Advanced Search
Volume 42 Issue 4
Aug.  2024
Turn off MathJax
Article Contents

GU Qiang, XING FengCun, WEN Jiao, LIU ZiQi, FENG ShanShan. Research Progress on Carbonate Factory[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1128-1149. doi: 10.14027/j.issn.1000-0550.2022.092
Citation: GU Qiang, XING FengCun, WEN Jiao, LIU ZiQi, FENG ShanShan. Research Progress on Carbonate Factory[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1128-1149. doi: 10.14027/j.issn.1000-0550.2022.092

Research Progress on Carbonate Factory

doi: 10.14027/j.issn.1000-0550.2022.092
cstr: 32268.14.cjxb.62-1038.2022.092
Funds:

National Natural Science Foundation of China 41672103

National Natural Science Foundation of China 41302089

  • Received Date: 2022-07-05
  • Accepted Date: 2022-08-16
  • Rev Recd Date: 2022-07-25
  • Available Online: 2022-08-16
  • Publish Date: 2024-08-10
  • Significance  A large number of carbonate deposits in the Phanerozoic record information about the evolution of the environment at that time, and they represented an important carbon sink for the Earth. Today’s need for a “carbon neutral” condition has encouraged research into the development and evolution of the carbonate factory, and is an essential primary focus of contemporary carbonate studies. Carbonate factory research began later in China than in other countries; the main focus has been on the deposition and evolution of carbonate rocks. Studies of carbonate factory classification and research methods are still weak, and the understanding of the main causes of their extinction is also limited.   [Progres s ]  This summary, based on the reports of a large number of studies, examines the research progress in classification schemes and research methods for recognizing the main influences on carbonate factory development, and provides a reference to assist geologists’ deeper understanding of the carbonate factory mechanism. [Conclusions and Prospects]  It may be the development direction of carbonate factory research in the future to understand its operating mechanism, evolution process and main controlling factors from many aspects by using multidisciplinary knowledge methods, so as to make the research conclusions more accurate and explore its biological and oceanographic significance.

  • [1] Schlager W. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems[J]. Geological Society, London, Special Publications, 2000, 178(1): 217-227.
    [2] Schlager W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464.
    [3] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin, Heidelberg: Springer, 2010.
    [4] Reijmer J J G. Carbonate factories[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 80-84.
    [5] Pomar L, Haq B U. Decoding depositional sequences in carbonate systems: Concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225.
    [6] Pomar L. Carbonate systems[M]//Scarselli N, Adam J, Chiarella D, et al. Regional geology and tectonics: Principles of geologic analysis. 2nd ed. Amsterdam: Elsevier, 2020: 235-311.
    [7] Reijmer J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796.
    [8] Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169.
    [9] Li X W, Falivene O, Minzoni M, et al. Interactions between sediment production and transport in the geometry of carbonate platforms: Insights from forward modeling of the Great Bank of Guizhou (Early to Middle Triassic), South China[J]. Marine and Petroleum Geology, 2020, 118: 104416.
    [10] Sultana D, Burgess P, Bosence D. How do carbonate factories influence carbonate platform morphology? Exploring production-transport interactions with numerical forward modelling[J]. Sedimentology, 2022, 69(1): 372-393.
    [11] 李明涛. 西藏南部晚二叠世—中三叠世沉积环境演变[D]. 武汉:中国地质大学,2020.

    Li Mingtao. Depositional evolution of Upper Permian to Middle Triassic sequence in south Tibet[D]. Wuhan: China University of Geosciences, 2020.
    [12] 倪新锋,沈安江,韦东晓,等. 碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学,2018,29(5):729-742.

    Ni Xinfeng, Shen Anjiang, Wei Dongxiao, et al. Current hot topics and advances of carbonate sedimentology: AAPG 100 anniversary and 2017 annual meeting and exhibition[J]. Natural Gas Geoscience, 2018, 29(5): 729-742.
    [13] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253.

    Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253.
    [14] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
    [15] 梅冥相. 蓝细菌繁荣滋养的苗岭世光养碳酸盐岩工厂:以安徽寿县卧龙山剖面崮山组为例[J]. 地质学报,2021,95(12):3571-3591.

    Mei Mingxiang. Photozoan carbonate factory nourished by cyanobacterial bloom of the Cambrian Miaolingian: An example from the Wolongshan section in Shouxian county of Anhui province, North-China Platform[J]. Acta Geologica Sinica, 2021, 95(12): 3571-3591.
    [16] 梅冥相. 寒武纪苗岭世特别的光养碳酸盐岩工厂:以江苏徐州贾旺剖面张夏组为例[J]. 地质学报,2022,96(3):744-768.

    Mei Mingxiang. A particular photozoan factory of carbonate rock of the Cambrian Miaolingian: A case study of the Zhangxia Formation at the Jiawang section in Xuzhou city of Jiangsu province[J]. Acta Geologica Sinica, 2022, 96(3): 744-768.
    [17] Meng Q, Xue W Q, Chen F Y, et al. Stratigraphy of the Guadalupian (Permian) siliceous deposits from central Guizhou of South China: Regional correlations with implications for carbonate productivity during the Middle Permian biocrisis[J]. Earth-Science Reviews, 2022, 228: 104011.
    [18] Wright V P, Burgess P M. The carbonate factory continuum, facies mosaics and microfacies: An appraisal of some of the key concepts underpinning carbonate sedimentology[J]. Facies, 2005, 51(1/2/3/4): 17-23.
    [19] Surlyk F. A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous-Danian of the Danish Basin[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997: 293-307.
    [20] James N P. The cool-water carbonate depositional realm[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997: 1-20.
    [21] Lowenstam H A, Weiner S. On biomineralization[M]. New York: Oxford University Press, 1989.
    [22] Schlager W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM Society for Sedimentary Geology, 2005.
    [23] Lees A, Buller A T. Modern temperate-water and warm-water shelf carbonate sediments contrasted[J]. Marine Geology, 1972, 13(5): M67-M73.
    [24] Pope M C, Read J F. High-resolution stratigraphy of the Lexington limestone (late Middle Ordovician), Kentucky, U.S.A.: A cool-water carbonate-clastic ramp in a tectonic ally active foreland basin[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997.
    [25] Brandle R T, Krause F F. Upwelling, thermoclines and wave-sweeping on an equatorial carbonate ramp: Lower Carboniferous strata of western Canada[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997.
    [26] Schlager W. The paradox of drowned reefs and carbonate platforms[J]. GSA Bulletin, 1981, 92(4): 197-211.
    [27] Titschack J, Fink H G, Baum D, et al. Mediterranean cold-water corals: An important regional carbonate factory?[J]. The Depositional Record, 2016, 2(1): 74-96.
    [28] 贾承造,张杰,沈安江,等. 非暖水碳酸盐岩:沉积学进展与油气勘探新领域[J]. 石油学报,2017,38(3):241-254.

    Jia Chengzao, Zhang Jie, Shen Anjiang, et al. Non-tropical carbonate: Progress in sedimentology and new field of petroleum exploration[J]. Acta Petrolei Sinica, 2017, 38(3): 241-254.
    [29] 苏旺,江青春,陈志勇,等. 冷水碳酸盐岩研究现状与展望[J]. 海相油气地质,2017,22(1):1-13.

    Su Wang, Jiang Qingchun, Chen Zhiyong, et al. Cool-water carbonates: A review of the current status and prospects[J]. Marine Origin Petroleum Geology, 2017, 22(1): 1-13.
    [30] Melis R, Salvi G. Foraminifer and ostracod occurrence in a cool-water carbonate factory of the cape Adare (Ross Sea, Antarctica): A key lecture for the climatic and oceanographic variations in the last 30, 000 years[J]. Geosciences, 2020, 10(10): 413.
    [31] Wisshak M, Form A, Jakobsen J, et al. Temperate carbonate cycling and water mass properties from intertidal to bathyal depths (Azores)[J]. Biogeosciences, 2010, 7(8): 2379-2396.
    [32] Riding R, Liang L Y. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 101-115.
    [33] Berra F, Balini M, Levera M, et al. Anatomy of carbonate mounds from the Middle Anisian of Nakhlak (central Iran): Architecture and age of a subtidal microbial-bioclastic carbonate factory[J]. Facies, 2012, 58(4): 685-705.
    [34] 李飞. 二叠纪—三叠纪之交鲕粒结构特征及时空分布对古海洋环境的指示[D]. 武汉:中国地质大学,2016.

    Li Fei. The spatial and temporal distributions of ooids and their petrological and geochemical compositions: Implications for paleoceanographic conditions in the Permian-Triassic transition[D]. Wuhan: China University of Geosciences, 2016.
    [35] Michel J, Laugié M, Pohl A, et al. Marine carbonate factories: A global model of carbonate platform distribution[J]. International Journal of Earth Sciences, 2019, 108(6): 1773-1792.
    [36] 刘采,秦松,苏文博,等. 碳酸盐台地淹没过程的微相响应:以陕西铜川桃曲坡奥陶系剖面为例[J]. 地质调查与研究,2013,36(1):23-38.

    Liu Cai, Qin Song, Su Wenbo, et al. Microfacies response to the drowning process of the carbonate platform: A case study on the Ordovician succession at the Taoqupo section, Tongchuan city, Shannxi province, North China Block[J]. Geological Survey and Research, 2013, 36(1): 23-38.
    [37] Brigaud B, Vincent B, Carpentier C, et al. Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): Interplay of climate change, eustasy and tectonics[J]. Marine and Petroleum Geology, 2014, 53: 3-29.
    [38] Brandano M, Corda L, Tomassetti L, et al. Frequency analysis across the drowning of a Lower Jurassic carbonate platform: The Calcare Massiccio Formation (Apennines, Italy)[J]. Marine and Petroleum Geology, 2016, 78: 606-620.
    [39] Andrieu S, Brigaud B, Barbarand J, et al. Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: From the western France platform to the western Tethyan domain[J]. Sedimentary Geology, 2016, 345: 54-84.
    [40] Courgeon S, Jorry S J, Camoin G F, et al. Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean)[J]. Marine Geology, 2016, 380: 90-105.
    [41] Rudnitzki I D, Romero G R, Hidalgo R, et al. High frequency peritidal cycles of the Upper Araras Group: Implications for disappearance of the Neoproterozoic carbonate platform in southern Amazon Craton[J]. Journal of South American Earth Sciences, 2016, 65: 67-78.
    [42] Han Z, Hu X M, Li J, et al. Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 456: 1-20.
    [43] Silva-Tamayo J C, Lara M E, Yobo L N, et al. Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean[J]. Journal of South American Earth Sciences, 2017, 78: 213-237.
    [44] Abadi M S, Kulagina E I, Voeten D F A E, et al. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations[J]. Sedimentary Geology, 2017, 348: 19-36.
    [45] Brandano M, Cornacchia I, Tomassetti L. Global versus regional influence on the carbonate factories of Oligo-Miocene carbonate platforms in the Mediterranean area[J]. Marine and Petroleum Geology, 2017, 87: 188-202.
    [46] Coletti G, El Kateb A, Basso D, et al. Nutrient influence on fossil carbonate factories: Evidence from SEDEX extractions on Burdigalian limestones (Miocene, NW Italy and S France)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475: 80-92.
    [47] Bodin S, Hönig M R, Krencker F N, et al. Neritic carbonate crisis during the Early Bajocian: Divergent responses to a global environmental perturbation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 184-199.
    [48] Salocchi A C, Argentino C, Fontana D. Evolution of a Miocene carbonate shelf (northern Apennines, Italy) revealed through a quantitative compositional study[J]. Marine and Petroleum Geology, 2017, 79: 340-350.
    [49] Shi Z Q, Preto N, Jiang H S, et al. Demise of Late Triassic sponge mounds along the northwestern margin of the Yangtze Block, South China: Related to the Carnian Pluvial Phase?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 247-263.
    [50] 孟琦,黄恒,颜佳新,等. 黔南地区中二叠世碳酸盐台地边缘沉积演化及古海洋意义[J]. 古地理学报,2018,20(1):87-103.

