Advanced Search
Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents

XIE TongTong, PENG XiaoTong, LIU ShuangQuan, XU HengChao, XU WenJing. Geochemical Characteristics and Formation Mechanism of Sediments from the Challenger Deep in the Southern Mariana Trench[J]. Acta Sedimentologica Sinica, 2024, 42(3): 944-955. doi: 10.14027/j.issn.1000-0550.2022.104
Citation: XIE TongTong, PENG XiaoTong, LIU ShuangQuan, XU HengChao, XU WenJing. Geochemical Characteristics and Formation Mechanism of Sediments from the Challenger Deep in the Southern Mariana Trench[J]. Acta Sedimentologica Sinica, 2024, 42(3): 944-955. doi: 10.14027/j.issn.1000-0550.2022.104

Geochemical Characteristics and Formation Mechanism of Sediments from the Challenger Deep in the Southern Mariana Trench

doi: 10.14027/j.issn.1000-0550.2022.104
Funds:

The Strategic Priority Research Program of the Chinese Academy of Sciences XDB06020000

  • Received Date: 2022-07-27
  • Accepted Date: 2022-09-30
  • Rev Recd Date: 2022-08-29
  • Available Online: 2022-09-30
  • Publish Date: 2024-06-10
  • Objective To investigate the hadal sediments main type, geochemical characteristics and formation in the Challenger Deep of the southern Mariana Trench, Methods the mineralogical and geochemical analysis were uesd to study the sediments and altered basalt from north slope(overlying plate) and axis to the south slope(subduction plate) at the Challenger Deep of the Mariana Trench. Results and Conclusions The hadal sediments can be divided into four types: red deep-sea clay, siliceous sediments, micromanganese-rich sediments, and calcareous sediments. The red deep-sea clay is the most common type of hadal sediment, which contribute the most to subducted sediments. Major and trace element geochemical characteristics are similar to those of altered basalt of the oceanic crust, which imply that red clay is mainly derived from the basalt alteration of the subducted and overlying plates, rather than the volcanic and terrestrial inputs. Moreover, intensified organic matter diagenesis has an important influence on the geochemical properties of the hadal sediments, which is the main reason the Challenger Deep sediments have lower rare earth elements and enrich more micromanganese nodules than the adjacent deep-sea sediments.
  • [1] Blankenship-Williams L E, Levin L A. Living deep: A synopsis of Hadal Trench ecology[J]. Marine Technology Society Journal, 2009, 43(5): 137-143.
    [2] Jamieson A J, Fujii T, Mayor D J, et al. Hadal Trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
    [3] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394.
    [4] Nakanishi M, Hashimoto J. A precise bathymetric map of the world's deepest seafloor, Challenger Deep in the Mariana Trench[J]. Marine Geophysical Research, 2011, 32(4): 455-463.
    [5] Luo M, Algeo T J, Chen L Y, et al. Role of dust fluxes in stimulating ethmodiscus rex giant diatom blooms in the northwestern tropical Pacific during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 319-331.
    [6] 张金鹏,邓希光,杨胜雄,等. 马里亚纳海沟挑战者深渊南部7000m水深处发现硅藻化石软泥[J].地质通报, 2015, 34(12): 2352-2354.

    Zhang Jinpeng, Deng Xiguang, Yang Shengxiong, et al. Diatom ooze found in 7000m submarine area of Challenger Depth in Mariana Trench[J]. Geological Bulletin of China, 2015, 34(12): 2352-2354.
    [7] 朱坤杰,何树平,陈芳,等. 马里亚纳海沟南部海域沉积物的工程地质特性及其成因[J]. 地质学刊, 2015, 39(2): 251-257.

    Zhu Kunjie, He Shuping, Chen Fang, et al. Engineering geological characteristics and genesis of the sediments from the southern Mariana Trench [J]. Journal of Geology, 2015, 39(2): 251-257.
    [8] 王汾连,何高文,王海峰,等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质,2016,36(4): 67-75.

    Wang Fenlian, He Gaowen, Wang Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75.
    [9] 徐兆凯,李安春,蒋富清,等. 东菲律宾海沉积物的地球化学特征与物质来源[J].科学通报, 2008, 53(6): 695-702.

