Advanced Search
Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents

ZHANG XiaoJu, DENG HuCheng, FU MeiYan, LING Can, XU ZhengQi, WU Dong. Controls of Architecture Under the Constraints of a Multi- level Interface on Physical Property Heterogeneities from the Meandering River of the Shaximiao Formation in Western Sichuan[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1384-1400. doi: 10.14027/j.issn.1000-0550.2022.105
Citation: ZHANG XiaoJu, DENG HuCheng, FU MeiYan, LING Can, XU ZhengQi, WU Dong. Controls of Architecture Under the Constraints of a Multi- level Interface on Physical Property Heterogeneities from the Meandering River of the Shaximiao Formation in Western Sichuan[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1384-1400. doi: 10.14027/j.issn.1000-0550.2022.105

Controls of Architecture Under the Constraints of a Multi- level Interface on Physical Property Heterogeneities from the Meandering River of the Shaximiao Formation in Western Sichuan

doi: 10.14027/j.issn.1000-0550.2022.105
cstr: 32268.14.cjxb.62-1038.2022.105
Funds:

The Project from Southwest Branch Company of SINOPEC (China), No. 34 450000-15-ZC0607-0005 34450000-15-ZC0607-0005

  • Received Date: 2022-02-14
  • Accepted Date: 2022-09-30
  • Rev Recd Date: 2022-08-18
  • Available Online: 2022-09-30
  • Publish Date: 2024-08-10
  • Objective  There is large potential of oil and gas resource from the Jurassic Shaximiao Formation of the eastern slope in the Western Sichuan Depression, and the internal structure of the single sandbodies restrict the prediction of high-quality reservoirs, and consequently affects the evaluation of the natural gas enrichment characteristics in this area. The order of the architecture boundary, architecture-element, and architecture-element assemblies in the study area are not yet clear. There is a lack of relevant understanding of how the architecture-elements and their assemblies control the reservoir heterogeneity from the different architecture boundary levels.   Methods  In this study, the types of sedimentary facies were determined to provide the foundation for the study of the sandbody architecture. Based on the data of field outcrops, cores, logs, and experimental measured analysis, detailed research on the type and characteristics of the sandbody architecture of the meandering river from the Shaximiao Formation of Western Sichuan Depression was carried out, and the effect of sandbody architecture on the reservoir heterogeneity under the constraints of multilevel architecture boundary was discussed.   [Results and Conclusions]  The architecture-elements in the study area were divided into HPB, HCH, MCS, MCL, MCA, and MFM. Based on the vertical stacking pattern of architecture units and the sedimentary characteristics of vertical sequence, the architecture-element assemblies are divided into three types, including homogeneous assemblage (Type I), homogeneous+ compound (Type II), and compound assemblage (Type III). Type I assemblage mainly occurs in the Zhongjiang-Huilong area of the study area, and the Type I assemblage and Type II assemblage mainly occur in the Third member of Shaximiao Formation, and the reservoir heterogeneity is relatively weak. Based on the above research on the types and characteristics of sandbody architecture, the analysis on the characteristics of reservoir heterogeneity under the control of different levels of architecture boundary, and the discussion of the controlling factors that sandbody architecture impact on the reservoir heterogeneity under different levels of architecture boundaries, the model of controlling the reservoir heterogeneity under the architecture boundary constraints of 3~5 levels of architecture is established. The reservoir plane heterogeneity is controlled by the 5 level' architecture boundary, and the reservoir heterogeneity under the 5 level' architecture boundary is controlled by the rising of based-level and structure subsidence. The reservoir inter-layer heterogeneity is controlled by the 4 level' architecture boundary, and the reservoir heterogeneity under the 4 level' architecture boundary is controlled by the slope and erosion. The reservoir intra-layer heterogeneity is controlled by the 3 level' architecture boundary, and the reservoir heterogeneity under the 3 level' architecture boundary is controlled by the hydrodynamic condition, channel sinuosity, degree of channel migration, deposited load, discharge, and diagenesis.

  • [1] 王志章,石占忠. 现代油藏描述技术[M]. 北京:石油工业出版社,1999:282-285.

    Wang Zhizhang, Shi Zhanzhong. Advanced reservoir characterization technology[M]. Beijing: Petroleum Industry Press, 1999: 282-285.
    [2] 魏忠元,单华生. 国内外河流相储集砂体非均质性研究进展[J]. 内江科技,2005(1):27,38.

    Wei Zhongyuan, Shan Huasheng. Research progress on heterogeneity of fluvial facies reservoir sandbodies at home and abroad[J]. Neijiang Technology, 2005(1): 27, 38.
    [3] 于翠玲,林承焰. 储层非均质性研究进展[J]. 油气地质与采收率,2007,14(4):15-18,22.

    Yu Cuiling, Lin Chengyan. Advancement of reservoir heterogeneity research[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(4): 15-18, 22.
    [4] 李茂. 涠洲11-4N油田流一段强非均质储层评价及开发策略[D]. 青岛:中国石油大学(华东). 2010.

    Li Mao. Evaluation and development tactics of strong heterogeneity reservoir in L1 segment of Weizhou 11-4N oil field[D]. Qingdao: China University of Petroleum (East China), 2010.
    [5] 何自新. 鄂尔多斯盆地演化与油气[M]. 北京:石油工业出版社,2003:88-90.

    He Zixin. Evolution and oil and gas in the Ordos Basin[M]. Beijing: Petroleum Industry Press, 2003: 88-90.
    [6] 李源流,郭彬程,杨兆平,等. 横山地区三叠系延长组长61沉积微相特征及其对储层非均质性的影响[J]. 西北大学学报(自然科学版),2020,50(5):840-850.

    Li Yuanliu, Guo Bincheng, Yang Zhaoping, et al. Characteristics of sedimentary microfacies of Triassic Yanchang Formation Chang 61 in Hengshan area and its effect on reservoir heterogeneity[J]. Journal of Northwest University (Natural Science Edition), 2020, 50(5): 840-850.
    [7] 陈朝兵,陈新晶,王超,等. 致密砂岩储层非均质性影响因素分析[J]. 地下水,2020,42(5):152-154.