    Meng Qi, Huang Heng, Yan Jiaxin, et al. Sedimentary evolution of the Middle Permian carbonate platform margin in southern Guizhou and its palaeo-oceanographic implications[J]. Journal of Palaeogeography, 2018, 20(1): 87-103.
    [51] Posenato R, Bassi D, Trecalli A, et al. Taphonomy and evolution of Lower Jurassic lithiotid bivalve accumulations in the Apennine carbonate platform (southern Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489: 261-271.
    [52] Han Z, Hu X M, Kemp D B, et al. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise[J]. Earth and Planetary Science Letters, 2018, 489: 59-71.
    [53] Jin X, Shi Z Q, Rigo M, et al. Carbonate platform crisis in the Carnian (Late Triassic) of Hanwang (Sichuan Basin, South China): Insights from conodonts and stable isotope data[J]. Journal of Asian Earth Sciences, 2018, 164: 104-124.
    [54] Wu F, Xie X N, Betzler C, et al. The impact of eustatic sea-level fluctuations, temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands, South China Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514: 373-385.
    [55] Franceschi M, Dal Corso J, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian- Pliensbachian, southern Alps): Comparison with the Late Triassic Carnian Pluvial Episode[J]. GSA Bulletin, 2019, 131(7/8): 1255-1275.
    [56] Caron V, Bailleul J, Chanier F, et al. Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian-Bartonian limestones, St. Bartholomew, French West Indies)[J]. Sedimentary Geology, 2019, 387: 104-125.
    [57] Cruz A M, Reis A T, Suc J P, et al. Neogene evolution and demise of the Amapá carbonate platform, Amazon continental margin, Brazil[J]. Marine and Petroleum Geology, 2019, 105: 185-203.
    [58] Shahzad K, Betzler C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (offshore Indus Basin)[J]. Marine and Petroleum Geology, 2019, 101: 519-539.
    [59] Li M T, Song H J, Woods A D, et al. Facies and evolution of the carbonate factory during the Permian-Triassic crisis in south Tibet, China[J]. Sedimentology, 2019, 66(7): 3008-3028.
    [60] Jin X, Gianolla P, Shi Z Q, et al. Synchronized changes in shallow water carbonate production during the Carnian Pluvial Episode (Late Triassic) throughout Tethys[J]. Global and Planetary Change, 2020, 184: 103035.
    [61] Krencker F N, Fantasia A, Danisch J, et al. Two-phased collapse of the shallow-water carbonate factory during the Late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the northwestern Gondwana margin[J]. Earth-Science Reviews, 2020, 208: 103254.
    [62] Núñez-Useche F, Barragán R, Torres-Martínez M A, et al. Response of the western proto-North Atlantic margin to the early Aptian oceanic anoxic event (OAE) 1a: An example from the Cupido platform margin-gulf of Mexico, NE Mexico[J]. Cretaceous Research, 2020, 113: 104488.
    [63] Reolid J, Betzler C, Braga J C, et al. Facies and geometry of drowning steps in a Miocene carbonate platform (Maldives)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109455.
    [64] Rebelo T B, Batezelli A, Luna J S. Stratigraphic evolution and carbonate factory implications: Case study of the Albian carbonates of the Campos Basin, Brazil[J]. The Depositional Record, 2021, 7(2): 271-293.
    [65] Li H, Li F, Li X, et al. Development and collapse of the Early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583: 110665.
    [66] Li J, Hu X M, Garzanti E, et al. Climate-driven hydrological change and carbonate platform demise induced by the Paleocene-Eocene Thermal Maximum (southern Pyrenees)[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2021, 567:110250.
    [67] Li S, Wignall P B, Poulton S W, et al. Carbonate shutdown, phosphogenesis and the variable style of marine anoxia in the Late Famennian (Late Devonian) in western Laurentia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589: 110835.
    [68] Godet A. Drowning unconformities: Palaeoenvironmental significance and involvement of global processes[J]. Sedimentary Geology, 2013, 293: 45-66.
    [69] Brandano M, Mateu-Vicens G, Baceta J I. Understanding carbonate factories through palaeoecological and sedimentological signals-Tribute to Luis Pomar[J]. Sedimentology, 2022, 69(1): 5-23.
    [70] Margalef R. The pelagic ecosystem of the Caribbean Sea[C]//United Nations Educational, Scientific and Cultural Organization. Symposium on investigations and resources of the Caribbean Sea and adjacent regions. Paris: UNESCO, 1969: 483-498.
    [71] Hallock P, Schlager W. Nutrient excess and the demise of coral reefs and carbonate platforms[J]. Palaios, 1986, 1(4): 389-398.
    [72] Riley G A. Oceanography of long island sound, 1952-1954, II. Physical oceanography[J]. Bulletin of the Bingham Oceanographic Collection, 1956, 15: 15-46.
    [73] Smith S V, Kimmerer W J, Laws E A, et al. Kaneohe Bay sewage diversion experiment: Perspectives on ecosystem responses to nutritional perturbation[J]. Pacific Science, 1981, 35(4): 279-395.
    [74] Huston M. Variation in coral growth rates with depth at Discovery Bay, Jamaica[J]. Coral Reefs, 1985, 4(1): 19-25.
    [75] Kanwisher J W, Wainwright S A. Oxygen balance in some reef corals[J]. The Biological Bulletin, 1967, 133(2): 378-390.
    [76] Reiss Z, Hottinger L. The gulf of Aqaba: A rift-shaped depression[M]//Reiss Z, Hottinger L. The gulf of Aqaba. Berlin, Heidelberg: Springer, 1984: 19-32.
    [77] Jaap W C. The ecology of the south Florida coral reefs: A community profile[R]. Petersburg: Florida Dept. of Natural Resources, St. Marine Research Lab, 1984.
    [78] Tomascik T, Sander F. Effects of eutrophication on reef-building corals: II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies[J]. Marine Biology, 1987, 94(1): 53-75.
    [79] Simkiss K. Phosphates as crystal poisons of calcification[J]. Biological Reviews, 1964, 39(4): 487-504.
    [80] Kinsey D W, Domm A. Effects of fertilization on a coral reef environment- primary production studies[C]// Great Barrier Reef Committee. Proceedings of the 2nd International Coral Reef Symposium. Brisbane, Australia: Great Barrier Reef Committee, 1974, (1): 49-66.
    [81] Kinsey D W, Davies P J. Effects of elevated nitrogen and phosphorus on coral reef growth[J]. Limnology and Oceanography, 1979, 24(5): 935-940.
    [82] Wilmsen M. Evolution and demise of a Mid-Cretaceous carbonate shelf: The Altamira Limestones (Cenomanian) of northern Cantabria (Spain)[J]. Sedimentary Geology, 2000, 133(3/4): 195-226.
    [83] Highsmith R C. Corals: The inside story[D]. Washington: University of Washington, 1979.
    [84] Highsmith R C. Geographic patterns of coral bioerosion: A productivity hypothesis[J]. Journal of Experimental Marine Biology and Ecology, 1980, 46(2): 177-196.
    [85] Brock R E, Smith S V. Response of coral reef cryptofaunal communities to food and space[J]. Coral Reefs, 1983, 1(3): 179-183.
    [86] Keim L, Brandner R, Krystyn L, et al. Termination of carbonate slope progradation: An example from the Carnian of the dolomites, northern Italy[J]. Sedimentary Geology, 2001, 143(3/4): 303-323.
    [87] Halfar J, Strasser M, Riegl B, et al. Oceanography, sedimentology and acoustic mapping of a bryomol carbonate factory in the northern gulf of California, Mexico[J]. Geological Society, London, Special Publications, 2006, 255(1): 197-215.
    [88] Wilson M E J. Tectonic and volcanic influences on the development and diachronous termination of a Tertiary tropical carbonate platform[J]. Journal of Sedimentary Research, 2000, 70(2): 310-324.
    [89] Caplan M L, Bustin R M, Grimm K A. Demise of a Devonian-Carboniferous carbonate ramp by eutrophication[J]. Geology, 1996, 24(8): 715-718.
    [90] Fyhn M B W, Boldreel L O, Nielsen L H. Tectonic and climatic control on growth and demise of the Phanh Rang carbonate platform offshore south Vietnam[J]. Basin Research, 2009, 21(2): 225-251.
    [91] Halfar J, Godinez-Orta L, Mutti M, et al. Nutrient and temperature controls on modern carbonate production: An example from the gulf of California, Mexico[J]. Geology, 2004, 32(3): 213-216.
    [92] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(/2): 12-32.
    [93] Bekker A, Eriksson K A. A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: A record of the Kenorland breakup[J]. Precambrian Research, 2003, 120(3/4): 327-364.
    [94] Keim L, Spötl C, Brandner R. The aftermath of the Carnian carbonate platform demise: A basinal perspective (dolomites, southern Alps)[J]. Sedimentology, 2006, 53(2): 361-386.
    [95] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3/4): 179-184.
    [96] Arthur M A, Schlanger S O. Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields[J]. AAPG Bulletin, 1979, 63(6): 870-885.
    [97] Jenkyns H C. Cretaceous anoxic events: From continents to oceans[J]. Journal of the Geological Society, 1980, 137(2): 171-188.
    [98] Fischer A G, Silva I P, de Boer P L. Cyclostratigraphy[M]//Ginsburg R N, Beaudoin B. Cretaceous resources, events and rhythms. Dordrecht: Springer, 1990.
    [99] Gröcke D R, Hesselbo S P, Jenkyns H C. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change[J]. Geology, 1999, 27(2): 155-158.
    [100] Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 1041.
    [101] Föllmi K B, Gainon F. Demise of the northern tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: The sedimentary record of the Col de la Plaine Morte area, central Switzerland[J]. Sedimentary Geology, 2008, 205(3/4): 142-159.
    [102] Najarro M, Rosales I, Martín-Chivelet J. Major palaeoenvironmental perturbation in an early Aptian carbonate platform: Prelude of the Oceanic Anoxic Event 1a?[J]. Sedimentary Geology, 2011, 235(1/2): 50-71.
    [103] Jenkyns H C, Sarti M, Masetti D, et al. Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones from the Belluno Trough, southern Alps, Italy[J]. Eclogae Geologicae Helvetiae, 1985, 78(2): 299-311.
    [104] Fischer A G, Arthur M A. Secular variations in the pelagic realm[M]//Cook H E, Enos P. Deep-water carbonate environments. Tulsa: SEPM Special Publication, 1977: 19-50.
    [105] Song H J, Wignall P B, Chu D L, et al. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath[J]. Scientific Reports, 2014, 4: 4132.
    [106] 宋海军,童金南. 二叠纪—三叠纪之交生物大灭绝与残存[J]. 地球科学,2016,41(6):901-918.