    Xu Zhaokai, Li Anchun, Jiang Fuqing, et al. Geochemical character and material source of sediments in the eastern Philippine Sea[J]. Chinese Science Bulletin, 2008, 53(6): 695-702.
    [10] Xiao C H, Wang Y H, Tian J W, et al. Mineral composition and geochemical characteristics of sinking particles in the Challenger Deep, Mariana Trench: Implications for provenance and sedimentary environment[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 157: 103211.
    [11] Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159.
    [12] Peng X T, Guo Z X, Du M R, et al.Past endolithic life in metamorphic ocean crust[J]. Geochemical Perspectives Letters, 2020, 14: 14-19.
    [13] Glud R N, Wenzhöfer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth[J]. Nature Geoscience, 2013, 6(4): 284-288.
    [14] Liu S Q, Peng X T. Organic matter diagenesis in hadal setting: Insights from the pore-water geochemistry of the Mariana Trench sediments[J].Deep Sea Research Part I:Oceanographic Research Papers, 2019, 147: 22-31.
    [15] 中华人民共和国国家质量监督检疫总局. GB/T 12763.8—2007海洋调查规范 第8部分:海洋地质地球物理调查[S]. 北京:中国标准出版社,2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 12763.8-2007Specifications for oceanographic survey—Part 8: Marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2008.
    [16] Du M, Peng X, Seyfried Jr W E, et al. Fluid discharge linked to bending of the incoming plate at the Mariana subduction zone[J]. Geochemical Perspectives Letters, 2019, 11: 1-5.
    [17] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
    [18] Deng Y N, Guo Q J, Liu C Q, et al. Early diagenetic control on the enrichment and fractionation of rare earth elements in deep-sea sediments[J]. Science Advances, 2022, 8(25): eabn5466.
    [19] Ren J B, Liu Y, Wang F L, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments[J]. Minerals, 2021, 11(2): 196.
    [20] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535-539.
    [21] Kashiwabara T, Toda R, Nakamura K, et al. Synchrotron X-ray spectroscopic perspective on the formation mechanism of REY-rich muds in the Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 2018, 240: 274-292.
    [22] Deng K, Yang S, Du J, et al. Dominance of benthic flux of REEs on continental shelves: Implications for oceanic budgets[J]. Geochemical Perspectives Letters, 2022, 22: 26-30.
    [23] Liao J L, Sun X M, Li D F, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments:LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 521: 58-68.
    [24] Liao J L, Chen J Y, Sun X M, et al. Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments[J]. Chemical Geology, 2022, 595: 120792.
    [25] Paul S A L, Volz J B, Bau M, et al. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific[J]. Geochimica et Cosmochimica Acta. 2019, 251: 56-72.
    [26] Çağatay M N, Erel L, Bellucci L G, et al. Sedimentary earthquake records in the Izmit Gulf, sea of Marmara, Turkey[J]. Sedimentary Geology, 2012, 282: 347-359.
    [27] McHugh C M, Kanamatsu T, Seeber L, et al. Remobilization of surficial slope sediment triggered by the A-D. 2011 Mw9 Tohoku-Oki earthquake and tsunami along the Japan Trench[J]. Geology, 2016, 44(5): 391-394.
    [28] Turnewitsch R, Falahat S, Stehlikova J, et al. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher- frequency (tidal, near-inertial) fluid dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 90: 125-138.
    [29] Karageorgis A P, Anagnostou C L, Kaberi H, et al. Geochemistry and mineralogy of the NW Aegean Sea surface sediments: implications for river runoff and anthropogenic impact[J]. Applied Geochemistry, 2005, 20(1): 69-88.
    [30] Wood D A, Mattey D P, Joron J L, et al. A geochemical study of selected samples from the basement cores recovered at sites447, 448, 449, 450, and 451, Deep Sea Drilling Project Leg 59[C]. Washington: US Government Printing Office, 1981: 743-752.
    [31] Jiang Z Z, Sun Z L, Liu Z Q, et al. Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep[J]. Journal of Oceanology and Limnology, 2019, 37(3): 998-1009.
    [32] 肖春晖,王永红,林间,等. 马里亚纳”沟—盆”深水沉积环境稀土元素特征与物源约束[J].海洋地质与第四纪地质, 2021, 41(1): 102-114.

    Xiao Chunhui, Wang Yonghong, Lin Jian, et al. Characteristics of rare earth elements in deep-water sediments in Mariana “Trench-Basin” system and their provenance constraints[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 102-114.
    [33] Migdisov A A, Miklishanski A Z, Saveliev B V, et al. Neutronactivation analysis of rare earth elements and some other trace elements in volcanic ashes and pelagic clays Deep Sea Drilling Project Leg 59[M]//Kroenke L, Scott R. Initial reports of the deep sea drilling project. Washington: U.S. Government Printing Office, 1981: 653-668.
    [34] 田丽艳,赵广涛,陈佐林,等. 马里亚纳海槽热液活动区玄武岩的岩石地球化学特征[J]. 青岛海洋大学学报, 2003, 33(3): 405-412.

    Tian Liyan, Zhao Guangtao, Chen Zuolin, et al. The preliminary study of petrological geochemistry of basalts from hydrothermal activity regions, Mariana Trough[J]. Journal of Ocean University of Qingdao, 2003, 33(3): 405-412.
    [35] Bischoff J L, Piper D Z. Marine geology and oceanography of the Pacific manganese nodule province[M]. New York: Plenum Press, 1979: 397-436.
    [36] 张富元,章伟艳,张霄宇,等. 深海沉积物分类与命名的关键技术和方案[J]. 地球科学:中国地质大学学报, 2012, 37(1): 93-104.