    Chen Zhaobing, Chen Xinjing, Wang Chao, et al. Analysis of factors affecting heterogeneity of tight sandstone reservoirs[J]. Underground Water, 2020, 42(5): 152-154.
    [8] 李旭,李碧龙. 郝家坪地区长2储层非均质性及其控制因素分析[J]. 重庆科技学院学报(自然科学版),2016,18(2):36-39,43.

    Li Xu, Li Bilong. Research on reservoir heterogeneity of Chang 2 in Haojiaping area of Ordos Basin[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2016, 18(2): 36-39, 43.
    [9] 程俊,李红,雷川. 鄂尔多斯盆地姬塬地区长6储层成岩作用研究[J]. 岩性油气藏,2013,25(1):69-74.

    Cheng Jun, Li Hong, Lei Chuan. Diagenesis of Chang 6 reservoir of Upper Triassic in Jiyuan area, Ordos Basin[J]. Lithologic Reservoirs, 2013, 25(1): 69-74.
    [10] 曹江骏,陈朝兵,罗静兰,等. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响:以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏,2020,32(6):36-49.

    Cao Jiangjun, Chen Zhaobing, Luo Jinglan, et al. Impact of authigenic clay minerals on micro-heterogeneity of deep water tight sandstone reservoirs: A case study of Triassic Chang 6 oil reservoir in Heshui area, southwestern Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(6): 36-49.
    [11] 徐大光. 致密砂岩储层非均质性影响因素研究[J]. 科学与信息化,2021(2):75.

    Xu Daguang. Study on influence factors of tight sandstone reservoir heterogeneity[J]. Science and Informatization, 2021(2): 75.
    [12] 吴胜和,岳大力,刘建民,等. 地下古河道储层构型的层次建模研究[J]. 中国科学(D辑):地球科学,2008,38(增刊I):111-121.

    Wu Shenghe, Yue Dali, Liu Jianmin, et al. Hierarchy modeling of subsurface palaeochannel reservoir architecture[J]. Science China (Seri. D): Earth Sciences, 2008, 38(Suppl.I): 111-121.
    [13] Miall A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308.
    [14] 柯保嘉. 一种新的河流沉积分析法:结构要素分析法[J]. 国外地质,1986(3):1-6.

    Ke Baojia. A new analysis method of river sediment:Structural element analysis[J]. Foreign Geology, 1986(3): 1-6.
    [15] Baker P L. Fluid, lithology, geometry, and permeability information from ground-penetrating radar for some petroleum industry applications[C]//Proceedings of SPE Asia-Pacific conference. Perth: SPE, 1991.
    [16] 张昌民. 储层研究中的层次分析法[J]. 石油与天然气地质,1992,13(3):344-350.

    Zhang Changmin. Hierarchy analysis in reservoir researches[J]. Oil & Gas Geology, 1992, 13(3): 344-350.
    [17] 赵翰卿,付志国. 应用密井网测井曲线精细研制河流相储层沉积模型[C]//第五次国际石油工程会议论文集. 北京:中国石油学会,1995.

    Zhao Hanqing, Fu Zhiguo. Precise development of fluvial reservoir sedimentary model using dense well pattern logging curves[C]//International petroleum engineering conference. Beijing: Chinese Petroleum Society, 1995.
    [18] Miall A D. The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology[M]. Berlin: Springer, 1996: 75-178.
    [19] Posamentier H W, Laurin P, Warmath A. Cenozoic carbonates systems of central Australasia[M]. SEPM Special Publication, 2000: 104-121.
    [20] Szerbiak R B. 3D description of clastic reservoirs: From 3D GPR data to 3D fluid permeability model[J]. Progress in Exploration Geophysics, 2002, 25(2): 64-73.
    [21] Baas J H. Conditions for formation of massive turbiditic sandstones by primary depositional processes[J]. Sedimentary Geology, 2004, 166(3/4): 293-310.
    [22] Weber J, Ricken W. Quartz cementation and related sedimentary architecture of the Triassic Solling Formation, Reinhardswald Basin, Germany[J]. Sedimentary Geology, 2005, 175(1/2/3/4): 459-477.
    [23] Backert N, Ford M, Malartre F. Architecture and sedimentology of the Kerinitis Gilbert-type fan delta, Corinth Rift, Greece[J]. Sedimentology, 2010, 57(2): 543-586.
    [24] 吴胜和,季友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22.

    Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22.
    [25] 胡光义,陈飞,范廷恩,等. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析[J]. 沉积学报,2014,32(3):586-592.

    Hu Guangyi, Chen Fei, Fan Tingen, et al. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen Formation of S oilfield in the Bohai Bay[J]. Acta Sedimentologica Sinica, 2014, 32(3): 586-592.
    [26] Colombera L, Mountney N P, McCaffrey W D. A meta-study of relationships between fluvial channel-body stacking pattern and aggradation rate: Implications for sequence stratigraphy[J]. Geology, 2015, 43(4): 283-286.
    [27] Shi C X, Zhou Y Y, Liu X F, et al. River base level change in mouth channel evolution: The case of the Yellow River delta, China[J]. CATENA, 2019, 183: 104193.
    [28] 童强,余建国,田云吉,等. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏,2020,32(3):144-158.

    Tong Qiang, Yu Jianguo, Tian Yunji, et al. Architecture characterization of single distributary channel sand bodies restricted by architecture interface of Yan 8 member in Y116 well area, Yanwu oilfield[J]. Lithologic Reservoirs, 2020, 32(3): 144-158.
    [29] 胡光义,王海峰,范廷恩,等. 海上油田河流相复合砂体构型级次解析[J]. 古地理学报,2021,23(4):810-823.

    Hu Guangyi, Wang Haifeng, Fan Tingen, et al. Analysis of fluvial compound sand-body architecture hierarchy in offshore oil field[J]. Journal of Palaeogeography, 2021, 23(4): 810-823.
    [30] 王大成,刘义坤,白军辉,等. 曲流河复合点坝砂体构型表征及流体运移机理[J]. 西南石油大学学报(自然科学版),2021,43(3):25-36.

    Wang Dacheng, Liu Yikun, Bai Junhui, et al. Architecture characterization and fluid migration mechanism of composite point dam in meandering river[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(3): 25-36.
    [31] 吴胜和,岳大力,冯文杰,等. 碎屑岩沉积构型研究若干进展[J]. 古地理学报,2021,23(2):245-262.