    Song Haijun, Tong Jinnan. Mass extinction and survival during the Permian-Triassic crisis[J]. Earth Science, 2016, 41(6): 901-918.
    [107] Gill B C, Lyons T W, Young S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean[J]. Nature, 2011, 469(7328): 80-83.
    [108] Trecalli A, Spangenberg J, Adatte T, et al. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event[J]. Earth and Planetary Science Letters, 2012, 357-358: 214-225.
    [109] Lü C L, Wu S G, Yao Y J, et al. Development and controlling factors of Miocene carbonate platform in the Nam Con Son Basin, southwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 45: 55-68.
    [110] Taira K. The effect of tectonism on the climate of the past 1200 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 39(1/2): 165-169.
    [111] Vogt P R. Volcanogenic upwelling of anoxic, nutrient-rich water: A possible factor in carbonate-bank/reef demise and benthic faunal extinctions?[J]. GSA Bulletin, 1989, 101(10): 1225-1245.
    [112] Bahamonde J R, Colmenero J R, Vera C. Growth and demise of Late Carboniferous carbonate platforms in the eastern Cantabrian zone, Asturias, northwestern Spain[J]. Sedimentary Geology, 1997, 110(1/2): 99-122.
    [113] Wilson M E J, Lokier S W. Siliciclastic and volcaniclastic influences on equatorial carbonates: Insights from the Neogene of Indonesia[J]. Sedimentology, 2002, 49(3): 583-601.
    [114] Fernández-Mendiola P A, García-Mondéjar J. Carbonate platform growth influenced by contemporaneous basaltic intrusion (Albian of Larrano, Spain)[J]. Sedimentology, 2003, 50(5): 961-978.
    [115] Álvaro J J, Clausen S. Botoman (Lower Cambrian) turbid-and clear-water reefs and associated environments from the High Atlas, Morocco[J]. Geological Society, London, Special Publications, 2007, 275(1): 51-70.
    [116] Álvaro J J, Ezzouhairi H, Ayad N A, et al. Short-term episodes of carbonate productivity in a Cambrian uplifted rift shoulder of the coastal Meseta, Morocco[J]. Gondwana Research, 2008, 14(3): 410-428.
    [117] 李泯星,屈海洲,程曦,等. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报,2020,38(4):810-825.

    Li Minxing, Qu Haizhou, Cheng Xi, et al. Influence of volcanism on carbonate sedimentation and diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825.
    [118] Huck S, Stein M, Immenhauser A, et al. Response of proto-North Atlantic carbonate-platform ecosystems to OAE1a-related stressors[J]. Sedimentary Geology, 2014, 313: 15-31.
    [119] 时志强,钱利军,曾德勇,等. 晚三叠世卡尼期碳酸盐生产危机在东特提斯地区的地质记录[J]. 地质论评,2010,56(3):321-328.

    Shi Zhiqiang, Qian Lijun, Zeng Deyong, et al. Geological records of Late Triassic Carnian carbonate productivity crisis in eastern tethys region (SW China)[J]. Geological Review, 2010, 56(3): 321-328.
    [120] Wolfgang K, Flügel E, Golonka J. Paleoreef maps: Evaluation of a comprehensive database on Phanerozoic reefs[J]. AAPG Bulletin, 1999, 83(10): 1320-1336.
    [121] Pálfy J, Kovács Z, Demény A, et al. End-Triassic crisis and “unreefing” led to the demise of the Dachstein carbonate platform: A revised model and evidence from the Transdanubian range, Hungary[J]. Global and Planetary Change, 2021, 199: 103428.
    [122] Philip J M, Airaud-Crumiere C. The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: A global control[J]. Coral Reefs, 1991, 10(2): 115-125.
    [123] Iba Y, Sano S I. Mid-Cretaceous step-wise demise of the carbonate platform biota in the Northwest Pacific and establishment of the North Pacific biotic province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3/4): 462-482.
    [124] Whalen M T, Day J, Eberli G P, et al. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from the Late Devonian, Alberta Basin, Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 127-151.
    [125] Graziano R. The Early Cretaceous drownings of tethyan carbonate platforms: Controlling mechanisms and paleoceanography. Insights from the Apulia record[C]//COFIN. Proceedings of the COFIN 2000 workshop, February 25-27, 2003, Pozzuoli, Napoli, Italia. Napoli: De Frede, 2003: 55-62.
    [126] Huck S, Rameil N, Korbar T, et al. Latitudinally different responses of tethyan shoal-water carbonate systems to the early Aptian oceanic anoxic event (OAE 1a)[J]. Sedimentology, 2010, 57(7): 1585-1614.
    [127] Hallock P. The role of nutrient availability in bioerosion: Consequences to carbonate buildups[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 63(1/2/3): 275-291.
    [128] Miller A G, Espie G S, Canvin D T. Physiological aspects of CO2 and HCO3- transport by cyanobacteria: A review[J]. Canadian Journal of Botany, 1990, 68(6): 1291-1302.
    [129] Mutti M, Hallock P. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints[J]. International Journal of Earth Sciences, 2003, 92(4): 465-475.
    [130] Raspini A. Shallow water carbonate platforms (late Aptian-early Albian, southern Apennines) in the context of supraregional to global changes: Re-appraisal of palaeoecological events as reflectors of carbonate factory response[J]. Solid Earth, 2012, 3(2): 225-249.
    [131] Poag C W. Rise and demise of the Bahama-grand banks gigaplatform, northern margin of the Jurassic proto-Atlantic seaway[J]. Marine Geology, 1991, 102(1/2/3/4): 63-130.
    [132] Merino-Tomé Ó, Porta G D, Kenter J A M, et al. Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): Influence of tectonics, eustacy and carbonate production[J]. Sedimentology, 2012, 59(1): 118-155.
    [133] Jarvis I, Carson G A, Cooper M K E, et al. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event[J]. Cretaceous Research, 1988, 9(1): 3-103.
    [134] Thierry J, Peter R V. Shelfal accommodation as a major control on carbonate platforms[J]. Bulletin de la Société Géologique de France, 1995, 166(4): 423-435.
    [135] Sattler U, Immenhauser A, Schlager W, et al. Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea)[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 318-331.
    [136] Allan J R, Matthews R K. Isotope signatures associated with early meteoric diagenesis[J]. Sedimentology, 1982, 29(6): 797-817.
    [137] Joachimski M M. Subaerial exposure and deposition of shallowing upward sequences: Evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains[J]. Sedimentology, 1994, 41(4): 805-824.
    [138] Sattler U, Immenhauser A, Hillgärtner H, et al. Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to lower Aptian, Oman)[J]. Sedimentology, 2005, 52(2): 339-361.
    [139] Immenhauser A, Creusen A, Esteban M, et al. Recognition and interpretation of polygenic discontinuity surfaces in the Middle Cretaceous Shu’aiba, Nahr Umr, and Natih Formations of northern Oman[J]. GeoArabia, 2000, 5(2): 299-322.
    [140] Dickson J A D, Coleman M L. Changes in carbon and oxygen isotope composition during limestone diagenesis[J]. Sedimentology, 1980, 27(1): 107-118.
    [141] Esteban M, Taberner C. Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines[J]. Journal of Geochemical Exploration, 2003, 78-79: 355-359.
    [142] Nelson C S. An introductory perspective on non-tropical shelf carbonates[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 3-12.
    [143] James N P, Clarke J A D. Cool-water carbonates[M]. Tulsa: SEPM Society for Sedimentary Geology, 1997.
    [144] Simms M J, Ruffell A H. Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17(3): 265-268.
    [145] Hornung T, Krystyn L, Brandner R. A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)?[J]. Journal of Asian Earth Sciences, 2007, 30(2): 285-302.
    [146] Rigo M, Preto N, Roghi G, et al. A rise in the carbonate compensation depth of western tethys in the Carnian (Late Triassic): Deep-water evidence for the Carnian Pluvial Event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/3/4): 188-205.
    [147] Lukeneder S, Lukeneder A, Harzhauser M, et al. A delayed carbonate factory breakdown during the tethyan-wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey)[J]. Facies, 2012, 58(2): 279-296.
    [148] 金鑫,时志强,王艳艳,等. 晚三叠世中卡尼期极端气候事件:研究进展及存在问题[J]. 沉积学报,2015,33(1):105-115.