    Zhang Fuyuan, Zhang Weiyan, Zhang Xiaoyuet al. Key technique and scheme of classification and nomenclature for deep sea sediments[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(1): 93-104.
    [37] Luo M, Gieskes J, Chen L Y, et al. Sources, degradation, and transport of organic matter in the New Britain shelf‐trench continuum, Papua New Guinea[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6):1680-1695.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(5)

Article Metrics

Article views(112) PDF downloads(29) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-07-27
  • Revised:  2022-08-29
  • Accepted:  2022-09-30
  • Published:  2024-06-10

Geochemical Characteristics and Formation Mechanism of Sediments from the Challenger Deep in the Southern Mariana Trench

doi: 10.14027/j.issn.1000-0550.2022.104
Funds:

The Strategic Priority Research Program of the Chinese Academy of Sciences XDB06020000

Abstract: Objective To investigate the hadal sediments main type, geochemical characteristics and formation in the Challenger Deep of the southern Mariana Trench, Methods the mineralogical and geochemical analysis were uesd to study the sediments and altered basalt from north slope(overlying plate) and axis to the south slope(subduction plate) at the Challenger Deep of the Mariana Trench. Results and Conclusions The hadal sediments can be divided into four types: red deep-sea clay, siliceous sediments, micromanganese-rich sediments, and calcareous sediments. The red deep-sea clay is the most common type of hadal sediment, which contribute the most to subducted sediments. Major and trace element geochemical characteristics are similar to those of altered basalt of the oceanic crust, which imply that red clay is mainly derived from the basalt alteration of the subducted and overlying plates, rather than the volcanic and terrestrial inputs. Moreover, intensified organic matter diagenesis has an important influence on the geochemical properties of the hadal sediments, which is the main reason the Challenger Deep sediments have lower rare earth elements and enrich more micromanganese nodules than the adjacent deep-sea sediments.

XIE TongTong, PENG XiaoTong, LIU ShuangQuan, XU HengChao, XU WenJing. Geochemical Characteristics and Formation Mechanism of Sediments from the Challenger Deep in the Southern Mariana Trench[J]. Acta Sedimentologica Sinica, 2024, 42(3): 944-955. doi: 10.14027/j.issn.1000-0550.2022.104
Citation: XIE TongTong, PENG XiaoTong, LIU ShuangQuan, XU HengChao, XU WenJing. Geochemical Characteristics and Formation Mechanism of Sediments from the Challenger Deep in the Southern Mariana Trench[J]. Acta Sedimentologica Sinica, 2024, 42(3): 944-955. doi: 10.14027/j.issn.1000-0550.2022.104
  • 深渊(hadal trenches),亦称海斗深渊,专指海洋中深度大于6 000 m的区域。主要位于大洋板块向大陆板块俯冲形成的海沟地带,是海洋中最深的地方。深渊区以压力大、构造活跃、地震密集、生命奇特为特点,代表了地球上非常独特的海洋极端环境[1]。深渊孕育了地球上最神秘的生态系统,有着人类至今为止知之甚少的环境特征及专属性物理海洋、地球化学现象[2]。深渊俯冲带特殊之处在于它位于板块碰撞与消亡的边界,是地表物质俯冲进入地球内部最重要的通道之一。因此,研究深渊区板块俯冲及伴随的物质循环和能量交换过程一直是地球科学领域的前沿和热点,而深渊沉积物作为俯冲输入的物质之一,其组成与性质对于俯冲带物质循环的机理和通量具有重要的意义[3]

    马里亚纳海沟作为当前深渊科学研究中的热点区域,是太平洋板块自东向西俯冲至菲律宾板块形成的一条向东凸起、主体呈近南北走向的海沟。它北起硫磺列岛,西南至雅浦岛附近,全长2 550 km,平均宽70 km,大部分水深超过8 km[4]。其南段的“挑战者”深渊是全球最深的海域,最大水深约10 909 m。基于获取的零星样品,前人对马里亚纳海沟“挑战者”深渊区的沉积物性质进行了初步研究。发现该区沉积物以远洋—半远洋沉积为主,黏土含量可超过70%[57],同时含15%~30%的生物残渣(放射虫、硅藻席等)和5%~20%的碎屑矿物[8]。认为深渊沉积物主要来源于周围火山物质和陆源风尘物质的输入[912]。而最新的研究发现,深渊区广泛分布的蚀变基岩可能为深渊沉积物的形成提供了潜在的物质来源[12]。此外,位于板块碰撞区的深渊俯冲带,构造活动强烈,频发的海底滑坡或海底泥石流事件将周边区域的沉积物携入深渊区,使得深渊区成为潜在的有机质沉降中心,伴随着活跃的有机质早期成岩作用[1314]。强烈的有机质成岩过程通常对沉积物的物质组成和性质有着重要的影响,然而这一过程对“挑战者”深渊区沉积物的影响鲜为人知。