    Wu Shenghe, Yue Dali, Feng Wenjie, et al. Research progress of depositional architecture of clastic systems[J]. Journal of Palaeogeography, 2021, 23(2): 245-262.
    [32] 卜淘. 川西坳陷东坡侏罗系沙溪庙组三角洲河道砂体构型[J]. 断块油气田,2018,25(5):564-567,578.

    Bu Tao. Sand body configuration of delta channel of Jurassic Shaximiao Group in east slope of West Sichuan Depression[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 564-567, 578.
    [33] 武恒志,叶泰然,王志章,等. 复杂致密河道砂岩气藏开发精细描述技术[M]. 北京:中国石化出版社,2018:243-247.

    Wu Hengzhi, Ye Tairan, Wang Zhizhang, et al. Fine description technology for complex tight channel sandstone gas reservoir development[M]. Beijing: China Petrochemical Press, 2018: 243-247.
    [34] 衡勇,段新国,王勇飞,等. 浅水三角洲分流河道砂体内部结构及其对气水分布的影响:以四川盆地中江气田沙溪庙组为例[J]. 成都理工大学学报(自然科学版),2022,49(1):1-11.

    Heng Yong, Duan Xinguo, Wang Yongfei, et al. Internal structure of distributary channel sand body and its effect on gas-water distribution in shallow-water delta: A case study of Shaximiao Formation in Zhongjiang gas field, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(1): 1-11.
    [35] Zhang X J, Fu M Y, Deng H C, et al. The differential diagenesis controls on the physical properties of lithofacies in sandstone reservoirs from the Jurassic Shaximiao Formation, Western Sichuan Depression, China[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107413.
    [36] Zhang X J, Fu M Y, Deng H C, et al. River channel pattern controls on the quality of sandstone reservoirs: A case study from the Jurassic Shaximiao Formation of western Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108925.
    [37] 朱宏权. 川西坳陷中段沙溪庙组沉积相与储层评价研究[D]. 成都:成都理工大学,2009.

    Zhu Hongquan. Depositional facies and reservoir characteristics research and evaluation of Shaximiao Formation, middle arae of Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2009.
    [38] 李国新,徐胜林,陈洪德,等. 川西坳陷中段中侏罗统上沙溪庙组层序岩相古地理及砂体展布特征[J]. 中国地质,2012,39(1):96-105.

    Li Guoxin, Xu Shenglin, Chen Hongde, et al. Sedimentary facies and sand body distribution of the Middle Jurassic Upper Shaximiao Formation in the middle segment of Western Sichuan Depression[J]. Geology in China, 2012, 39(1): 96-105.
    [39] 杨克明,朱宏权,叶军,等. 川西致密砂岩气藏地质特征[M]. 北京:科学出版社,2012:3-97.

    Yang Keming, Zhu Hongquan, Ye Jun, et al. Geological characteristics of tight sandstone gas reservoirs in west Sichuan Basin[M]. Beijing: Science Press, 2012: 3-97.
    [40] 姜镭,许多,肖维德,等. 利用弹性参数叠合相控边界识别气水分布:以中江气田沙溪庙组气藏为例[J]. 工程地球物理学报,2017,14(4):379-385.

    Jiang Lei, Xu Duo, Xiao Weide, et al. Using elastic parameters superposition facies-constrained boundaries to identify gas-water distribution: A case in Shaximiao reservoir of Zhongjiang gas field[J]. Chinese Journal of Engineering Geophysics, 2017, 14(4): 379-385.
    [41] 李夏. 川西坳陷侏罗系沉积相研究[D]. 荆州:长江大学,2014.

    Li Xia. A sedimentary facies study of Jurassic in western Sichuan sedimentary depression[D]. Jingzhou: Yangtze University, 2014.
    [42] 王志章,曹思远,王国壮,等. 复杂致密砂岩气藏开发地质理论及关键技术[Z]. 北京:中国石油大学(北京),2015.

    Wang Zhizhang, Cao Siyuan, Wang Guozhuang, et al. Development geological theory and key technologies of complex tight sandstone gas reservoirs[Z]. Beijing: China University of Petroleum, 2015.
    [43] 卢松,潘和平,彭曙光,等. 沉积微相和测井相研究及自动识别系统:以曲流河环境沉积为例[J]. 工程地球物理学报,2009,6(3):332-337.

    Lu Song, Pan Heping, Peng Shuguang, et al. Auto-identified system and study of sedimentary microfacies and elextrofacies: Taking snaking stream deposition as an example[J]. Chinese Journal of Engineering Geophysics, 2009, 6(3): 332-337.
    [44] 王良忱,张金亮. 沉积环境和沉积相[M]. 北京:石油工业出版社,1996.

    Wang Liangchen, Zhang Jinliang. Sedimentary environment and sedimentary facies[M]. Beijing: Petroleum Industry Press, 1996.
    [45] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008.

    Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008.
    [46] Miall A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check[J]. AAPG Bulletin, 2006, 90(7): 989-1002.
    [47] 宋璠,杨少春,苏妮娜,等. 扇三角洲前缘储层构型界面划分与识别:以辽河盆地欢喜岭油田锦99区块杜家台油层为例[J]. 西安石油大学学报(自然科学版),2015,30(1):7-13.

    Song Fan, Yang Shaochun, Su Nina, et al. Division and recognition of architecture interfaces of fan-delta front reservoir: Taking Dujiatai reservoir of Jin-99 block in Huanxiling oilfield, Liaohe Basin as an example[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2015, 30(1): 7-13.
    [48] 张瑞香,王杰,孔雪. 扇三角洲前缘储层构型剖析:以辽河欢喜岭油田锦99块沙四上亚段为例[J]. 中国科技论文,2019,14(5):497-505.