    Jin Xin, Shi Zhiqiang, Wang Yanyan, et al. Mid-Carnian (Late Triassic) extreme climate event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115.
    [149] Gattolin G, Preto N, Breda A, et al. Sequence stratigraphy after the demise of a high-relief carbonate platform (Carnian of the dolomites): Sea-level and climate disentangled[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423: 1-17.
    [150] Li Q, Ruhl M, Wang Y D, et al. Response of Carnian Pluvial Episode evidenced by organic carbon isotopic excursions from western Hubei, South China[J]. Palaeoworld, 2022, 31(2): 324-333.
    [151] Betzler C, Brachert T C, Kroon D. Role of climate in partial drowning of the Queensland Plateau carbonate platform (northeastern Australia)[J]. Marine Geology, 1995, 123(1/2): 11-32.
    [152] Simone L, Carannante G. The fate of Foramol (“temperate-type”) carbonate platforms[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 347-354.
    [153] Bourrouilh-Le Jan F G, Hottinger L C. Occurrence of rhodolites in the tropical Pacific: A consequence of Mid-Miocene paleo-oceanographic change[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 355-358, 363-367.
    [154] Adams C G, Lee D E, Rosen B R. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 77(3/4): 289-313.
    [155] Rasser M W, Scheibner C, Mutti M. A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain)[J]. Facies, 2005, 51(1/2/3/4): 218-232.
    [156] Chatalov A, Bonev N, Ivanova D. Depositional characteristics and constraints on the mid-Valanginian demise of a carbonate platform in the intra-tethyan domain, Circum-Rhodope Belt, northern Greece[J]. Cretaceous Research, 2015, 55: 84-115.
    [157] Donnadieu Y, Dromart G, Goddéris Y, et al. A mechanism for brief glacial episodes in the Mesozoic greenhouse[J]. Paleoceanography, 2011, 26(3): PA3212.
    [158] Krencker F N, Bodin S, Hoffmann R, et al. The Middle Toarcian cold snap: Trigger of mass extinction and carbonate factory demise[J]. Global and Planetary Change, 2014, 117: 64-78.
    [159] Martinez M, Dera G. Orbital pacing of carbon fluxes by a ~ 9-My eccentricity cycle during the Mesozoic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12604-12609.
    [160] 高远. 北羌塘坳陷中—下侏罗统多级别层序格架及意义:以羌科1井雀莫错组为例[D]. 北京:中国地质大学,2020.

    Gao Yuan. Sequence stratigraphic frameworks in different scales of Lower-Middle Jurassic in the northern Qiangtang Depression and their significances: A case study of the Quemoco Formation in the QK-1 well[D]. Beijing: China University of Geosciences, 2020.
    [161] Heydari E, Arzani N, Safaei M, et al. Ocean's response to a changing climate: Clues from variations in carbonate mineralogy across the Permian-Triassic boundary of the Shareza section, Iran[J]. Global and Planetary Change, 2013, 105: 79-90.
    [162] Slater S M, Bown P, Twitchett R J, et al. Global record of “ghost” nannofossils reveals plankton resilience to high CO2 and warming[J]. Science, 2022, 376(6595): 853-856.
    [163] Liang H D. End-Permian catastrophic event of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan section of South China[J]. Chinese Science Bulletin, 2002, 47(16): 1393-1397.
    [164] Heydari E, Hassanzadeh J. Deev Jahi Model of the Permian-Triassic boundary mass extinction: A case for gas hydrates as the main cause of biological crisis on Earth[J]. Sedimentary Geology, 2003, 163(1/2): 147-163.
    [165] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615.
    [166] Payne J L, Kump L R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 264-277.
    [167] Wignall P B, Kershaw S, Collin P Y, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: Comment[J]. GSA Bulletin, 2009, 121(5/6): 954-956.
    [168] Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8543-8548.
    [169] Kiessling W, Simpson C. On the potential for ocean acidification to be a general cause of ancient reef crises[J]. Global Change Biology, 2011, 17(1): 56-67.
    [170] Montenegro A, Spence P, Meissner K J, et al. Climate simulations of the Permian-Triassic boundary: Ocean acidification and the extinction event[J]. Paleoceanography, 2011, 26(3): PA3207.
    [171] Weidlich O, Bernecker M. Biotic carbonate precipitation inhibited during the Early Triassic at the rim of the Arabian Platform (Oman)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 129-150.
    [172] Clapham M E, Payne J L. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian[J]. Geology, 2011, 39(11): 1059-1062.
    [173] Georgiev S, Stein H J, Hannah J L, et al. Hot acidic Late Permian seas stifle life in record time[J]. Earth and Planetary Science Letters, 2011, 310(3/4): 389-400.
    [174] Beauchamp B, Grasby S E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352: 73-90.
    [175] Payne J L, Clapham M E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century?[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 89-111.
    [176] Kump L R, Bralower T J, Ridgwell A. Ocean acidification in deep time[J]. Oceanography, 2009, 22(4): 94-107.
    [177] Joachimski M M, Müller J, Gallagher T M, et al. Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction[J]. Geology, 2022, 50(6): 650-654.
    [178] Kantzas E P, Val Martin M, Lomas M R, et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom[J]. Nature Geoscience, 2022, 15(5): 382-389.
    [179] Jin X, Franceschi M, Martini R, et al. Eustatic sea-level fall and global fluctuations in carbonate production during the Carnian Pluvial Episode[J]. Earth and Planetary Science Letters, 2022, 594: 117698.
    [180] Franceschi M, Preto N, Marangon A, et al. High precipitation rate in a Middle Triassic carbonate platform: Implications on the relationship between seawater saturation state and carbonate production[J]. Earth and Planetary Science Letters, 2016, 444: 215-224.
    [181] 古强,邢凤存,钱红杉,等. 川东北飞仙关组鲕粒特征与水动力相关性研究[J]. 沉积学报,2021,39(6):1371-1386.

    Gu Qiang, Xing Fengcun, Qian Hongshan, et al. Correlation between ooid characteristics and hydrodynamic forces in the Feixianguan Formation, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386.
    [182] Li X W, Trower E J, Lehrmann D J, et al. Implications of giant ooids for the carbonate chemistry of Early Triassic seawater[J]. Geology, 2021, 49(2): 156-161.
    [183] Lees A. Possible influence of salinity and temperature on modern shelf carbonate sedimentation[J]. Marine Geology, 1975, 19(3): 159-198.
    [184] Allison P A, Wright V P. Switching off the carbonate factory: A-tidality, stratification and brackish wedges in Epeiric seas[J]. Sedimentary Geology, 2005, 179(3/4): 175-184.
    [185] 徐捷凯. 颗石藻对盐度与碳酸盐系统变化的生理学响应[D]. 厦门:厦门大学,2018.

    Xu Jiekai. Physiological responses of coccolithophores to changes in salinity and carbonate chemistry[D]. Xiamen: Xiamen University, 2018.
    [186] Sun S Q. Skeletal aragonite dissolution from hypersaline seawater: A hypothesis[J]. Sedimentary Geology, 1992, 77(3/4): 249-257.
    [187] 宋国奇,王延章,石小虎,等. 东营沙四段古盐度对碳酸盐岩沉积的控制作用[J]. 西南石油大学学报,2013,35(2):8-14.

    Song Guoqi, Wang Yanzhang, Shi Xiaohu, et al. Palaeosalinity and its controlling on the development of beach and bar in Lake Facies[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(2): 8-14.
    [188] Krijgsman W, Langereis C G, Zachariasse W J, et al. Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis[J]. Marine Geology, 1999, 153(1/2/3/4): 147-160.
    [189] Krijgsman W, Hilgen F J, Raffi I, et al. Chronology, causes and progression of the Messinian salinity crisis[J]. Nature, 1999, 400(6745): 652-655.
    [190] Manzi V, Lugli S, Roveri M, et al. A new facies model for the Upper Gypsum of Sicily (Italy): Chronological and palaeoenvironmental constraints for the Messinian salinity crisis in the Mediterranean[J]. Sedimentology, 2009, 56(7): 1937-1960.
    [191] Manzi V, Lugli S, Roveri M, et al. The Messinian “Calcare di Base” (Sicily, Italy) revisited[J]. GSA Bulletin, 2011, 123(1/2): 347-370.
    [192] Manzi V, Gennari R, Hilgen F, et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean[J]. Terra Nova, 2013, 25(4): 315-322.
    [193] Manzi V, Lugli S, Roveri M, et al. The Messinian salinity crisis in Cyprus: A further step towards a new stratigraphic framework for eastern Mediterranean[J]. Basin Research, 2016, 28(2): 207-236.
    [194] Bourillot R, Vennin E, Kolodka C, et al. The role of topography and erosion in the development and architecture of shallow-water coral bioherms (Tortonian–Messinian, Cabo de Gata, SE Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1/2): 92-114.
    [195] Hoffmann R, Bitner M A, Pisera A, et al. Late Miocene biota from the Abad member of the Carboneras-Nijar Basin (Spain, Andalusia): A bathyal fossil assemblage pre-dating the Messinian salinity crisis[J]. Geobios, 2020, 59: 1-28.
    [196] Tzevahirtzian A, Caruso A, Scopelliti G, et al. Onset of the Messinian Salinity Crisis: Sedimentological, petrographic and geochemical characterization of the pre-salt sediments from a new core (Caltanissetta Basin, Sicily)[J]. Marine and Petroleum Geology, 2022, 141: 105686.
    [197] Caruso A, Pierre C, Blanc-Valleron M M, et al. Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur-bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 429: 136-162.
    [198] Borrelli M, Perri E, Avagliano D, et al. Paleogeographic and sedimentary evolution of North Calabrian basins during the Messinian Salinity Crisis (South Italy)[J]. Marine and Petroleum Geology, 2022, 141: 105726.
    [199] Bourillot R, Vennin E, Rouchy J M, et al. The end of the Messinian Salinity Crisis in the western Mediterranean: Insights from the carbonate platforms of south-eastern Spain[J]. Sedimentary Geology, 2010, 229(4): 224-253.
    [200] Bourillot R, Vennin E, Rouchy J M, et al. Structure and evolution of a Messinian mixed carbonate-siliciclastic platform: The role of evaporites (Sorbas Basin, south-east Spain)[J]. Sedimentology, 2010, 57(2): 477-512.
    [201] Gindre-Chanu L, Borrelli M, Caruso A, et al. Carbonate/evaporitic sedimentation during the Messinian salinity crisis in active accretionary wedge basins of the northern Calabria, southern Italy[J]. Marine and Petroleum Geology, 2020, 112: 104066.
    [202] Andreetto F, Aloisi G, Raad F, et al. Freshening of the Mediterranean Salt Giant: Controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis[J]. Earth-Science Reviews, 2021, 216: 103577.
    [203] Schlager W. Scaling of sedimentation rates and drowning of reefs and carbonate platforms[J]. Geology, 1999, 27(2): 183-186.
    [204] Schlager W, Marsal D, van der Geest P A G, et al. Sedimentation rates, observation span, and the problem of spurious correlation[J]. Mathematical Geology, 1998, 30(5): 547-556.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(2)

Article Metrics

Article views(253) PDF downloads(78) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-07-05
  • Revised:  2022-07-25
  • Accepted:  2022-08-16
  • Published:  2024-08-10

Research Progress on Carbonate Factory

doi: 10.14027/j.issn.1000-0550.2022.092
Funds:

National Natural Science Foundation of China 41672103

National Natural Science Foundation of China 41302089

Abstract: 

Significance  A large number of carbonate deposits in the Phanerozoic record information about the evolution of the environment at that time, and they represented an important carbon sink for the Earth. Today’s need for a “carbon neutral” condition has encouraged research into the development and evolution of the carbonate factory, and is an essential primary focus of contemporary carbonate studies. Carbonate factory research began later in China than in other countries; the main focus has been on the deposition and evolution of carbonate rocks. Studies of carbonate factory classification and research methods are still weak, and the understanding of the main causes of their extinction is also limited.   [Progres s ]  This summary, based on the reports of a large number of studies, examines the research progress in classification schemes and research methods for recognizing the main influences on carbonate factory development, and provides a reference to assist geologists’ deeper understanding of the carbonate factory mechanism. [Conclusions and Prospects]  It may be the development direction of carbonate factory research in the future to understand its operating mechanism, evolution process and main controlling factors from many aspects by using multidisciplinary knowledge methods, so as to make the research conclusions more accurate and explore its biological and oceanographic significance.