    受限于深渊采样技术的限制,当前对“挑战者”深渊沉积物的研究主要集中在南坡少量的站位,对于其他区域(包括最深点和北坡)沉积物性质的了解十分有限,其物质来源和成因机制还存在争议。利用“奋斗者”号与“蛟龙”号载人潜水器等先进的取样设备,在马里亚纳海沟“挑战者”深渊区域从北坡、轴部与南坡共采集了16个站位沉积物样品。采样站位水深5 464~10 908 m,覆盖了整个“挑战者”深渊区。基于形态学、矿物学和地球化学分析,在水平与垂直两个层面上,对马里亚纳海沟“挑战者”深渊沉积物的类型、矿物组成及地球化学特征进行了系统研究,以期更为全面地揭示“挑战者”深渊沉积物的特征、物质来源及成因机制。

  • 采样点位于马里亚纳海沟南部的“挑战者”深渊区,取样方式有“奋斗者”号载人潜水器搭载Push core取样器、“蛟龙”号载人潜水器搭载Push core取样器、船载重力柱、箱式取样器和着陆器。取样站位覆盖了北坡、海沟轴部以及南坡三个区域(图1)。具体采样信息见表1

    Figure 1.  Study area and sample locations

    航次站位取样方式岩心长度/cm水深/m纬度N/(°)经度E/(°)
    DY37JL114PC(“蛟龙”号)265 46410°51.08'141°57.02'
    JL115325 49210°51.05'141°57.20'
    JL120146 70311°39.92'142°14.89'
    JL121125 56911°49.80'142°06.87'
    JL122266 33010°53.37'142°13.56'
    TS01B01BC586 98010°59.38'141°57.87'
    B05BC607 06110°55.46'141°47.96'
    B06BC607 14311°36.13'142°13.70'
    B09BC607 12110°59.65'141°59.65'
    B10BC608 63811°11.70'141°48.70'
    TS03GT01GC3618 63811°11.69'141°48.70'
    GT02GC2169 37311°11.70'141°48.70'
    LD11Lander2010 90311°19.80′142°12.00′
    LD14Lander1410 90811°19.80′142°11.40′
    TS21FDZ053PC(“奋斗者”号)3610 80111°19.20′142°09.60′
    FDZ065表层8 24711°08.63′141°49.22′

    Table 1.  Sample information (PC. push core, BC. box core, GC. gravity core, LD. lander)

  • 取少量的沉积物样品,置于载玻片上,滴1~2滴超纯水,用牙签涂匀烘干,盖上盖玻片。在中国科学院深海科学与工程研究所深海地质与地球化学研究室,利用徕卡2700偏光显微镜和Leica LED5000 SLI体视镜观察主要矿物组成。

  • FDZ065为抓取的表层沉积物,其他15个站位为柱状沉积物,取样间隔为2~3 cm不等。沉积物样品冷冻干燥之后,研磨至200目,在中科院地球化学研究所完成主微量元素分析。主量元素分析使用仪器为波长色散型X射线荧光光谱仪(Thermo Fisher, ARL Perform’X 4200),采用熔片法制样,标准样品为GSR12和GSR13。测试内容包含SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O、MnO、P2O5、TiO2及烧失量(LOI)。微量元素分析仪器为等离子体质谱仪(Analytikjena,PlasmaQuant MS Elite),采用高温高压封闭溶样内标法进行样品溶解,HNO3溶液进行溶样。

  • 选取14个站位(不包括GT01和FDZ065)10 cm范围内表层沉积物进行X射线衍射(X-Ray Diffrac⁃ tion,XRD)测试分析,取样点间隔为2~3 cm不等,每份样品含量约5 g;GT01重力柱样品取样点间隔为3 cm,每份约5 g;FDZ065站位沉积物为表层沉积物,取5 g进行测试。沉积物样品通过真空冷冻干燥,并在玛瑙钵中碾磨至200目。XRD分析在中国科学院广州地球化学研究所Bruker D8 Advance X射线衍射仪上进行,扫描范围3°~85°。采用HighScore软件进行定性以及半定量分析。

  • 根据海洋调查规范[15],将马里亚纳海沟深渊沉积物分为褐红色深海黏土质沉积物、硅质生物软泥、自生沉积物(富微锰结核)和钙质生物软泥四类(图2)。同时XRD结果表明(图3),除钙质生物软泥之外的其他三种沉积物中,检测到的矿物类型包括黏土类矿物(绿泥石和伊利石等)、长石、辉石、磁铁矿、石英/无定形二氧化硅以及沸石等,但不同类型沉积物在主要矿物丰度上有所差异。不同类型沉积物的特点及分布情况详情如下。