    Zhang Ruixiang, Wang Jie, Kong Xue. Analysis of the reservoir architecture of fan-delta front: A case study on the upper Es4 formation in Jin-99 block, Huanxiling oilfield, Liaohe Basin[J]. China Sciencepaper, 2019, 14(5): 497-505.
    [49] Mishra J, Inoue T, Shimizu Y, et al. Consequences of abrading bed load on vertical and lateral bedrock erosion in a curved experimental channel[J]. Journal of Geophysical Research, 2018, 123(12): 3147-3161.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(19)  / Tables(1)

Article Metrics

Article views(91) PDF downloads(37) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-02-14
  • Revised:  2022-08-18
  • Accepted:  2022-09-30
  • Published:  2024-08-10

Controls of Architecture Under the Constraints of a Multi- level Interface on Physical Property Heterogeneities from the Meandering River of the Shaximiao Formation in Western Sichuan

doi: 10.14027/j.issn.1000-0550.2022.105
Funds:

The Project from Southwest Branch Company of SINOPEC (China), No. 34 450000-15-ZC0607-0005 34450000-15-ZC0607-0005

Abstract: 

Objective  There is large potential of oil and gas resource from the Jurassic Shaximiao Formation of the eastern slope in the Western Sichuan Depression, and the internal structure of the single sandbodies restrict the prediction of high-quality reservoirs, and consequently affects the evaluation of the natural gas enrichment characteristics in this area. The order of the architecture boundary, architecture-element, and architecture-element assemblies in the study area are not yet clear. There is a lack of relevant understanding of how the architecture-elements and their assemblies control the reservoir heterogeneity from the different architecture boundary levels.   Methods  In this study, the types of sedimentary facies were determined to provide the foundation for the study of the sandbody architecture. Based on the data of field outcrops, cores, logs, and experimental measured analysis, detailed research on the type and characteristics of the sandbody architecture of the meandering river from the Shaximiao Formation of Western Sichuan Depression was carried out, and the effect of sandbody architecture on the reservoir heterogeneity under the constraints of multilevel architecture boundary was discussed.   [Results and Conclusions]  The architecture-elements in the study area were divided into HPB, HCH, MCS, MCL, MCA, and MFM. Based on the vertical stacking pattern of architecture units and the sedimentary characteristics of vertical sequence, the architecture-element assemblies are divided into three types, including homogeneous assemblage (Type I), homogeneous+ compound (Type II), and compound assemblage (Type III). Type I assemblage mainly occurs in the Zhongjiang-Huilong area of the study area, and the Type I assemblage and Type II assemblage mainly occur in the Third member of Shaximiao Formation, and the reservoir heterogeneity is relatively weak. Based on the above research on the types and characteristics of sandbody architecture, the analysis on the characteristics of reservoir heterogeneity under the control of different levels of architecture boundary, and the discussion of the controlling factors that sandbody architecture impact on the reservoir heterogeneity under different levels of architecture boundaries, the model of controlling the reservoir heterogeneity under the architecture boundary constraints of 3~5 levels of architecture is established. The reservoir plane heterogeneity is controlled by the 5 level' architecture boundary, and the reservoir heterogeneity under the 5 level' architecture boundary is controlled by the rising of based-level and structure subsidence. The reservoir inter-layer heterogeneity is controlled by the 4 level' architecture boundary, and the reservoir heterogeneity under the 4 level' architecture boundary is controlled by the slope and erosion. The reservoir intra-layer heterogeneity is controlled by the 3 level' architecture boundary, and the reservoir heterogeneity under the 3 level' architecture boundary is controlled by the hydrodynamic condition, channel sinuosity, degree of channel migration, deposited load, discharge, and diagenesis.

ZHANG XiaoJu, DENG HuCheng, FU MeiYan, LING Can, XU ZhengQi, WU Dong. Controls of Architecture Under the Constraints of a Multi- level Interface on Physical Property Heterogeneities from the Meandering River of the Shaximiao Formation in Western Sichuan[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1384-1400. doi: 10.14027/j.issn.1000-0550.2022.105
Citation: ZHANG XiaoJu, DENG HuCheng, FU MeiYan, LING Can, XU ZhengQi, WU Dong. Controls of Architecture Under the Constraints of a Multi- level Interface on Physical Property Heterogeneities from the Meandering River of the Shaximiao Formation in Western Sichuan[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1384-1400. doi: 10.14027/j.issn.1000-0550.2022.105
  • 储层非均质性是指油气储层的岩性、电性、物性、含油气性及微观孔隙结构等随空间分布位置的不同而表现出来的不均一性变化[1]。储层非均质性的研究始于20世纪70—80年代,其是油藏精细描述的重要内容。目前国内外学者主要是采用定性—定量分析、单一—多种技术相配合及多学科相结合来开展储层非均质性的研究。储层非均质性受控于沉积、成岩和构造等因素[24]。其中,沉积因素是影响储层非均质性的最根本因素[57]。基准面变化、古地形坡度、水流强度及方向、沉积物供给量大小、沉积微相等会造成沉积物颗粒粒度及排列方向、层理构造、砂体几何形态、砂体厚度、砂体叠置样式以及连通性等差异,从而导致储层非均质性[78]。成岩因素同样对储层非均质性具有非常重要的影响[911]。压实、压溶、胶结、溶蚀以及重结晶等作用会改变原始砂体物性(即孔隙度和渗透率),从而影响储层非均质性[11]