GU Qiang, XING FengCun, WEN Jiao, LIU ZiQi, FENG ShanShan. Research Progress on Carbonate Factory[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1128-1149. doi: 10.14027/j.issn.1000-0550.2022.092
Citation: GU Qiang, XING FengCun, WEN Jiao, LIU ZiQi, FENG ShanShan. Research Progress on Carbonate Factory[J]. Acta Sedimentologica Sinica, 2024, 42(4): 1128-1149. doi: 10.14027/j.issn.1000-0550.2022.092
  • 碳酸盐岩作为沉积岩主要组成成分之一,广泛分布于全球多个年代地层中,数量多,面积广。碳酸盐工厂是指碳酸盐生产的空间与过程[17]。在碳酸盐沉积系统中,碳酸盐颗粒组合与相关的碳酸盐工厂控制了沉积地层结构和几何形态,因此对地质记录中碳酸盐工厂的识别和演化过程解释有利于研究目标区域的沉积、构造和海平面变化历史的重建[810],并对理解碳酸盐工厂运行机制至关重要[11]。近年来,碳酸盐工厂研究在国内受到重视,大量学者对特定年代地层或特殊的碳酸盐沉积物已经进行了碳酸盐工厂相关的研究[1217]。但这些研究多针对类型较为单一的碳酸盐工厂,且聚焦于碳酸盐台地的沉积与演化,尚存在以下问题:(1)具有多种碳酸盐工厂分类方案,却无针对碳酸盐工厂划分方案及其发育特征的总结及归纳;(2)对碳酸盐工厂研究方法的发展、完善及针对不同研究目的研究方法选取还存在盲目性;(3)碳酸盐工厂消亡的主控因素复杂多样且各因素间存在一定的相关性,对消亡主控因素的归纳及各因素控制碳酸盐工厂的机制认识不足。因此,在国内外有关碳酸盐工厂研究的基础上,本文系统综述了碳酸盐工厂的划分方案、研究方法与消亡主控因素的研究进展,以期为国内学者研究碳酸盐工厂提供参考。

  • 碳酸盐工厂在内部和空间上高度复杂[18],区分不同的碳酸盐工厂是过去三十年来碳酸盐沉积学取得的主要进展之一[7]。其划分方案多种多样,但大多依据碳酸盐岩类型、主要沉积环境、沉积环境和沉淀方式、碳酸盐工厂建造的主导者及海洋环境学条件(温度、盐度和营养物等)与海洋地理参数(大洋深度及地貌等)等进行碳酸盐工厂类型的划分。

  • Surlyk[19]在对欧洲西北部上白垩统—古新统丹麦阶沉积的碳酸盐岩研究中,依据沉积的主要碳酸盐岩类型将碳酸盐工厂划分为三类并列出了三种碳酸盐工厂的主要底栖生物及不同碳酸盐工厂发育的相对位置。(1)生产生屑砂岩/粉砂岩的碳酸盐工厂:主要沉积生屑砂岩及生屑粉砂岩,沉积物在近海处发育交错层理,生屑砂岩分选良好,沉积在与海岸平行的水下沙丘区。(2)生产苔藓虫泥粒灰岩生物丘—小型苔藓虫粒泥灰岩生物丘的碳酸盐工厂:在离岸更远的地方,碎屑碳酸盐岩逐渐演化为泥粒灰岩/粒泥灰岩沉积,沉积在透光带下方相对较深的水域中,形成了显著的生物丘。向海方向,生物丘逐渐变小,灰泥逐渐丰富,底栖生物化石逐渐减少。(3)生产深海灰泥的碳酸盐工厂:深海灰泥代表第三个碳酸盐岩工厂,几乎没有生物化石,仅可见少量球粒。

  • James[20]提出基于过程的,与气候无关的两个碳酸盐岩工厂,Photozoan和Heterozoan,适用于整个显生宙。(1)Photozoan(光养)碳酸盐工厂:是指浅部、暖水、底栖钙质生物群落环境中建造的碳酸盐,强调了碳酸盐沉淀所需要的能量来自光合作用。(2)Heterozoan(异养)碳酸盐工厂:代表了Photozoan(光养)碳酸盐工厂外其他环境的碳酸盐的集合。但该种划分方案将碳酸盐工厂简单划分为两类,因此需要更详细的碳酸盐工厂划分方案。

  • Schlager[12]在Lowenstam et al.[21]区分三种碳酸盐沉淀基本模式(非生物成因、生物诱导成因、生物控制成因)的基础上,依据沉积环境和沉淀方式将碳酸盐工厂划分为3类,但因为3种碳酸盐工厂的产物是重叠的,因此工厂之间的界限在空间上是渐变的(图1a)。后来Reijmer[4]提出增加冷水珊瑚礁作为第4类碳酸盐工厂。大规模的鲕粒发育建造在其工厂体系中位置不明,因此Li et al.[14]将鲕粒工厂单列出来(图1b),如今该种碳酸盐工厂划分方案运用最广,受到广大学者的认可。由于前几种类型的碳酸盐工厂均为底栖性质的碳酸盐工厂,因此Schlager[22]又增加浮游碳酸盐工厂作为第5类碳酸盐工厂(图1c)。

    Figure 1.  Classification scheme of carbonate factory based on deposition environment and deposition mode

  • 热带浅水工厂分布于南北纬30°内的热带和亚热带、温暖、营养贫乏、光照充足及富含氧气的海洋表层,碳酸盐沉淀很大程度上以生物控制和非生物为主。主要建造者为光自养绿藻、珊瑚、有孔虫和某些软体动物。温度是其界限的主要控制因素,在目前的海洋中,热带碳酸盐工厂的纬度界限指标为最冷月份平均气温约为20 ℃,而纬度只是其界限的一个粗略的替代指标。与其他碳酸盐工厂相比,热带浅水工厂生产碳酸盐的区域更浅更窄,但平均生产率最高[2]。热带浅水工厂可向冷水工厂过渡,例如在海洋的暖表层和温跃层之间的边界以及上升流将富含营养的冷水携带至热带浅水区域[2325]

  • 冷水工厂是深水和高纬度地区碳酸盐的重要生产者,其范围为从热带浅水工厂的边界向两极延伸,但在低纬度的温跃层中也可能出现[23]。碳酸盐沉淀多为生物控制型,异养生物占优势,但光能自养生物的贡献变化很大。碳酸盐沉积物为砂粒大小的碳酸盐生物骨骼碎片组成,缺乏热带型珊瑚礁和鲕粒,碳酸盐灰泥很少,过渡到热带浅水工厂的区域通常延伸超过1 000 km[26]。在热带地区,如果环境恶劣,冷水工厂可以替代热带浅水工厂[12]。目前冷水碳酸盐岩作为碳酸盐的重要组成部分,随着碳酸盐工厂研究的深入,冷水碳酸盐逐渐受到重视[20,2730]。Wisshak et al.[31]对Azores冷水工厂不同水深、水动力和光分带下的碳酸盐生产、降解过程和主要生物种群进行了研究。

  • 灰泥丘工厂与热带浅水工厂及冷水工厂有根本的不同,其主要产物是泥晶碳酸盐,通常与微生物诱导和非生物沉淀有关。灰泥丘是在富含营养、低氧但不缺氧的水域沉积形成的,而非经冲刷形成的细小沉积物,从根本上不同于潟湖泥或深海等深流的水动力沉积物堆积。灰泥丘的主要成分泥晶灰岩在形成期间或形成不久后是固结的,而不是松散沉积物;泥晶灰岩是由无机和有机化学反应经过复杂的相互作用沉淀而成,其中微生物和腐烂的有机物起着核心作用。在重大生物危机之后,灰泥丘工厂的统治地位在短时间内重新确立[2]。在地质记录中,浅水区和热带地区的灰泥丘工厂是不寻常的,它的出现通常是因为环境条件或大灭绝导致的缺乏更有竞争、更高效的碳酸盐工厂[3233]

    随后增加的3种不同类型的碳酸盐工厂中,冷水珊瑚工厂分布于全球范围内,出现造礁珊瑚,并具有非常高的生物多样性。很大程度上依赖营养物的稳定输入,碳酸盐产量低,生产范围大,水深40~2 500 m。浮游碳酸盐工厂通过浮游有孔虫,颗石藻和其他浮游碳酸盐生物在开阔海域产生碳酸盐沉积物的工厂,也广泛分布于全球范围内。鲕粒碳酸盐工厂概念的提出始于20世纪70年代,一般用来描述大规模鲕粒发育建造,其主要成分是海相碳酸盐鲕粒。Li et al.[14]、李飞[34]通过对华南早三叠世温室条件下的鲕粒工厂研究表明由于表层海水温度和碳酸盐饱和状态之间的强线性关系,低纬度地区具有(季节性)干燥条件的极端温室气候显著促进了当时鲕粒工厂的大规模碳酸盐生产。

  • Pomar et al.[8]强调多种物理和生态因素对碳酸盐沉积过程的调节,注重碳酸盐发育的影响因素研究。该方案将碳酸盐工厂划分为底栖自生泥晶工厂(图2a)、浅水灰泥工厂(图2b)、骨屑工厂初始期(图2c)、厚壳蛤骨骼工厂繁盛期(图2d)、底栖有孔虫—藻类骨屑工厂(图2e)和珊瑚—藻类,底栖—浮游共生骨屑工厂(图2f)等,并可进一步细分为更多类型的碳酸盐工厂。该方案并未对碳酸盐工厂类型进行严格的定义,更多的是强调碳酸盐工厂建造的主导者,且不同类型的碳酸盐工厂可以共存于同相区或不同相区,并可发生相互转化。