    Figure 2.  Microscopic photographs of different types of sediment

    Figure 3.  Typical X⁃ray diffraction (XRD) spectra of different sediment types

    第一类为褐红色深海黏土质沉积物(图2a),镜下可见大量黏土矿物以及少量蚀变碎屑矿物,矿物成分主要为黏土类矿物(绿泥石、高岭石、伊利石)、石英、辉石类(透辉石、顽火辉石)、钠长石、磁铁矿与钙十字沸石等矿物(图3d)。沉积物中蚀变碎屑组分高于其他类型沉积物,同时含有少量水烃锰矿。该类沉积物在深渊区南坡、轴部及北坡均有分布,是深渊沉积物的主要类型。

    第二类为硅质生物软泥(图2b),典型样品为JL121。显微镜观察可见大量硅藻碎屑,含量超过50%,其主要矿物成分为无定型SiO2和钙长石(图3b),蚀变碎屑矿物及黏土矿物含量相对较低。硅质生物软泥主要分布在深渊区域的北坡和轴部。

    第三类为自生沉积物(富微锰结核)(图2c),可见明显的黑色微锰结核分布,其矿物组分主要为钡镁锰矿和水烃锰矿(图3c),含有少量黏土矿物和蚀变碎屑矿物。该类型沉积物主要分布在靠近深渊轴部沉积物中的富锰黑色纹层中。

    第四类为钙质生物软泥(图2d),主要由钙质生物微化石组成,CaO含量近40%,主要矿物成分为方解石(图3a),该类型主要分布在深渊区轴部区域。

  • 1) 表层沉积物平面分布特征

    15个站位的表层沉积物取自沉积柱上层10 cm,其主量元素分布情况如表2所示。整体来看,南坡主量元素含量略高于北坡和轴部。JL121站位表层沉积物为硅质生物碎屑类,SiO2含量大于70%,其他站位SiO2含量则介于21.65%~58.11%。采自“挑战者”深渊FDZ065站位的沉积物为钙质生物碎屑,CaO含量约为40%。除FDZ065之外的其余站位中,TiO2、CaO和Al2O3具有较好的正相关性。南坡JL122、JL115、JL114三个站位Mn含量明显富集,表明其可能受到流体活动所影响[16]。离轴部越近,沉积物Mg含量越高,暗示轴部可能有超基性岩蚀变物质的贡献。

    站位到轴部距离/kmAl2O3CaOFe2O3K2OMgOMnONa2OP2O5SiO2TiO2
    南坡
    JL122-527.932.3915.734.606.072.743.790.4644.390.64
    JL115-489.132.8410.782.606.801.254.790.4347.930.74
    TS01-B01-479.112.7413.901.685.441.5511.510.2145.840.77
    JL114-469.522.9511.273.686.651.463.500.5148.990.87
    TS01-B09-368.622.5812.211.537.141.169.800.2048.100.82
    TS01-B06-357.422.4711.251.494.940.5918.110.1139.730.78
    TS01-B05-32.59.683.1712.001.798.020.905.480.2152.860.93
    轴部
    TS03-GT02010.482.6412.931.7810.590.971.910.2650.440.94
    TS01-B1009.742.1712.211.556.550.704.310.1751.330.86
    FDZ05309.281.716.221.675.430.466.0356.740.53
    FDZ06503.6239.572.740.531.690.252.2715.650.28
    LD1100.080.020.100.010.090.010.110.480.01
    LD1400.060.020.090.010.070.010.190.400.01
    北坡
    JL1203610.272.5511.071.127.300.633.350.2453.250.70
    JL121533.081.483.212.982.560.133.170.0874.250.31

    Table 2.  Average content of major elements in the top 10 cm of surface sediments (%)

    2) GT01岩心样品垂向分布特征

    GT01岩心全长361 cm。根据岩心剖面特征,将其分为顶部(0~100 cm)、中部(100~200 cm)和底部(200~361 cm)三个部分进行垂直分布特征的讨论(表3)。总体来说,GT01沉积物中SiO2含量较高,但SiO2含量在不同层位有较大差别。底部褐红色黏土层SiO2的平均含量为53.78%,中部平均为62.86%,位于顶部的硅质软泥层则高达67.32%。随着深度的增加,SiO2和MnO的含量逐渐减小,而Fe2O3、Al2O3、MgO、CaO、K2O、P2O5及TiO2则随着深度增加逐渐增大。