    储层构型指的是储层的内部不同级次构成单元的规模、形态、方向及其相互叠置关系[12]。最早在1977年,Allen在Calgary第一届国际河流沉积学会议上明确提出了河流建筑结构“Fluvial architecture”这个概念,并于1983年将构型界面级次划分为了三级。早期储层构型研究主要是采用“过程拟合”和“层次结构”的思路来开展。在1985年,Miall[13]定义了河流相储层构型,同时提出了河流相储层构型分析法。在1986年,国内学者柯保嘉[14]首次将储层构型分析法介绍到国内学术界。国内学者对于储层构型的研究工作开展较晚,主要是以河流相和三角洲相为对象开展研究,方法基本上都是立足于Miall。自20世纪90年代开始国内外学者针对储层构型的相关研究进行了大量的报道。储层构型研究由此从萌芽与初步形成阶段进入快速发展阶段。在1991年,国外学者Baker[15]最先开始将探地雷达技术运用到储层构型研究中。同年,国内学者薛培华归纳了点坝模式,提出了“侧积体”这一概念。在1992年,张昌民[16]提出了层次分析法。前人对于地下地质的认识最早基于野外露头和现代沉积,其具有直观、易达以及便于精细研究等特点。而在1995年,赵翰卿等[17]提出了密井网分析法,并采用该方法实现了地下储层构型分析。自此,对于储层构型的研究不再局限于野外露头和现代沉积。在1996年,Miall[18]完整地提出了9级构型界面、9种构型单元和20种岩石相。在2000年,Posamentier et al.[19]运用地震地貌学开展了储层构型研究。随后数值模拟[20]和水槽实验[21]等方法也陆续被采用。在2005年,国外学者Weber et al.[22]首次将成岩作用方法应用到储层构型当中,提出了“成岩构型”这一概念。在2008年,吴胜和等[12]学者首次提出了“层次分析、模拟拟合、多维互动”的研究思路。随后在2010年,国外学者Backert et al.[23]将航空磁测数据也应用到储层构型研究中。在2013年,吴胜和等[24]提出12级构型界面划分方案。随后在2014年,胡光义等[25]提出了“复合砂体构型”这一概念。到目前为止,储层构型研究已经进入基本成熟阶段。国内外诸多学者也开展了砂体构型控制因素研究,研究表明砂体构型主要受控于气候、构造、基准面旋回变化、层序、沉积相、沉积环境水体能量、物源、沉积物供给、可容纳空间和沉积物供给比、沉积物搬运距离以及沉积物沉降速率等因素[2631]

    前人针对川西坳陷东坡地区侏罗系沙溪庙组开展了相关的砂体构型研究工作[3234],提出了河道砂体构型发育类型,简要阐述了其发育控制因素,但是就目前而言,研究区目的层砂体构型的界面级次、构型单元及其组合尚不明确;研究区目的层不同级次构型界面控制下构型单元及其组合究竟是如何影响储层非均质性尚缺乏相关认识。此外,随着研究区天然气勘探开发的不断推进,目前存在的问题具体体现在以下几个方面:一是研究区高产区规模相对有限,且同一套河道砂体单井产量和储量差别较大;二是发育不同岩相的砂岩物性及含气性差异较大;三是河道类型及其连通程度对砂岩物性和含气性影响较大。本文主要通过砂体构型发育特征研究,明确构型对储层非均质性的控制作用,进而分析阐明研究区生产开发中存在的上述问题。不仅对于研究区目的层砂岩储层天然气勘探开发具有较强的实践意义,也为相似地质条件的气田中的优质储层预测提供了理论基础。

  • 川西坳陷位于四川盆地西部(图1a)[3536],面积约4×104 km2。川西坳陷现今整体呈“三隆两凹一斜坡”的构造格局。“三隆”即龙门山构造带、新场构造带和知新场构造带;“两凹”即成都凹陷和梓潼凹陷;“一斜坡”即中江斜坡(图1b)。研究区为川西坳陷斜坡带地区,即东坡地区。川西坳陷东坡地区主要发育丰谷构造带、合兴场—高庙子构造带、知新场—石泉场构造带和中江—回龙构造带(图1c)。

    Figure 1.  Location and distribution of structural belts from the Western Sichuan Depression(modified from references [35⁃36])

    在侏罗系沙溪庙组沉积时期,龙门山推覆活动处于相对平静期,秦岭造山带及米仓山—大巴山推覆带强烈隆起,从而使得四川盆地北部形成了新坳陷,之后其转型为山前坳陷型盆地[3739]。研究区侏罗系沙溪庙组自下而上沉积具有一定的继承性,整体为水体上升的过程[3738]。上沙溪庙组沉积时期,川西坳陷高庙子—中江地区既有宽广集中的曲流河复合河道,也有规模较小的河道,偶尔可见决口扇[3738]。下沙溪庙组沉积时期,川西坳陷高庙子—中江地区整体以曲流河沉积体系为主[40],发育多期河道,河道走向呈北东—南西向,且其湖侵和湖退的规模均较大,基本涵盖整个研究区。

    研究的目的层为侏罗系沙溪庙组(上沙溪庙组(J2s)和下沙溪庙组(J2x))。上沙溪庙组(J2s)由十几套砂岩、泥岩韵律层组合叠加而成[41]。J2s上部主要发育褐灰色、绿灰色细粒岩屑砂岩、粉砂岩与棕、紫棕色泥岩、粉砂质泥岩等厚互层;J2x下部主要发育浅灰、灰白色中粒岩屑长石砂岩、细、中粒长石(富)岩屑砂岩夹棕、紫棕色泥岩,顶部为灰黑色页岩。

    前人已经针对川西坳陷侏罗系沙溪庙组创建了复杂“窄”河道砂岩气藏地震资料目标处理关键技术及实施流程,实现了致密岩性气藏地震资料高效高品质处理,为河道砂岩的边界识别、分期次刻画及精细定量描述等夯实了资料基础[33]。此外,在区域沉积相和单井小层对比基础上,通过波形分类相带预测技术、多属性融合相带描述技术、时频域像素成像技术综合应用,开展井—震一体化河道沉积层序识别,从时空域、时频域精细刻画河道外形及内幕信息,创建了多域多属性相带刻画技术,为河道砂岩边界的刻画和沉积微相的编制提供重要支撑[33]。研究区侏罗系沙溪庙组共划分15套小层,研究区侏罗系沙溪庙组主要发育曲流河河道砂体[42]。依据前人刻画的河道砂体展布地震属性图(图1c),可见该区目的层河道砂体形态多以窄条带状为主,表现出多期河道侵蚀叠加发育的特征[33]

  • 前人研究认为研究区侏罗系沙溪庙组主要发育曲流河沉积环境[42]。由研究区野外剖面可见典型的河流相“二元结构”,研究区砂泥比值较小,泥岩厚度大[42]。此外,由研究区岩性剖面垂向上呈典型的“泥包砂”正旋回沉积特征(图2)。在此基础上,利用取心井及岩心化验分析资料开展颜色特征、岩石学特征、粒度特征、沉积构造特征、测井响应特征等研究,进一步明确了研究区曲流河沉积环境,并精细划分了研究区目的层曲流河沉积的微相类型。曲流河沉积亚相划分为河床亚相、堤岸亚相、河漫亚相和废弃河道亚相[4345]。结合研究区的沉积相标志,研究区河床亚相可识别出边滩沉积微相和河道充填沉积微相,堤岸亚相可识别出天然堤沉积微相和决口扇沉积微相,河漫亚相可识别出洪泛平原沉积微相,此外,研究区还可识别出废弃河道。这为开展砂体构型研究奠定了基础。