    Figure 2.  Classification scheme of carbonate factory based on the construction leader (modified from reference [8])

  • Michel et al.[35]在综述大量碳酸盐岩台地研究文献的基础上,使用一种侧重于鉴别成分、地层结构和环境特征的确定性方法将浅水碳酸盐岩产量与海洋学参数联系起来。建立了基于海面海洋学参数(温度、盐度和初级生产力)的碳酸盐工厂函数。该模型使用现代遥感和现场海洋学数据进行了测试,而古代海洋学模型的输出则用白垩纪建模,从而确定5种碳酸盐工厂(图3)。

    Figure 3.  Classification scheme of carbonate factory based on marine environmental conditions and geographical parameters (modified from reference [35])

  • 对应于Pomar et al.[8]的浅水灰泥工厂以及一些浅水的微生物引起的碳酸盐沉淀,如鲕粒和叠层石。这个工厂最典型的特征是宽达100 km的夹心蛋糕状地层结构(layer-cake stratigraphic architecture)。发育非骨骼颗粒,受限制的海洋环流、相对中低的水动力及高的碳酸盐饱和度。

  • 典型特征是加积堆积状的地层结构,对应于热带碳酸盐陆架或分离的边缘台地,具有光养骨骼颗粒、生物礁及最高的碳酸盐生产率。包括珊瑚、层孔虫、藻类(特别是绿藻)、海绵和与光养藻类共生的底栖有孔虫。局限于低纬度、温暖贫营养及清澈的海洋环境。

  • 较小的碳酸盐堆积,大型底栖有孔虫是沉积物成分的特征,多样化的生物碎屑组成,通常位于温暖带或温带地区,具有明显的季节性,初级生产力较低,光照是控制工厂布局的主要环境因素。相较于光养生物T型工厂对浊度和营养物质更具耐受性。

  • 富营养化环境的异养生物群以及通常所说的冷水碳酸盐岩。这个工厂的特点是异养生物群,如苔藓虫和软体动物的聚集。位于营养丰富、富含有机物和浮游生物的海洋区域,如受河流径流影响具有较强水动力条件的上升流区和沿海地区。

  • 同微生物工厂[22],通常建造非常陡峭的碳酸盐岩沉积体,生产发生于大陆及深海环境。形成于缺氧条件下,通过降解海底大量有机物的微生物活动产生,有机物的含量和氧化条件是其主要驱动因素。细菌腐烂产生氨的过程或硫酸盐还原导致海水的碳酸盐饱和度局部增加。

  • 碳酸盐岩研究方法多样,综合前人研究成果(表1),统计分析其针对碳酸盐岩的研究方法。结果显示,进行碳酸盐岩研究使用的主要研究方法有:(1)岩相分析;(2)层序地层分析;(3)沉积相分析;(4)电子探针;(5)压实及沉降速率计算;(6)激光测深和地形学;(7)碳氧同位素;(8)锶同位素;(9)生物组合分析;(10)磷连续提取法;(11)牙形刺分析;(12)双壳尺寸测量分析;(13)XRF分析;(14)扫描电镜分析;(15)阴极发光分析;(16)拉曼光谱;(17)TOC分析;(18)地震分析;(19)Fe形态分析;(20)黄铁矿分析;(21)天文旋回分析等。以上方法可总结为岩相、沉积相、层序、生物、组成成分、地球化学、特殊矿物及天文旋回等8类分析方法。

    序号位置年代地层研究方法消亡主控因素参考文献
    1陕西耀县桃曲坡,鄂尔多斯南缘上奥陶统微相分析构造运动;海平面升降刘采等[36]
    2Paris Basin, France侏罗系层序及相分析;黏土分析;氧同位素海面温度;营养条件;海平面升降Brigaud et al.[37]
    3Apennines, Italy下侏罗统薄片颗粒成分分析;电子探针构造运动Brandano et al.[38]
    4western France platform侏罗系层序与相分析;压实及沉降速率计算海平面升降;构造运动;气候;营养条件;天文旋回Andrieu et al.[39]
    5Mozambique Channel seamounts, SW Indian Ocean新生界激光测深和地形学;薄片分析;87Sr/86Sr构造和火山运动Courgeon et al.[40]
    6southern Amazon Craton新元古界相分析;层序地层旋回;碳同位素构造运动;天文旋回Rudnitzki et al.[41]
    7Kioto carbonate platform, southern Tibet侏罗系微相分析缺氧事件;海平面升降Han et al.[42]
    8SE Circum-Caribbean渐新统—中新统相分析;锶同位素陆源输入;构造运动Silva-Tamayo et al.[43]
    9Alborz Basin, northern Iran下石炭统微相分析;有孔虫生物地层学海平面升降;构造运动;冰川作用Abadi et al.[44]
    10the Hyblea and Pelagian carbonate platforms,central Mediterranean渐新统—中新统微相分析;生物组合;碳氧同位素营养水平;构造运动;陆源输入;火山运动Brandano et al.[45]
    11Burdigalian, NW Italy and S France中新统生物组合分析;磷连续提取法营养水平Coletti et al.[46]
    12Morocco, Italy中侏罗统层序和相分析;碳氧同位素;碳酸盐含量分析海平面升降;营养水平Bodin et al.[47]
    13the Miocene San Marino carbonate shelf, northern Apennines, Italy中新统地层学研究;微相分析;构造运动;陆源输入;营养水平;全球气候事件Salocchi et al.[48]
    14川西北,四川盆地上三叠统牙形刺研究;地层学研究构造运动;气候变化;陆源输入Shi et al.[49]
    15华南,贵州二叠系生物组合分析;微相分析生物大灭绝事件,缺氧事件;气候事件孟琦等[50]
    16the Apennine carbonate platform, southern Italy下侏罗统双壳尺寸测量海洋酸化;营养水平Posenato et al.[51]
    17Tibetan Himalaya侏罗系碳氧同位素;TOC分析,XRF分析气候变化Han et al.[52]
    18Hanwang, Sichuan Basin, South China上三叠统牙形刺研究;微相分析;碳氧同位素;扫描电镜;阴极发光构造运动;陆源输入Jin et al.[53]
    19Xisha Islands, South China Sea上新统微相分析;XRF分析;海平面升降;温度变化;营养水平Wu et al.[54]
    20Sinemurian-Pliensbachian, southern Alps下侏罗统碳氧同位素;TOC分析;扫描电镜气候变化;陆源输入;营养条件;盐度Franceschi et al.[55]
    21Antillean shallow marine carbonate factories, (Lutetian-Bartonian limestones,St. Bartholomew, French West Indies中新统生物组合分析;微相分析火山运动;营养水平;光照水平Caron et al.[56]
    22Amazon continental margin, Brazil新近系地震分析;钻井数据分析构造运动Cruz et al.[57]
    23offshore Indus Basin, the northern part of the Arabian Sea古近系地震分析;钻井数据分析火山运动;构造运动;气候变化Shahzad et al.[58]
    24西藏南部上二叠统—中三叠统微相分析生物大灭绝;气候变化;构造演化;海平面升降Li et al.[59]
    25西藏南部上二叠统—中三叠统主量元素;拉曼光谱;阴极发光;扫描电镜;碳氧同位素生物大灭绝;气候变化;构造演化;海平面升降李明涛[11]
    26Tethys上三叠统薄片颗粒成分分析;碳同位素碳酸盐饱和度;海洋酸化Jin et al.[60]
    续表

    Table 1.  Main research methods and main factors controlling carbonate factories

    序号位置年代地层研究方法消亡主控因素参考文献
    27the central High Atlas Basin, Morocco白垩系—上新统微相分析;碳同位素;TOC分析气候变化;陆源输入;营养水平;缺氧事件;海洋酸化Krencker et al.[61]
    28the Cupido platform margin-gulf of Mexico, NE Mexico白垩系微相分析;碳氧同位素;TOC分析缺氧事件;营养水平;火山运动Núñez-Useche et al.[62]
    29Maldives中新统微相分析;生物组合;地震分析气候变化(季风)Reolid et al.[63]
    30the Campos Basin, Brazil白垩系地震分析;钻井数据分析;微相分析海平面升降;陆源输入,构造运动Rebelo et al.[64]
    31Hannan-Micangshan area, South China下寒武统岩石学分析;主微量元素;粒度分析气候变化;陆源输入;营养水平;海平面升降Li et al.[65]
    32southern Pyrenees, Spanish古新统—始新统微相分析;生物组合;碳氧同位素陆源输入;气候变化;营养水平Li et al.[66]
    33western Laurentia, North America上泥盆统TOC分析;Fe形态;微相分析;黄铁矿分析缺氧事件;营养水平Li et al.[67]
    34Guizhou of South China二叠系微相分析;牙形刺研究;缺氧事件;冰川事件;海平面变化;生物大灭绝事件Meng et al.[17]

    针对碳酸盐工厂的研究中,采用的技术手段同样源自碳酸盐岩的各种研究方法。但早期研究受研究技术与设备条件的限制,前人主要利用碳酸盐工厂所处的地理位置、野外宏观岩性、结构、构造及宏观古生物信息并结合室内偏光显微镜下对薄片进行岩性的鉴定、生物种类、组合及含量的定量分析,从而划分出不同的微相组合来进行碳酸盐工厂类型的划分。

    在碳酸盐工厂发育特征及类型划分的基础上,通过层序地层分析、沉积相分析及地震分析等方法,并结合研究区地质背景、海平面升降变化与构造沉降速率等可用于判断碳酸盐工厂的消亡是否受构造演化及相对海平面的变化控制。但营养条件、气候变化、氧化还原条件及盐度等碳酸盐工厂消亡的其他主控因素则需要结合地球化学分析等技术手段来进行综合判断。

    随着分析技术的发展,碳酸盐工厂的研究方法逐渐精细,更定量化。激光测深和地形学方法被运用于现代多个碳酸盐工厂的研究中。目前,针对碳酸盐工厂的研究仅达到碳酸盐岩组成成分及生物种类的定性研究是不够的,进行野外精细取样,室内光学显微镜下生物种属及含量的定量分析,非生物组分颗粒的粒度分析是必要的。从而使研究结果能达到更准确,更高分辨率地划分不同类型的碳酸盐工厂,并以此研究不同碳酸盐工厂间的转换特征及机制。

    连续的多类型地球化学测试分析、微观Fe形态及黄铁矿分析的引入,利用数学分析方法对沉积速率及天文旋回等方面的定量化研究,且天文旋回与碳酸盐工厂潜在关系的研究中采用GR、δ13C及剩余磁等多种参数结果的综合分析等,使得碳酸盐工厂演化及主控因素的研究更深入且更精确。

