控制形成断控陡坡带,且同沉积断裂活动强烈[26],致使安达凹陷、徐东凹陷、徐西凹陷以及肇州凹陷等西部陡坡带接受来自中央隆起区粗碎屑物而发育扇三角洲沉积体系,以近源短流为基本特征。扇三角洲主要划分为扇三角洲平原、扇三角洲前缘以及前扇三角洲亚相,在徐家围子沙河子组主要观察到扇三角洲平原和扇三角洲前缘两个亚相。

  • 徐西陡坡带扇三角洲平原以多期次、多旋回、相互叠加的砾石质辫状河道最为常见,河道滞留沉积和砂砾质河道砂坝是其主要的沉积组合,沉积层序呈下粗上细的正韵律或复合韵律[27],自下而上可依次出现河道滞留砾岩、槽状交错层理砂砾岩(图3j)、板状交错层理(图3k)或块状层理的含砾砂岩(图3l)、砂岩以及平行层理粉细砂岩等(图6),钻井取心见扇体近端大规模的叠瓦状混杂砾岩相泥石流或碎屑流沉积(图3m、图6),自然伽马曲线呈典型钟形和箱形(图7)。泛滥平原则主要包括粉砂岩和极细砂岩相河漫滩以及河漫沼泽,具沙纹层理和小型冲刷—侵蚀构造,煤层较发育。

    Figure 6.  Fan delta facies sequence of the Shahezi Formation in the Xujiaweizi Fault Depression

    Figure 7.  Typical logging facies of a fan delta from the Shahezi Formation in the Xujiaweizi Fault Depression

  • 扇三角洲前缘发育水下分流河道、河口砂坝、远砂坝、席状砂以及浅湖泥等沉积微相[28]。近端扇三角洲前缘水下分流河道为砂质砾岩、砂砾岩和粗砂岩组合,向扇体远端逐渐变为细砂岩和粉砂岩等,发育向上变细的正韵律层序,自下而上可出现河道滞留砾石层(图3n)、槽状交错层理的含砾砂岩或粗砂岩、板状交错层理或块状层理或平行层理的含砾砂岩或细砂岩等,多期河道叠加砂体厚达数十米(图6);河口砂坝主要为分选较好的反韵律砂砾岩和砂岩层序,自然伽马曲线呈典型的漏斗形(图7);远砂坝主要为厚1~2 m的薄层反韵律细砂岩和粉砂岩(图6);席状砂主要为薄层的平行层理或沙纹层理细砂岩和粉砂岩(图6),自然伽马曲线呈典型的高幅指状。

  • 滑塌浊积扇多是由浅水区各类砂体,如扇三角洲等,在外力作用下沿沉积陡坡发生滑动再搬运从而在深水区形成的浊积岩沉积体,然而众多学者在浅水区也发现了滑塌浊积扇[2931]。徐家围子断陷西部陡坡带坡度陡且同沉积断裂活动强烈[26],湖盆边缘发育的扇三角洲沉积体不稳定,在扇三角洲前缘极易发生沉积块体的滑塌再搬运,从而在扇三角洲沉积体前方的浅湖—半深湖处形成滑塌浊积扇沉积。对肇深6等井扇三角洲前缘的岩心观察中发现了大量典型的滑塌变形构造(图3o),结合地震相剖面,在徐家围子断陷达深303井扇三角洲前缘前端至达深2井区(SQ3~SQ4层序)、徐深801井扇三角洲前缘至徐深401井区(SQ3~SQ4层序)以及肇深6井扇三角洲前缘前端至深洼带(SQ2~SQ3层序),均观察到滑塌浊积扇沉积。

    以达深303井区地震剖面为例(图8),扇三角洲主要表现为弱振幅、中等连续的S型和复合型前积反射特征单元,在其前端SQ3层序内部发育两期滑塌浊积扇体,分别表现为弱振幅、中等连续的丘状反射单元和弱振幅、低连续的杂乱块状反射,而在SQ4层序内部则发育一期滑塌浊积扇沉积体,表现为中强振幅、中低连续的丘状反射特征[32]

    Figure 8.  Seismic reflection characteristics of a fan delta⁃slump turbidite fan from the Shahezi Formation in the Xujiaweizi Fault Depression