    成分顶部(0~100 cm,n=34)中部(100~200 cm,n=34)底部(200~361 cm,n=53)
    含量范围平均值含量范围平均值含量范围平均值
    SiO259.07~73.9967.2754.16~76.0562.8650.71~65.8053.78
    Al2O32.60~7.074.492.54~8.846.416.73~11.089.96
    Fe2O33.47~8.995.813.30~9.997.717.77~12.8711.55
    MgO2.93~8.394.892.98~10.426.715.77~11.978.86
    CaO0.65~1.841.210.80~2.331.791.77~2.962.56
    K2O0.58~1.781.140.77~1.931.551.65~2.391.97
    P2O50.06~0.160.100~0.230.150~0.440.28
    MnO0.06~5.101.170.07~3.530.410.16~3.380.97
    TiO20.20~0.780.480.29~0.860.640.64~1.020.91
    注:n代表样品数量。

    Table 3.  Range of main quantitative elements in various positions of GT01 samples (%)

  • 1) 表层沉积物平面分布特征

    马里亚纳海沟深渊区表层沉积物微量元素蜘蛛网图,采用原始地幔标准化方法绘制[17]图4a)。表层沉积物10 cm范围内微量元素含量平均值大部分高于南坡新鲜玄武岩(图4a)。同时,从北坡、轴部到南坡,沉积物中微量元素含量依次递增,而南坡沉积物微量元素含量则随着深度的增加而递减。南坡所有站位沉积物微量元素含量均低于南坡不同程度蚀变玄武岩,高于北坡蚀变玄武岩。北坡和轴部的沉积物则低于北坡蚀变玄武岩。总体而言,深渊表层沉积物呈现出与不同蚀变程度玄武岩较为一致的分布特征,富集大离子亲石元素,高场强元素分布较为平稳。

    Figure 4.  (a) Spider web diagram of trace elements in surface sediments from various sites; (b) rare earth element (REE) distribution diagrams of sediments from various sites; comparative data: basalt, completely altered basalt, and partially altered basalt[17]; zeolite type altered basalt[13]; and REE⁃rich sediment in Pacific Ocean [18]

    马里亚纳海沟深渊沉积物稀土元素配分图采用球粒陨石标准化绘制(图4b)。沉积物稀土元素总量(∑REE)介于5~254.2 μg/g,所有站位呈现轻稀土富集,重稀土分异程度较低,具有明显Eu负异常、Ce无异常或微弱负异常的特征。这些站位整体相似的稀土配分模式可能表明这些沉积物具有相似的来源。但在某些站位,稀土元素配分模式也有一定的变化。例如,南坡6 000 m水深区域站位与其他站位相比,具有更明显的Ce负异常。所有站位沉积物的稀土元素含量在水平方向上的变化与微量元素变化特征相似,即离轴部越近含量越低,而北坡沉积物的稀土含量低于南坡。

    2) GT01岩心样品垂向分布特征

    对顶部、中部和底部三个层位样品,采用原始地幔标准化方法,绘制了带有误差带的微量元素蜘蛛网图(图5a)。可以看出,从顶部、中部到底部,沉积物微量元素含量逐渐递增(图5a)。对于Rb、Ba、Th、U以及LREE等元素,深渊沉积物的含量高于大洋中脊玄武岩和全球平均洋壳,接近于岛弧玄武岩;而HREE、Nb、Ta、Hf、Zr、Y等元素则明显低于其他几种端源。Rb、Ba、Th和U则接近岛弧玄武岩。在总体配分模式方面,GT01三个层位样品的微量元素配分模式则与南坡采集的蚀变基岩配分模式较为一致。

    Figure 5.  (a) Comparative map of trace elements between sediments of various positions from GT01 station and other end members; (b) comparative map of REE distribution diagrams between sediments of various positions and altered basalt

    稀土元素配分图采用球粒陨石标准化方法绘制(图5b)。GT01沉积物顶部、中部、底部分布模式相似,呈现LREE富集,具有明显的Eu负异常的特点,整体与蚀变基岩较为一致。Ce在GT01岩心部分层位显示出轻微正异常,可能与沉积物中微锰结核富集有关。

  • GT01岩心样品中总稀土含量(REE)、Mn、Si、Fe、P的垂向分布特征如图6所示。结果显示,在0~200 cm范围内的硅藻席层中,表现为黑色和灰白层交替出现,且存在交错层理,说明沉积环境的波动与变化。在黑色纹层处呈现出Mn富集及明显的Ce正异常特征,同时总稀土元素含量对应呈现亏损状态。Si、Fe和P的含量呈相反的变化趋势,这与GT01沉积物中硅藻席的含量有关,即随着深度增加硅藻含量减少而黏土类矿物增加。