    Figure 2.  Sequence stratigraphic column from the Jurassic Shaximiao Formation on the eastern slope of the Western Sichuan Depression

  • 按照Miall[46]提出的界面级次划分方案,基于岩心和野外剖面,研究区目的层可划出0~5级构型界面。其中,通过岩心观察可见0~2级构型界面,通过野外剖面观察可见3~5级构型界面。由于沉积和成岩作用差异,会形成不同类型的构型界面[4748]。不同级次的构型界面对流体的遮挡能力不同,但其岩性具有较大的相似性[48]。基于岩心和测井等资料,结合前人研究成果,分析认为研究区目的层主要发育物性界面和泥质界面两类,其次局部发育钙质界面。本文研究区泥质界面主要形成于3级及以上级次,偶尔可见泥砾[48]。物性界面主要形成于3级,该类界面在测井曲线上表现为稍有回返的特征,在岩心上可以观察到粒度突变现象[48]。基于取心井典型标志面(即洪泛面、冲刷面以及岩相转变面等)的识别与划分,结合岩心物性数据,采用高分辨率层序地层学方法,在单井剖面上划分出3级物性界面、3级泥质界面、4级泥质界面和5级洪泛泥岩界面(图3)。选取典型测井响应参数建立了3级物性界面、3级泥质界面和4级泥质界面的测井识别标准(表1)。结合上述标准,对研究区其他单井的构型界面类型识别结果如图4所示。

    Figure 3.  Different levels of architecture boundaries from the individual wells

    不同级次构型界面类型GR/APIAC/(μs/m)CNL/%DEN/(g/cm3RD/(Ω·m)
    3级物性界面45.38~57.1466.51~71.886.07~9.642.34~2.4023.04~45.86
    3级泥质界面60.88~72.7262.66~66.706.00~10.152.44~2.4725.55~41.32
    4级泥质界面66.92~98.4562.16~65.937.92~10.822.43~2.4822.02~35.24

    Table 1.  Logging identification standard of 3’ and 4’level architecture boundaries in the study area

    Figure 4.  Sand body connection from the Shaximiao Formation in the study area

  • 结合前期已有研究成果[3536],基于研究区17口取心井的岩心观察及描述可知研究区目的层主要发育中—细砂岩、粉砂岩和泥岩等岩性,发育块状层理、大型板状交错层理、小型板状交错层理、平行层理、水平层理5类层理。在前期研究基础上[3536],结合岩心素描图(图5)详细梳理了研究区发育的岩相基本类型,归纳为3大类,11小类(图5)。在本次砂体构型研究中,泥岩相不是主要研究对象,故未详细分析。仅对砂岩相和粉砂岩相的物性(即孔隙度和渗透率)进行了统计对比分析,可见块状层理中砂岩和板状交错层理中砂岩的物性最好[35]。研究区单砂体在垂向上发育多种岩相类型,基于单砂体中上述9类单一岩相在垂向上的变化(图6),进一步将岩相组合归纳为块状层理砂岩+平行层理砂岩岩相组合、块状层理砂岩+板状交错层理砂岩岩相组合、板状交错层理砂岩+平行层理砂岩岩相组合、含水平层理泥质粉砂岩岩相组合4大类(图7,8),其中发育块状层理砂岩+板状交错层理砂岩岩相组合的砂岩物性最好[3536]

    Figure 5.  Core sections from wells in the study area

    Figure 6.  Lithofacies in the study area

    Figure 7.  Model of lithofacies associations in the study area

    Figure 8.  Individual well profiles of different lithofacies associations

    统计分析了研究区边滩沉积、河道充填沉积、天然堤沉积、决口扇沉积、洪泛平原沉积和废弃河道沉积等沉积微相中发育的岩相及其组合类型及特征,表明边滩沉积微相主要发育块状层理砂岩+板状交错层理砂岩岩相组合,其次是板状交错层理砂岩+平行层理砂岩岩相组合,泥质含量低,块状砂岩发育且粒度粗;河道充填沉积微相主要发育板状交错层理砂岩+平行层理砂岩岩相组合,其次是块状层理砂岩+平行层理砂岩岩相组合,泥质含量较低,厚层砂岩发育,中细粒砂岩交互变化;决口扇沉积微相可见水平层理泥质粉砂岩岩相和板状交错层理细砂岩岩相,薄层细粉砂岩发育,泥质含量较高;天然堤沉积微相可见水平层理泥质粉砂岩岩相和板状交错层理细砂岩岩相,该类沉积微相中薄粉砂岩夹泥岩发育,泥质含量高;废弃河道沉积微相可见水平层理泥质粉砂岩岩相,偶见板状交错层理细砂岩岩相,泥质含量高;洪泛平原沉积微相可见水平层理泥质粉砂岩岩相,水平层理泥岩岩相和块状层理泥岩岩相,洪泛泥岩发育。

  • 在构型界面级次约束下,结合沉积微相单元发育的岩性和岩相及其组合类型,将研究区构型单元划分为:边滩构型单元(HPB)、河道充填沉积构型单元(HCH)、决口扇构型单元(MCS)、天然堤构型单元(MCL)、废弃河道构型单元(MCA)和洪泛平原构型单元(MFM)。基于构型单元垂向叠置样式,将研究区发育的主要构型单元组合划分为6类(图9)。基于上述构型单元组合垂向序列沉积特征,可以将HPB+HPB归纳为均一型组合(Type I);将HPB+HCH、HPB+HCH+MCS、HPB+HCH+MCL和HPB+HCH+MCS+MCA归纳为均一+复合型组合(Type II);将HPB+MFM归纳为复合型组合(Type III)。发育Type I的砂岩厚度大,粒度粗,发育块状层理砂岩+板状交错层理砂岩岩相组合,块状层理砂岩+平行层理砂岩岩相组合次之,砂岩孔渗高;发育Type II的砂岩厚度较大,粒度呈中—细粒,发育板状交错层理砂岩+平行层理砂岩岩相组合;发育Type III的砂岩厚度小,泥岩厚度大,可见含水平泥质粉砂岩岩相组合,砂岩孔渗低(图9)。由图10可见中江—回龙地区整体Type I型组合相对最发育。此外通过纵向对比可见沙三段整体上Type I和Type II相对最为发育(图11)。