  • 沙河子组沉积时期,徐家围子断陷裂陷活动达到顶峰。徐东斜坡带的中南段发育大量NE、NNE向的次级断裂,且断裂纵横交错发育[33],导致其极易发育与湖泊岸线垂直或斜交的断槽,进而成为沟通物源区与深水盆地的浊流搬运通道,因此在盆地深洼带沉积了离岸较远的浊积扇体。远岸浊积扇(湖底扇)可进一步划分为供给水道、内扇、中扇和外扇等沉积相带[34]

    辫状供给水道岩性以含砾粗砂岩和粗砂岩为主,局部为砂质砾岩,常见大型槽状交错层理(图9a);过达深28井的地震剖面揭示了湖底扇体系近物源端的大型供给水道特征,该下切水道呈V型,内部层状充填,与阶梯状断层相伴生,显示了断裂沟槽在湖底扇体系发育过程中的关键作用(图10)。

    Figure 9.  Sedimentary and structural characteristics in the Shahezi Formation, Xujiaweizi Fault Depression

    Figure 10.  Seismic reflection characteristics of a supply channel of turbidite fan system from the Shahezi Formationin the Xujiazi Fault Depression

    内扇区岩性为巨厚的混杂砾岩、碎屑支架砾岩、泥支架砾岩(图9b)和砂砾岩,常见砾质高密度浊流层序的R2R3组合,向中扇方向可出现R3S1和R3Tt组合(图11);中扇区主要发育纵横向叠置的辫状水道,主要为砾质至砂质高密度浊流沉积(图9c~f),可显示R2R3、R3S1S3、R3Tt、S1 S2Tt以及S1Tt组合(图11)。外扇区主要为薄层砂岩和深灰黑色泥岩互层,以低密度浊流沉积层序的Tb-Te和Tb-Te段为主。

    Figure 11.  Distant turbidite fan sequence from the Shahezi Formation in the Xujiazi Fault Depression

  • 徐家围子断陷沙河子组西部陡坡带沉积了多个近岸水下扇体系。过达深401井的地震测线显示近岸水下扇主要为中弱振幅、低连续的前积反射结构特征,浅部呈不规则、近源短流的斜交前积地震相,而深部受徐西断裂改造表现为杂乱状的丘形前积反射波组(图12)。近岸水下扇平面形体为扇形,倾向剖面上呈楔状,扇体根部紧贴基岩断裂面,由近源至远源可细分为内扇、中扇和外扇等亚相[35]

    Figure 12.  Seismic reflection characteristics of a nearshore underwater fan from the Shahezi Formation in the Xujiazi Fault Depression

    内扇主要由充填水道的杂基支撑砾岩、碎屑支架砾岩、砂砾岩和泥支架砾岩组成(图9g)[36]。杂基支撑的砾岩常具有漂砾结构,砾石杂乱排列甚至直立,层理不发育,顶底突变接触(图9h)或具底部冲刷。碎屑支架砾岩和砂砾岩多为砂砾质高密度浊流的沉积产物,可显示砾质高密度浊流R2R3段和砂质高密度浊流的S1S2段,或者为二者的叠加。

    中扇沉积微相类型有辫状水道、水道间和中扇前缘等[37],岩性主要为砂砾岩、粗砂岩(图9i)以及砾岩与灰黑色泥岩的互层(图9j、图13),中扇辫状水道以砾质至砂质高密度浊流沉积层序为特色,常见序列为R3S1和S1S2段,底部R2段发育较差或缺失,自然伽马曲线表现为典型的齿化箱形。向盆地方向,中扇前缘微相水道化特征逐渐减弱,粒度变细,分选变好,以砂质高密度浊流到低密度浊流的S2S3Tt或S3TtTdTe组合为主,中间夹两层厚约0.2 m的深水风暴成因的丘状交错层理细砂岩(图9k、图13),印证了宋深2井近岸水下扇的深水沉积环境条件。

    Figure 13.  Nearshore subaqueous fan facies sequence from the Shahezi Formation in the Xujiazi Fault Depression