  • 碳酸盐工厂经过不同时间的碳酸盐沉积后,通过长期暴露、硅质碎屑掩埋或淹没而使碳酸盐岩沉积终止。Schlager[26]将碳酸盐台地消亡定义为“海平面相对上升超过碳酸盐沉积,从而使得台地/生物礁淹没在碳酸盐主要沉积的透光层之下”。前人将主控因素归纳为生态因素、气候/环境因素及构造因素[13,6869]。作者通过对国内外碳酸盐台地/碳酸盐工厂建造及消亡最新研究文献的调研(表1)(表中仅选择性展示2013后发表的较新碳酸盐工厂研究文献),将主控因素分为11种,且各主控因素间存在相关性。

  • 全新世珊瑚礁上的珊瑚生长率表明,碳酸盐台地能够很容易跟上地层长期下沉和海平面变化的步伐,但淹没的珊瑚礁和碳酸盐台地却在地质记录中很常见,这一事实构成了一个科学悖论[26]。Margalef[70]发现高营养环境中造礁石珊瑚稀少。随后Schlager[26]提出相较于海平面的上升,通过环境压力降低碳酸盐台地生长潜力可能是台地淹没的方式。Hallock et al.[71]指出营养物质对珊瑚礁群落起负面影响为这一悖论提供了解释。珊瑚礁群落的主要碳酸盐沉积物生产者高度适应了营养缺乏的环境,硝酸盐和磷酸盐的输入刺激了浮游生物的生长[45],降低了海水的透光度[48,7274],限制了虫黄藻—珊瑚和钙藻等造礁生物的生存深度范围[7478]图4)且磷酸盐抑制了碳酸钙晶体的形成[7981],降低了碳酸盐台地的生长潜力[82]。此外,碳酸盐生产和生物侵蚀的速率是相似的[8385],较高的营养浓度和浮游生物密度也刺激了底栖生物中肉质藻类和非繁殖型悬食生物的生长[8687],改变了底栖生物的群落结构[88]。除了取代造礁石藻类和珊瑚外,许多快速生长的竞争对手也是主动破坏珊瑚礁结构的生物腐蚀剂,因此即使养分的适度增加也能使珊瑚礁群落碳酸盐岩生产力从净生产转变为净侵蚀。

    Figure 4.  Influence of water transparency on coral survival range (modified from references [74,76⁃78])

    δ13Corgδ15N反映了富含营养物质的表层水使初级生产力增加和洪水泛滥导致的有机物掩埋增加[88],将更高的有机物通量带入海水,导致生产碳酸盐的底栖生物死亡,并促进富含有机物的泥岩对碳酸盐沉积物进行覆盖[89]。地质记录中,未沉积、生物侵蚀及氧化还原电位的降低等证据表明被淹没的珊瑚礁与碳酸盐台地有过量的营养物质。营养过剩导致碳酸盐台地淹没的其他机制包括局部或区域性上升流模式及大洋对流的变化[90]。Halfar et al.[91]通过统计分析全球现代碳酸盐数据,建立了根据现有的生物组合区分高营养水平下和低营养水平下形成的碳酸盐系统的标准。并且将全球范围内营养和温度条件与现代碳酸盐组成进行比较,揭示了随着营养增加和温度降低,光自养碳酸盐生产者逐渐减少[87]图5)。Coletti et al.[46]利用磷连续提取法证明了中新世意大利北部及法国南部碳酸盐工厂深受营养物质的影响。且当研究层位没有明显的陆源物质时,海水中溶解的Al3+可能被吸附到颗粒物质上形成包壳颗粒的氢氧化物[92]而使Al不适合于标准化。因此可选择Ti作为碎屑元素,利用Ln(Cu/Ti)和Ln(Ba/Ti)作为海洋营养条件的代用指标,用于推断营养物流入量和生产力水平[54]

    Figure 5.  Types of shallow water carbonate environments globally, showing temperature and nutritional conditions (modified from reference [87])

  • 前人研究表明几期重大的碳酸盐台地消亡事件都发生于海洋缺氧期间[50,9394],这种关系对于泥盆纪[26,67]及中白垩世[26,6162,95100]珊瑚礁和台地的广泛消亡尤为明显。北特提斯白垩系碳酸盐台地4次淹没都与缺氧事件具有较好的相关性,证实了缺氧事件与碳酸盐工厂消亡具有因果关系[101102]。南阿尔卑斯山Trento台地在早侏罗世缺氧事件期间消亡,随后沉积了深水碳质泥灰岩[103];古近纪—新近纪的碳酸盐台地消亡事件主要集中在始新世和中新世[26],当时全球海洋同样具有明显的缺氧趋势[104]

    Arthur et al.[96]观察到“快速的海侵可能将最小含氧层带到整个浅水碳酸盐岩区域”。但最小含氧层必须位于透光层之下,所以这种情况需要超过100~200 m的快速海侵,这很难达到,除非同时有某种机制将营养物混入表层水,从而造成浮游植物的大量繁殖并降低透光层的深度。因为大洋对流会将营养物质带入表层水,所以大洋对流为此提供了可能。Hallock et al.[71]认为在缺氧事件期间存在海洋分层的条件下,大洋对流是可能的,并且碳酸盐台地的消亡可能是被大洋对流带到地表的营养物所造成的。海洋缺氧事件对生物有着重要的影响,不同的海水含氧量将直接影响生物的生存,从而导致碳酸盐工厂的消亡[105106]图6)。钼是一种过渡金属元素,通常富集在缺氧条件下沉积的富含有机物的沉积物中,富集程度反映了局部/全球钼的总体可用性以及有机碳的浓度。因此,前人利用钼在同期黑色页岩中的富集说明了缺氧的短暂扩散[107108]

    Figure 6.  Responses of different organisms to dissolved oxygen (modified from reference [105])

  • 构造运动导致的碳酸盐台地隆起/下沉可能导致碳酸盐岩平台的消亡[37,40,43,48,58,88,90,109]图7),且构造运动引起的大洋对流导致营养水平上升也为碳酸盐台地的消亡提供了一种可能机制。

    Figure 7.  Influence of tectonism on evolution and extinction of carbonate platforms (modified from reference [109])

    Taira[110]引用了FairBridge的“由板块运动触发的海洋盆地突然运动将导致海洋中的大洋对流”假设,并通过研究证实现代相对较低水平的构造运动的确能够影响现代海洋的热分层,从而导致大洋对流。因此在海水分层不稳定的时期,构造运动触发的大洋对流与快速海侵同时发生时会使碳酸盐台地消亡。Vogt[111]研究表明火山活动导致的缺氧、富营养的上升流是碳酸盐岩工厂消亡的可能因素,并对不同成因上升流(图8a)造成碳酸盐工厂消亡的可能机制进行了分析(图8b)。Bahamonde et al.[112]对西班牙西北部晚石炭世碳酸盐台地的建造和消亡研究认为区域性构造运动引起的海平面重大变化是台地消亡的主要控制因素。Bekker et al.[93]研究认为美国古元古代碳酸盐台地两次消亡事件很可能与Kenorland断裂有关的成熟被动边缘的解体有关。刘采等[36]认为鄂尔多斯南缘碳酸盐台地淹没的区域构造背景应与秦岭造山带构造演化密切相关。意大利Apennines下侏罗统碳酸盐台地淹没的分析表明,构造运动导致快速沉降促使可容纳空间的增加控制了碳酸盐工厂的消亡,而非营养资源的变化或古海洋学的变化导致[38]。Alborz Basin盆地下石炭统边缘差异断块机制导致盆地西部的抬升及东部的沉降,从而使西部地层顶部保存大量的水下暴露和角砾岩化[44]。Jin et al.[53]对四川汉旺卡尼期碳酸盐台地消亡的研究表明该地区的碳酸盐台地危机和强烈的陆源输入并非由卡尼期洪水事件的开始导致,而可能是印支造山期间与前陆盆地形成有关的沉降速率加快、环境变迁和增强的陆源碎屑输入造成。

    Figure 8.  Origin of ocean upwelling and associated extinction of carbonate platforms

    同沉积构造活动和火山作用是控制裂谷盆地碳酸盐基底位置、大小和形状的两个主要因素。碳酸盐台地被大量分割为断块,这可能是由于喷发的火山碎屑输入隔离碳酸盐工厂生产地区导致[88,113115],Álvaro et al.[116]通过对摩洛哥沿海寒武纪碳酸盐工厂的研究证实了碳酸盐工厂的最终消亡与该地区的构造活动有关。火山活动对环境和生态造成破坏从而影响碳酸盐岩的沉积以及火山碎屑大量输入,直接替代碳酸盐沉积[56]。奥陶纪华南板块运动引起的火山活动导致碳酸盐台地陷落形成深水斜坡[117]。以上大量研究证实构造运动直接或间接导致了碳酸盐工厂的消亡。

  • 陆源物质的输入可划分为两种。(1)陆地径流中营养物质输入[37,45,61,71,82,90,118],导致这些营养物质在硅质陆源碎屑沉积物到达之前抑制了碳酸盐工厂的生产;如果在下沉超过临界深度之前未能将多余的营养物质从系统中排出,碳酸盐工厂就会消亡。(2)陆源硅质碎屑加速进入近海盆地,导致大陆边缘从以碳酸盐为主的沉积转变为硅质碎屑沉积[4749,119]

  • 碳酸盐生产受到生物组合的影响,生物大灭绝导致碳酸盐生产者减少从而控制了碳酸盐工厂的消亡[5,50,120121],生物大灭绝事件常伴随着碳酸盐产量的下降(图9)。

    Figure 9.  Mass extinction event and production of carbonate factory (modified from references [5,120])

    Philip et al.[122]通过对位于西地中海白垩纪塞诺曼阶—土伦阶的碳酸盐台地进行研究发现,其消亡开始于晚白垩世和Helvetica生物带时期。重大生物更替影响了底栖生物,使其发生了一次严重的灭绝事件,导致主要分泌文石的生物消失。Iba et al.[123]研究发现太平洋西北部白垩系碳酸盐台地生物群的灭亡很可能不是一个局部事件,而是白垩纪海洋中具有全球影响的事件的一部分,从而导致了碳酸盐台地的消亡。在环境变化和生物危机期间,微生物是碳酸盐系统的重要贡献者[124126],并在高营养水平下发育良好[127130]