    Figure 9.  Individual well profiles of different architecture⁃element assemblies in the study area

    Figure 10.  Distribution of different architecture⁃element assemblies in the Shaximiao Formation of the study area

    Figure 11.  Frequency of different architecture⁃element assemblies in each member of the Shaximiao Formation in the study area

  • 研究区侏罗系沙溪庙组砂岩储层层内非均质性整体很强。其中沙三段和沙二段的层内非均质性最强;沙一段的层内非均质性较强。研究区侏罗系沙溪庙组砂岩储层层间非均质性整体为:弱—中等。其中,沙一段的层间非均质性最强,沙二段较强,沙三段最弱。研究区侏罗系沙溪庙组平面非均质性整体为:中等—强。其中,沙二段平面非均质性最强,其次是沙一段,沙三段最弱。研究区中江—回龙地区储层非均质性整体相较最弱(图12)。本文主要采用渗透率非均质性评价参数来定量评价发育不同构型的砂体非均质性强弱,结果表明发育Type I的储层非均质性相对较弱,发育Type II的储层非均质性较强,发育Type III的储层非均质性最强(图13)。5级构型界面控制下发育的Type III主要控制研究区平面非均质性,4级构型界面控制下发育的Type I和Type II主要控制研究区层间非均质性。本文同样采用渗透率非均质性参数来定量评价不同岩相非均质性强弱,对发育不同岩相的砂岩渗透率非均质性评价参数进行统计分析,可见发育块状层理中—细砂岩岩相和大型交错层理中—细砂岩岩相的储层非均质性相对较弱,发育小型板状交错层理中—细砂岩岩相的储层非均质性较强,发育平行层理中—细砂岩岩相的储层非均质性强,发育水平层理泥质粉砂岩岩相的储层非均质性很强(图14)。

    Figure 12.  Permeability variation coefficient of the First, Second, and Third members of the Jurassic Shaximiao Formation in the study area

    Figure 13.  Statistics on the permeability heterogeneity evaluation parameters of sandstones with different architecture⁃elements and their assemblies

    Figure 14.  Statistics on the permeability heterogeneity evaluation parameters of sandstones with different lithofacies and bedding

  • 5级构型界面控制下主要表现为大段泥岩发育,物性差,导致该类砂岩储层非均质性很强。研究区目的层5级构型界面主要控制了河道砂岩储层平面非均质性。由前文研究表明研究区目的层平面非均质性整体为:中等—强。研究区目的层5级构型界面控制下主要是发育洪泛平原等沉积微相单元,不渗透MFM构型单元,Type III型的堆叠式砂体、侧叠式砂体以及孤立式砂体。如G8井主要发育Type III型的堆叠式砂体(图15a),G9井主要发育Type III型的侧叠式砂体(图15b),而J4井(图15c)主要发育Type III型的孤立式砂体。其中,发育Type III型的堆叠式砂体的储层砂岩厚度较大,泥岩厚度较大,储层非均质性较强;发育Type III型的侧叠式砂体的储层砂岩厚度较小,泥岩厚度较大,储层非均质性强;发育Type III型的孤立式砂体的储层砂岩厚度很小,泥岩厚度很大,储层非均质性最强。

    Figure 15.  Individual well profiles of different types of sand bodies with the Type III architecture⁃element assemblies in the study area

    基于前文5级构型界面控制下的储层非均质性分析,结合前人研究成果,认为基准面变化和构造沉降对5级构型界面控制下的储层非均质性影响最大。基准面上升,可容纳空间与沉积物供给比大,砂泥比值小,大段泥岩越发育,易发育Type III型。然而随着物源供给量的变化,会呈现不同的砂体叠置样式。当物源供给量较充足时,发育Type III型的堆叠式砂体,储层物性较差,导致该类砂岩储层非均质性较强;随着物源供给量逐渐降低,水流处于次饱和输砂状态,水流以切割上期沉积砂体为主,易发育Type III型的侧叠式砂体,储层物性差,砂岩储层非均质性强;当物源供给量很低时,水流处于不饱和输砂状态,易发育Type III型的孤立式砂体,储层物性最差,砂岩储层非均质性最强(图16)。

    Figure 16.  Stacking of vertical and horizontal sand bodies under the control of the 5th⁃order architectural interface of the target layer in the study area

  • 4级构型界面控制下主要表现为厚层砂岩和薄层泥岩发育,使得储层物性较好,导致该类砂岩储层非均质性相对较强。研究区目的层4级构型界面主要控制了河道砂岩储层层间非均质性。前文研究表明,研究区目的层层间非均质性整体为弱—中等。研究区4级构型界面控制下主要发育Type I和Type II型(图17)。其中,发育Type II型的储层砂岩厚度较大且泥岩厚度较小,储层非均质性较强(图4b);发育Type I的储层砂岩厚度大且泥岩厚度小,储层非均质性相对较弱(图4a)。

    Figure 17.  Types of architecture⁃element assemblies controlled by the 4’level architecture boundary in the study area(modified from references [36,49])

    基于前文4级构型界面控制下的储层非均质性分析,结合前人研究成果,认为地形坡度和侵蚀强度对4级构型界面控制下的储层非均质性影响最大。研究区中江地区的地形坡度小且河道弯度大,河道侧向侵蚀作用强[36],则易发育Type I型,该类构型的砂岩物性好,从而导致4级构型界面控制下砂岩储层非均质性弱;而高庙子地区的地形坡度大且河道弯度小,河道垂向侵蚀作用强[36],则易发育Type II型,该类构型的砂岩物性较差,导致4级构型界面控制下砂岩储层非均质性较强。