    Figure 6.  Vertical distribution map of representative elements at site GT01

  • 从稀土含量来看,轴部深渊沉积物中稀土元素含量最低(图4b)。然而,近些年在太平洋多个区域发现深海沉积物中稀土元素明显富集[1921],含量高于马里亚纳海沟深渊沉积物两个数量级。因此,对深渊沉积物稀土元素分布受控因素的研究显得尤为重要。有研究显示,在沉积物早期成岩阶段,Mn的氧化还原过程与稀土元素含量的变化十分相关[22],沉积物中的稀土元素可能随着Mn还原过程被释放到孔隙水和海水中。而在稀土元素富集的过程中,多位学者发现沉积物中自生磷灰石等磷酸盐矿物的形成对稀土元素富集起关键作用[13,2325]。在深渊沉积物活跃的早期成岩作用下,Mn可能经历多次氧化还原过程;在这些过程中,如果沉积物中未形成容易富集稀土元素的自生磷酸盐矿物,则可能造成沉积物中稀土元素的丢失,这在图6中P含量的分布情况有所显示,即Mn富集的区域磷的含量较低。位于深渊区轴部的GT01岩心样品富含有机质的硅藻层出现了多期次Mn纹层,含量高于2%(图6),说明深渊区早期成岩作用十分剧烈[2627],这可能是导致深渊区沉积物相比于太平洋深海平原沉积物稀土含量明显偏低的主要原因。同时,早期成岩作用对沉积物稀土含量的影响同样反映在“挑战者”深渊南坡不同深度沉积物上。研究发现,南坡站位离轴部越近,沉积物中稀土元素含量就越低。这与随着水深增加,深渊沉积物中有机质含量增加,早期成岩作用进一步加强的认识是一致的[1415]

  • 深渊沉积物由于其特殊的地理位置和沉积环境,以及复杂的构造背景和水动力条件,其来源也往往具有多源性[28]。本文研究显示,沉积物主要有硅质生物软泥、钙质生物软泥、自生沉积物(富微锰结核)以及红色黏土类四种,其中红色黏土类沉积物为主要类型。其微量元素蜘蛛网图及稀土元素分配模式图均与采样区附近的蚀变基岩最为相似(图5)。通过将Al与其他主量元素线性拟合发现,Al与Ti(R2=0.95,n=121)、Fe(R2=0.94,n=121)、Ca(R2=0.94,n=121)、K(R2=0.9,n=121)、Si(R2=-0.9,n=121))、Mg(R2=0.79,n=121)具有较强的线性相关关系(图7)。这些主量元素在沉积物形成过程中迁移以及富集规律相似,主要以硅酸盐的形式存在。结合矿物学分析可知,这主要反映了深渊沉积物以黏土矿物为主,包含少量蚀变岩屑矿物的组成特征。

    Figure 7.  Linear fitting graph of Al and other major elements

    硅铝比值已被证实为有效的沉积物源识别指标[29]。研究区沉积物硅铝比值的变化范围为4.60~5.90(平均为5.20)。马里亚纳海沟附近的火山物质Si/Al的值介于2.60~3.07[30],采样区附近新鲜的玄武岩Si/Al的值约为3.38[10],而马里亚纳海沟沸石相蚀变基岩比值约为5.09[12]。因此,基于Si/Al比值可发现马里亚纳海沟深渊中黏土类的沉积物在物源上则更接近于蚀变基岩。这一特征通过Sc-Th-Zr/10的三元图中得到进一步体现(图8),火山物质及新鲜的基岩与不同类型的蚀变基岩在图中具有明显的区别,而本研究中的沉积物样品均落在不同类型蚀变基岩区域,且最接近沸石相蚀变基岩以及部分蚀变基岩,进一步表明马里亚纳海沟深渊沉积物主要来源于附近蚀变的基岩。

    Figure 8.  Ternary diagram of sediments and altered basalt

    判别函数分析(Discriminant Function,DF)是追踪沉积物物质来源较为常用的手段,DF值小于0.5则认为该物源与沉积物的组成有关,分值越小则贡献度越大。前人对马里亚纳海沟南部沉积物利用判别函数(DF)分析,认为该区域主要物质来源于周边火山、海底火山物质的贡献和陆源物质的输入[7]。通过对挑战者深渊附近轴部、北坡和南坡15个站位表层沉积物以及GT01柱状沉积物与周围不同的火山源、玄武岩和蚀变基岩进行分析,结果显示(表4),上覆板块沸石相蚀变基岩DF值平均为0.011,俯冲板块蚀变基岩DF平均值为0.013。本研究火山来源DF值介于0.10~0.21,前人火山来源的DF值介于0.03~0.16[7,3233],虽然包括前人研究在内的不同地区的火山源DF值皆小于0.5,但是沸石相蚀变基岩及俯冲板块蚀变基岩的DF值小于不同地区火山物质1~2个数量级,因此马里亚纳海沟深渊沉积物的主要物质来源于附近基岩的蚀变而非附近的火山物质(表4)。