    外扇主要为灰黑色泥岩夹薄层粉细砂岩,砂层可见平行层理和沙纹层理,以低密度浊流的TbTcTdTe段为特征。

  • 在单井沉积微相划分和沉积体系平面展布特征研究的基础上,利用小波多尺度分解技术对测井曲线进行了高分辨率沉积旋回分解和对比分析[3839],选取多条连井剖面,解剖沙河子组沉积相的横向展布特征及纵向上不同时期砂体的叠加演化特征。

    以芳深901—徐深401—徐深25—徐深26连井剖面为例(图14),该剖面位于徐东和徐西凹陷南段连接部位,走向平行于物源方向。芳深901井和徐深401井为扇三角洲沉积,近物源的芳深901井主要为扇三角洲平原,远物源的徐深401井为扇三角洲前缘,发育的沉积微相类型主要为厚层辫状河道,显示为多期箱形正韵律河道砂砾岩体的叠加,砂砾岩体总沉积厚度变化不大,且横向连通性非常好,向盆地中心逐渐过渡为深湖相;徐深26井和徐深25井为辫状河三角洲平原沉积,由徐深26井向徐深25井,SQ4沉积地层厚度急剧增大,主要的沉积微相类型有辫状河道、河漫滩以及河道间沼泽,透镜状的辫状河道砂体横向连通性很差,徐深26井的辫状河道砂体显示为多期河道层序的叠加,向徐深25井则逐渐演变为河漫滩与河道间沼泽微相,而徐深25井中下部主要为垂向分隔性明显、横向延伸距离有限的下三角洲平原辫状分支河道砂体,砂体的纵横向连通性均较差。

    Figure 14.  Sedimentary facies correlation section crossing wells Fangshen901⁃Xushen401⁃Xushen25⁃Xushen26

  • 基于研究区的钻井资料,综合分析单井沉积相、连井沉积相以及地震相剖面,以砂砾岩厚度、砂地比等地质资料为约束,利用多因素成图方法[40]绘制沙河子组SQ1~SQ4层序的沉积相平面展布图(图15)。

    Figure 15.  Sedimentary facies from the Shahezi Formation in the Xujiaweizi Fault Depression

    SQ1沉积时期,徐家围子断陷内部发育多个沉积中心。徐东缓坡带发育辫状河三角洲沉积相,三角洲向湖盆推进距离短,多小于7 km,最远可达10 km;徐东缓坡带局部发育具供给水道的远岸浊积扇沉积;徐西陡坡带主要发育扇三角洲沉积,扇体多相互孤立,纵向延伸距离多小于5 km,横向连通性一般;徐西陡坡带局部发育近岸水下扇体系,系局部深水陡坡构造地形条件下形成的重力流扇体;湖盆中心主要发育浅湖—半深湖、深湖相泥质沉积。

    SQ2沉积时期,徐家围子断陷东西向扩张,沉积继承发育,仍存在多个沉积中心,但彼此间分割性开始减弱。徐东缓坡带辫状河三角洲沉积范围扩大且横向连片发育,向盆地内部推进超过10 km,最大可达15 km,远岸浊积扇体继承发育;徐西陡坡带扇三角洲沉积和近岸水下扇沉积继承发育,扇三角洲沉积体以近源短流为特征,向盆地内部推进距离变化较小,但发生了一定程度的横向迁移,达深2井区近岸水下扇转变为扇三角洲沉积,徐西凹陷北端扇三角洲沉积开始广泛发育。

    SQ3沉积时期,徐家围子断陷持续扩张,盆地内部沉积中心逐渐汇聚。徐东缓坡带辫状河三角洲沉积横向连片,平原横向叠接成大型复合三角洲体系,前缘砂体交叉叠置造成沉积体之间的界限不清晰;徐家围子断陷东部湖盆边缘辫状供给水道将碎屑物质直接注入深水盆地内部,形成离岸较远的舌形湖底扇体;徐西陡坡带扇三角洲沉积和近岸水下扇沉积继承发育。