  • 研究区目的层3级构型界面主要控制了河道砂岩储层层内非均质性。前文研究表明,研究区目的层层内非均质性整体很强,3级构型界面控制下发育侧积体构型。其中,侧积体构型类型细分为3小类(图18)。如J3井,垂向上发育多个物性好的侧积体(图4a、图19c);J9井,垂向上发育多个物性变化的侧积体,且自下而上砂岩物性由好变差再变好(图19c)。其中,发育物性整体较好的侧积体构型的储层非均质性弱;发育物性由好变差和由差变好的侧积体构型的储层非均质性相对较强。

    Figure 18.  Types of architecture⁃element assemblies controlled by the 3’level architecture boundary in the study area

    Figure 19.  The mode for the control of sand body architecture on reservoir heterogeneity under 3’ to 5’ level architecture boundary of the target layer in the study area

    基于前文3级构型界面控制下的储层非均质性分析,结合前人研究成果,认为水动力条件、河道弯度、河道迁移程度、沉积载荷、流量及成岩作用会影响3级构型界面控制下的储层非均质性。沉积环境水动力条件的强度变化会导致侧积体单砂体物性差异变化,沉积环境水动力条件较强,沉积物粒度越粗,砂岩中块状层理、板状交错层理越发育,则砂岩物性越好,导致该类砂岩储层非均质性越弱。河道弯度越大,则砂岩分选性好、成分成熟度高且高孔渗的侧积体越发育,从而导致储层的非均质性弱。河道迁移程度大,侧积体越发育,从而导致储层的非均质性弱。沉积物负载指数小、年平均流量大,侧积体越发育,从而导致储层的非均质性弱。发育块状层理+板状交错层理岩相组合的砂岩压实弱且溶蚀强,使得其孔隙结构好[35],物性好,导致储层非均质性弱。发育平行层理岩相组合的砂岩溶蚀作用较强,使得大量新的溶蚀孔形成,但由于其压实较强,发育少量粒间孔,使得其孔喉连通性差且孔喉半径小[35],砂岩物性较差,导致储层非均质性相对较强。发育水平层理岩相组合的砂岩压实强且泥质含量高,成岩流体中的钙质和硅质释放到相邻的砂岩中,使得相邻砂岩胶结作用增强,孔隙不发育,砂岩物性很差[41],导致储层非均质性很强。综上所述,沉积环境水动力条件持续较强且稳定,沉积物负载指数小、年平均流量大,河道弯度大,则易发育物性整体较好的侧积体构型;沉积环境水动力条件较强且不稳定,后期由于破坏性成岩作用,则易发育由好变差的侧积体构型;沉积环境水动力条件不稳定,逐渐增强,后期由于建设性成岩作用,则易发育由差变好的侧积体构型。

  • 基于上述砂体构型类型及特征研究、不同级次构型界面控制下的储层非均质性特征分析以及不同级次构型界面下储层非均质性控制因素的探讨,总结了不同级次界面约束下构型对储层非均质性的控制模式(图19)。其中5级构型界面主要控制了研究区目的层河道砂岩储层平面非均质性强度。5级构型界面控制下主要发育Type III型的堆叠式砂体、侧叠型式砂体以及孤立式砂体。构造沉降,基准面上升,易发育Type III型。当物源供给量较充足时,易发育Type III型的堆叠式砂体,导致储层非均质性较强;随着物源供给量逐渐降低时,水流处于次饱和输砂状态,易发育Type III型的侧叠式砂体,导致储层非均质性强;当物源供给量很低时,水流处于不饱和输砂状态,易发育Type III型的孤立式砂体,导致储层非均质性最强。4级构型界面主要控制了研究区目的层河道砂岩储层层间非均质性强度。4级构型界面控制下主要发育Type I和Type II型。其中,远离物源,地形坡度小,河道侧向侵蚀作用强,块状交错层理岩相+板状交错层理岩相组合发育,易发育Type I型,发育该类构型的砂岩物性好,从而导致储层非均质性弱。近源,地形坡度大,河道垂向侵蚀作用强,板状交错层理岩相+平行层理岩相组合发育,易发育Type II型,发育该类构型的砂岩物性较差,从而导致储层非均质性较强。3级构型界面主要控制了研究区目的层河道砂岩储层层内非均质性。3级构型界面控制下主要发育物性整体较好、物性由好变差及物性由差变好的侧积体构型。沉积环境水动力条件较强,河道弯度大、沉积负载指数小、流量大,压实弱、溶蚀强、孔隙结构好(即孔径及孔喉半径大)的块状层理岩相+板状交错层理岩相组合发育,则孔隙度和渗透率高的侧积体越发育,从而导致砂岩储层非均质性很弱。

  • (1) 在构型界面级次约束下,结合沉积微相单元发育的岩性和岩相及其组合类型,将研究区构型单元划分为边滩构型单元(HPB)、河道充填沉积构型单元(HCH)、决口扇构型单元(MCS)、天然堤构型单元(MCL)、废弃河道构型单元(MCA)和洪泛平原构型单元(MFM)。基于构型单元垂向叠置样式将构型单元组合划分为6类,在上述构型单元组合垂向序列沉积特征,将构型单元组合进一步划分为均一型组合(Type I)、均一+复合型组合(Type II)、复合型组合(Type III)3大类。研究区中江—回龙地区整体上Type I型组合相对最为发育,且沙三段整体上Type I型组合和Type II型组合相对最为发育。

    (2) 研究区侏罗系沙溪庙组层内非均质性整体很强;层间非均质性整体为:弱—中等;平面非均质性整体为:中等—强。研究区中江—回龙地区储层非均质性整体相对最弱。发育Type I型的储层非均质性相对较弱,发育Type II型的储层非均质性较强,发育Type III型的储层非均质性最强。发育块状层理砂岩相的储层非均质性弱,发育板状交错层理砂岩相的储层非均质性较弱,发育平行层理砂岩相和水平层理泥质粉砂岩相的储层非均质性强。

    (3) 明确了不同级次构型界面约束下构型对储层非均质性的控制作用,其中5级构型界面控制了储层平面非均质性,其受控于基准面上升和构造沉降;4级构型界面控制了储层层间非均质性,其受控于地形坡度和侵蚀作用;3级构型界面控制了储层层内非均质性,其受控于水动力条件、河道弯度、河道迁移程度、沉积载荷、流量及成岩作用。建立了3~5级构型界面控制下构型对储层非均质性的控制模式。

Reference (49)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return