    上覆板块火山源上覆板块俯冲板块
    西马里亚纳海岭凝灰岩帕里西维拉海盆凝灰岩马里亚纳海槽玄武岩沸石相蚀变基岩蚀变基岩
    GT01重力柱0.120.210.080.0120.011
    表层沉积物(南坡)0.100.210.090.016
    表层沉积物(轴部)0.120.200.070.0090.012
    表层沉积物(北坡)0.100.210.090.011
    Jiang et al.[31]0.040.050.05
    王汾连等[8]0.070.030.09
    肖春晖等[32]0.040.160.15
    注:计算所用Lu/Yb数据分别来自于:马里亚纳海槽玄武岩[33];西马里亚纳海脊和帕里西维拉海盆凝灰岩[34];沸石相蚀变基岩[12];新鲜玄武岩和俯冲板块蚀变基岩[10]

    Table 4.  DF values of the discriminant function (DF) hadal sediments from the Challenger Deep in the southern Mariana Trench

  • 虽然黏土类沉积为深渊沉积物的主要类型,但是硅质生源物质在深渊沉积物中的比例也不容忽视。为了进一步限定硅质生源物质在深渊沉积物中的比例,基于GT01岩心,根据海洋中生物Si含量半定量方法[3536]限定生物Si和黏土矿物的含量,从而计算硅质生源物质对深渊沉积物的贡献;同时根据黑色富锰层中的锰含量限定早期成岩作用影响,最终得出深渊沉积物中不同成分所占的比例。计算结果如表5所示,0~100 cm的范围内沉积物主要受硅质生源物质的影响,生源硅超过50%;随着深度的增加,硅质生源物质随之递减,黏土含量则超过50%;而在底部的褐红色黏土层,硅藻含量则只有5%左右,约90%为黏土矿物。此外,在北坡、轴部和南坡的15个站位表层沉积物中,90%样品为褐红色黏土类型。因此,黏土矿物为深渊沉积物最主要的物质成分。

    GT01重力柱生源硅黏土微结核
    0~100 cm50.18±12.7539.78±11.191.10±2.62
    100~200 cm29.13±10.7461.34±10.081.88±1.35
    200~300 cm5.82±4.5784.30±4.422.60±0.65

    Table 5.  Proportion of different material sources in GT01 columnar sediments (%)

  • 海洋生物的残骸为深海沉积物的主要来源之一,主要分为钙质沉积和硅质沉积。在碳酸钙补偿深度(Carbonate Compensation Depth,CCD)界面之上,沉积物富含钙质软泥,而在CCD界面之下,则主要为硅质软泥。前人关于马里亚纳海沟深渊沉积物中生物碎屑的报道主要集中于不同类型的硅藻化石,并认为硅藻是马里亚纳海沟深渊沉积物最重要的生物碎屑物质来源[6],主要原因则在于马里亚纳海沟“挑战者”深渊位于CCD界面之下。然而, 通过“奋斗者”号在马里亚纳海沟“挑战者”深渊调查发现,深渊区也存在钙质生物碎屑沉积物的分布。例如,“奋斗者”号FDZ065潜次在8 247 m海底采集的沉积物样品为钙质沉积物,主要成分为方解石,CaO含量近40%。然而,关于在CCD界面以下的挑战者深渊为何存在钙质沉积物仍需进一步研究,这可能与钙质沉积物在深海的快速堆积保存有关[37]。马里亚纳海沟为非增生俯冲边缘,意味着俯冲板块上所有的沉积物都将俯冲进入地球内部。该区域发现的钙质生物碎屑沉积物表明,位于CCD界面以下的深渊区同样存在无机沉积碳俯冲,这一部分无机碳可能对俯冲带碳的输入输出通量计算和深部碳循环过程产生重要影响。

  • (1) 马里亚纳海沟深渊沉积物主要分为褐红色深海黏土质沉积物、硅质生物软泥、自生沉积物(富微锰结核)及钙质生物软泥四种类型,沉积物成因主要受基岩蚀变、生物碎屑沉降以及早期成岩作用等三个方面的影响。

    (2) 马里亚纳海沟深渊沉积物稀土含量低于太平洋其他地区深海沉积物,同时随着水深的增加稀土元素含量逐渐降低,轴部稀土含量最低。而深渊底部因有机质富集而导致的异常活跃的早期成岩作用,是深渊沉积物相比邻近深海沉积物具有低稀土元素含量以及沉积物中微锰结核富集的主要原因。

    (3) 马里亚纳海沟俯冲和上覆板块上的玄武质基岩蚀变对深渊沉积物物源组成影响巨大,贡献了深渊沉积物的主要物质组成,这一认识挑战了深渊沉积物主要来源于火山和陆源物质输入的传统观点。

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return