  • 普遍认为相对海平面变化是无法超过碳酸盐台地沉积的[26],因此海平面对碳酸盐台地消亡的影响可能为大规模的洪水事件、快速海侵和长期的海洋学变化导致洪水期海底生态系统压力增加[64,112,131132]。海平面快速上升淹没了以前的陆地,导致泛滥平原土壤中的营养物质混入,抑制了珊瑚礁/碳酸盐台地的再生长也可能是碳酸盐工厂消亡的因素[47,49,90,130]。Jarvis et al.[133]研究发现白垩纪塞诺曼阶—土伦阶的黏土含量异常高,这也可能与海平面的快速上升有关;Thierry et al.[134]以及Wilmsen[82]认为叠加在二级海平面上升之上的快速和高幅度的三级海平面波动可能对碳酸盐台地的淹没起了很重要的作用。但海平面的下降也可能是粗粒陆源硅质碎屑岩进积的原因,并且导致碳酸盐台地暴露从而破坏碳酸盐工厂的生产能力[61,86]。Sattler et al.[135]研究南海中新世珠江组碳酸盐工厂消亡的主要原因之一是相对海平面的上升。除海平面上升之外,海退事件可导致冲刷重力河道沉积、侵蚀面、沉积间断的形成,且全球海退的迹象可能反映了冰川作用的强烈影响[44]。海平面升降变化导致的碳酸盐工厂消亡常伴随着暴露剥蚀,因此可根据碳氧同位素数据及岩相学证据来解释碳酸盐岩内部的重复陆上暴露[135]。不整合面以下碳氧同位素值的降低通常反映了地表暴露以及土壤带CO2和来自大气降水的低氧同位素[136138]。对不连续面下同位素降低的另一种解释为来自沿流动通道运移的埋藏流体的胶结物沉淀[139],与正常的泥晶灰岩相比,埋藏泥晶灰岩的氧同位素值通常较低,因为埋藏流体的温度较高[140]。此外,低碳同位素信号可能由地下环境中高温下的有机物降解产生[141]。除此之外还可利用多种手段对海平面变化进行研究,从而确定海平面变化是否为所研究地层碳酸盐工厂消亡的主控因素。

  • 热带和非热带碳酸盐台地在几何形状、沉积相带特征、地层结构、沉积物堆积速度和碳酸盐生产生物群方面存在差异[142143]。气候决定了温度、盐度和养分的有效性,并在很大程度上控制着形成碳酸盐的生物组成[37,48,52,6566,87]。Simms et al.[144]研究假设一个“洪水事件”打破了晚三叠世普遍的干旱气候,导致粗粒、成熟度低的硅质碎屑径流和堆积增加,表现为黑色页岩(或绿色页岩、放射虫硅质岩)覆盖于特提斯范围的碳酸盐岩之上,从而导致碳酸盐台地的消亡。这一假设在全球多个地方被证实,称为“卡尼期洪泛事件[49,55,60,119,145150]。Betzler et al.[151]研究发现表层水温抑制了昆士兰碳酸盐台地生物礁的发育;Simone et al.[152]也讨论了温度对碳酸盐台地消亡影响的例子。较大的底栖有孔虫繁殖的最低温度是17 ℃~20 ℃,如此低的温度无法支持珊瑚礁的生长[153156],当表层水温度再次达到足以支撑珊瑚礁成长时,其可能已经下沉到透光层以下,或者下沉到不能形成生物礁的深度。且碳酸盐岩工厂的消亡可能会加剧海水温度下降的速率[157158]。西班牙白垩系塞诺曼—土伦阶Altamira碳酸盐台地消亡研究表明台地消亡伴随着不断加剧的温室气候,增加了河流从大陆向海洋的转移,导致了初级生产力的提高和随之而来的有机物埋藏的增加[81]。Sattler et al.[135]研究南海中新世珠江组碳酸盐工厂消亡的主要原因之一是向淹没不整合面海水温度逐渐下降。极端的高温气候同样会对海洋生物造成致命的打击,每种生物都有一定的高温忍受上限,常见生物多为30 ℃~40 ℃,仅个别生物能超过40 ℃。因此当高温气候产生时,生物就会出现死亡乃至灭绝[105106]图10)。同时季风活跃导致洋流增强同样是碳酸盐工厂消亡的原因之一[63]

    Figure 10.  Responses of biological species to high temperature (modified from reference [105])

  • Martinez et al.[159]在综合了西欧盆地侏罗纪时期保存完好的箭石中测得的δ13C值的演化后,确定了碳酸盐产量的变化与稳定的δ13C值相关,因为长期的δ13C值最大值与低碳酸盐生产同步,而长期δ13C最小值对应于高碳酸盐产量的时期,并将这些长期的δ13C值变化解释为9.1 My偏心率轨道周期的结果。且对不同偏心率进行了分析。在高偏心率时期,尽管季风事件加强了营养物质、有机碳和碳酸根离子向海洋的输入,但因为干燥气候和海水中的有效氧化条件[159],有机碳的掩埋被阻止。这导致了δ12C在海水中的富集及海洋碳酸盐沉积物中δ13C值随之降低。低偏心率间隔导致潮湿条件,这促进了高风化率、养分输入、生产力水平和海洋中的有机碳埋藏,并导致了δ13C值的增加[157]图11)。除此之外,高频旋回受天文轨道影响的海平面变化控制,因此在高频层序划分的基础上研究轨道周期对碳酸盐岩工厂的控制同样具有重要意义[41,160]

    Figure 11.  Relationship between astronomical cycle and extinction of carbonate factory (modified from reference [39])

  • 大气中CO2浓度上升时,海气交换导致CO2混入海洋,因此DIC(溶解无机碳)增加,但海水中和酸的能力不变,导致碳酸根离子浓度与海水碳酸盐饱和度降低,从而文石/方解石不沉淀[108,161]。碳酸根离子浓度的降低对钙化生物非常重要,因为它不仅与PH值的降低有关,还降低了钙离子的饱和状态,从而影响了海洋中碳酸钙矿物的稳定性。海洋酸化被用来解释过去世界上多个地方深水沉积物中CaCO3含量快速且显著下降的地质现象,表明了溶跃层(ACD)和补偿深度(CCD)的大幅上升,海洋酸化导致碳酸盐溶解、高度钙化的生物化石的丰度急剧下降以及一些物种尺寸的减小[162],从而导致碳酸盐工厂消亡[51,163175]。火山活动停止后,大气中CO2过量会由于高速率的硅酸盐风化和碳酸盐埋藏而在几万—几十万年后恢复到原来的状态[176178]。一旦海洋碱度恢复,由于较高的碳酸盐饱和度,化学沉淀就替代了大部分由生物主导的碳酸盐工厂。因此生物钙化危机后海水碳酸盐过饱和可能是短期内鲕粒广泛出现的控制因素[179]。例如:二叠纪—三叠纪危机,记录了碳酸盐工厂从生物碳酸盐岩到鲕粒碳酸盐岩的突然转变伴随着生物危机、大的碳循环扰动,同时过高的碳酸盐饱和度可能导致了巨鲕的出现[34,108,180182]

  • 盐度是控制碳酸盐生产环境的主要因素[183]。Allison et al.[184]研究发现盐度差异影响着碳酸盐工厂的产量,且盐度降低的楔状体在靠近陆地的克拉通环境中可能很常见(图12),盐度的降低会抑制颗石藻的钙化[185]。但在超盐度海水中文石是不饱和的,文石质骨骼被广泛溶解及交代[186187]。地中海墨西拿盐度危机因在短时间间隔内形成了巨厚的岩盐和其他蒸发岩矿物被描述为一场生态危机[188193]。前人对其研究发现高盐度环境是大型珊瑚礁堆积及半深海动物群消失的原因[194196]。封闭海水环境中受强烈的蒸发作用,盐度逐渐升高,形成碳酸盐—碳酸盐/蒸发岩—蒸发岩沉积的演化体系[197198],且碳酸盐产量受蒸发岩变形和溶解的局部影响[199200]。随后赞克尔期洪水使海平面上升,盐度降低,环境压力变小后,出现两种微生物主导的碳酸盐台地沉积[201202]

    Figure 12.  Ideal model of low⁃salinity wedge (modified from reference [184])

  • 海洋中大多数碳酸盐的沉淀都被限制在透光层(大约海洋上层100 m)以上,当碳酸盐台地被淹没到碳酸盐岩生产几乎停止的海底深度时,就会发生碳酸盐工厂的消亡。因此浅水碳酸盐岩沉积速率可能决定一个礁/碳酸盐台地的生死[1]。Schlager[203]通过避免了比率相关性问题[204]影响的沉降速率分析实验证实,碳酸盐沉积速率随着时间的增加而降低,其变化大约与时间变化的平方根成反比,碳酸盐沉积速率决定着生物礁/碳酸盐台地的生长潜力。碳酸盐台地生长潜力的降低主要是由于环境因素,而不仅仅是由于陆上暴露时间的增加。这一假设得到了以下事实的证实:碳酸盐台地消亡和向陆地退积可能会持续数千万年,并与长期的地球动力学过程相联系。同样,碳酸盐台地生物在数百万—数千万年内未能适应海平面,表明长期过程带来了压力。

  • 前人为碳酸盐工厂的研究奠定了坚实的基础,已对多个年代地层或特殊的碳酸盐工厂进行过研究。笔者在前人研究的基础上,对碳酸盐工厂分类方案、研究方法及消亡主控因进行了系统的整理和分析。将碳酸盐工厂归纳为依据碳酸盐岩类型、主要沉积环境、碳酸盐工厂建造的主导者、沉积环境和沉淀方式及海洋环境学条件与海洋地理参数进行类型划分的5种分类方案,并介绍了不同划分方案所划分的碳酸盐工厂类型及特征。归纳了碳酸盐工厂的研究方法,并将消亡的主控因素总结为营养水平、缺氧事件、构造运动、陆源物质输入、生物大灭绝事件、海平面变化、气候变化、天文旋回、海水酸碱度、海水盐度及碳酸盐沉积速率/碳酸盐台地生长潜力,并分析了每种主控因素导致碳酸盐工厂消亡的原因及过程。碳酸盐工厂特征多样,类型复杂且随着环境变化可发生相互转化。在碳酸盐研究日趋高精度及高分辨率的要求下,学者需要依据研究目的有针对性地选择碳酸盐工厂分类方案及研究方法。进行系统、密集的取样分析,综合多因素进行碳酸盐工厂类型的划分,从而达到碳酸盐工厂演化的高分辨率识别。以及运用多学科知识方法进行碳酸盐工厂研究,从多方面认识其运行机制、演化过程及主控因素,使研究结论更准确,并发掘其中蕴藏的生物学及海洋学意义,可能是未来碳酸盐工厂研究的发展方向。

Reference (204)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return