    SQ4沉积时期,徐家围子裂陷作用开始减弱,但盆地继续东西向扩张,受徐西控陷断裂的影响,沉积地层逐渐向两侧超覆,沉积中心连成一体沿轴向深洼带展布,肇州凹陷与徐东凹陷、徐西凹陷重新分隔开来。该时期,徐家围子湖盆广阔,水体变浅,徐东缓坡带辫状河三角洲体系快速向盆地内部推进,横向堆积11~18 km,局部发育三个远岸浊积扇体,舌形扇体前端多进入深湖相带;徐西陡坡带扇三角洲沉积体分布范围较SQ3时期明显扩大,推进距离多介于5~10 km,沉积体多孤立发育,横向连通性不好,但均发育扇三角洲平原亚相,反映该时期沉积水体变浅,湖盆水退导致沉积物大量向盆地堆积;近岸水下扇扇体分布面积也逐渐扩大。

  • 沙河子组早期,徐家围子断陷东西向沉积范围较小,此时徐家围子断陷主体凹陷未与南部肇州凹陷相接,两者独立接受沉积充填。徐东缓坡带由辫状河流携带的来自肇东—朝阳沟古物源区的砂砾质粗碎屑物质逐渐向盆地内部推进,形成多个辫状河三角洲沉积体系,但沉积体向盆地内部延伸距离有限。在安达凹陷东部缓坡带辫状河三角洲沉积体之间局部形成远岸浊积扇沉积,系供给水道将碎屑物质直接输送至断陷盆地深洼带而形成的湖底扇;而在徐西侧陡坡带,来自中央隆起古物源区的粗碎屑物质快速推进至湖盆内部形成扇三角洲沉积体系,湖盆岸线边缘发育相带非常窄的泛滥平原相。在安达凹陷的南端和肇州凹陷,陡坡带断裂与物源山区直接毗邻,来自山前的携带粗碎屑物质的洪流还未演变为辫状河流既已推进至盆地内部,深湖相条件、断裂带及源区的有效配置为近岸水下扇的发育提供了良好的构造地貌和物源条件,局部形成近岸水下扇沉积(图16a)。

    Figure 16.  Sedimentary model of the Shahezi Formation in the Xujiaweizi Fault Depression

    沙河子组晚期,盆地持续张裂,断陷分布范围明显扩大,裂陷沉降速率减弱,湖盆水体变浅。徐东缓坡带的辫状河三角洲和徐西陡坡带的扇三角洲沉积体均逐渐向盆地内部进积,在安达凹陷东西两侧的辫状河三角洲和扇三角洲沉积体甚至已经开始对接连片。徐东缓坡带辫状河三角洲沉积体之间新沉积了远岸浊积扇体系,推测其是由徐东断裂带的次级NE、NNE向断裂构成的沟槽水道将粗碎屑物质输送至深水盆地形成的舌形湖底扇,近岸水下扇沉积继承发育,扇体面积逐渐扩大(图16b)。

  • (1) 根据岩石薄片和铸体薄片统计资料,沙河子组砂砾岩储层主要为砾岩、砂质砾岩、砂岩、含砾砂岩以及泥岩等。依据岩心、测井和地震等资料的判别,徐家围子断陷沙河子组主要发育辫状河三角洲、扇三角洲、具供给水道的远岸浊积扇、近岸水下扇及扇三角洲前端滑塌浊积扇等沉积相,断陷中心以浅湖—半深湖、深湖相沉积为主。

    (2) 徐东缓坡带接受来自肇东—朝阳沟基底的碎屑物质发育辫状河三角洲,沉积序列中强牵引流与弱重力流沉积层序并存,碎屑物搬运距离大,分选磨圆程度高;徐西陡坡带受徐西断裂的控制接受来自中央隆起区的沉积物而发育扇三角洲沉积,以近源短流为基本特征,沉积物分选差;盆地东部边缘辫状供给水道将碎屑物直接注入盆地内部,局部形成舌型湖底扇体;徐西陡坡带局部坡陡水深形成多个近岸水下扇体系;扇三角洲前缘沉积体不稳,局部形成滑塌浊积扇沉积。

    (3) 沙河子组SQ1~SQ4时期,盆地持续东西向扩张,内部沉积中心逐渐汇聚成一体,东部缓坡带辫状河三角洲体系横向连片发育,西部陡坡带扇三角洲多孤立发育,两者沉积体均逐渐向盆地内部进积;远岸浊积扇、近岸水下扇多继承发育,且扇体分布面积也逐渐扩大。

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return