Advanced Search
Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents

CHEN BinTao, MA Lun, HONG Liang, SHI ZhongSheng, PANG WenZhu, XUE Luo, WANG Lei, DAI HanSong, ZHAO YanJun. Sedimentary Evolution and Controlling Factors of Fan Delta and Slump Fan Complex Deposition in a Steep Slope Belt of a Faulted Basin: A case study from the Cretaceous deposits of the A Sag in Melut Basin, Central Africa[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1058-1072. doi: 10.14027/j.issn.1000-0550.2022.087
Citation: CHEN BinTao, MA Lun, HONG Liang, SHI ZhongSheng, PANG WenZhu, XUE Luo, WANG Lei, DAI HanSong, ZHAO YanJun. Sedimentary Evolution and Controlling Factors of Fan Delta and Slump Fan Complex Deposition in a Steep Slope Belt of a Faulted Basin: A case study from the Cretaceous deposits of the A Sag in Melut Basin, Central Africa[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1058-1072. doi: 10.14027/j.issn.1000-0550.2022.087

Sedimentary Evolution and Controlling Factors of Fan Delta and Slump Fan Complex Deposition in a Steep Slope Belt of a Faulted Basin: A case study from the Cretaceous deposits of the A Sag in Melut Basin, Central Africa

doi: 10.14027/j.issn.1000-0550.2022.087
Funds:

National Natural Science Foundation of China 41472091

National Natural Science Foundation of China 41872116

  • Received Date: 2022-04-02
  • Accepted Date: 2022-08-18
  • Rev Recd Date: 2022-07-15
  • Available Online: 2022-08-18
  • Publish Date: 2024-06-10
  • Objective As an important type of coarse-grained sedimentary system and oil and gas reservoir in faulted basins, fan delta and slump fan complex deposition has been the hot topic of research on lacustrine sedimentary and reservoir formation, such as distribution area, evolution period and accumulation model. Methods Based on high resolution 3D seismic and drilling and logging data in the A Sag of Melut Basin in central Africa region, the sedimentary characteristics and evolution of fan delta-slump fan complex are studied by using core observation, sequence division, seismic reflection characteristics and seismic attribute analysis. Results and Conclusions The results showed that the types of sedimentary facies of fan in the study area included fan delta and slump fan caused by gravity flow, slump fan had two types of morphology characteristic, the first one was line source slump fan controlled by slope break, the second one was multistage slump fan with single point source controlled by steep topographic slope. Combined with seismic profiles and well logging features, five periods of fans were recognized in the Cretaceous study section. The single-stage fan all had the characteristics of retrogradation, the vertical evolution of multiple periods of fans was characterized by “first progradation and later retrogradation”. The fan distribution was the largest at the end of Renk Formation deposition in the Lower Cretaceous, reaching 148 km2. However, the fan evolution was mainly influenced by tectonic activity, palaeogeomorphology, provenance supply, and base-level cycle. The fan distribution was larger in the period of strong tectonic activity, abundant provenance supply and large short-axis tectonic uplift, and the slump fan was most developed in the early period of relative base-level rising cycle and decreasing cycle. A new understanding of the sedimentary pattern transformation occurred in the Early Cretaceous and Late Cretaceous in the A Sag was put forward. The exploration potential of the fan delta and slump fan complex deposition in the faulted depression is clarified, which guided the exploration deployment.
  • [1] 朱筱敏,信荃麟. 湖泊扇三角洲的重要特性[J]. 石油大学学报(自然科学版),1994,18(3):6-11.

    Zhu Xiaomin, Xin Quanlin. Important features of lacustrine fan[J]. Journal of the University of Petroleum, China, 1994, 18(3): 6-11.
    [2] 于兴河. 碎屑岩系油气储层沉积学[M]. 2版. 北京:石油工业出版社,2008:279-395.

    Yu Xinghe. Clastic hydrocarbon reservoirs sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2008: 279-395.
    [3] 于兴河,李顺利,谭程鹏,等. 粗粒沉积及其储层表征的发展历程与热点问题探讨[J]. 古地理学报,2018,20(5):713-736.

    Yu Xinghe, Li Shunli, Tan Chengpeng, et al. Coarse-grained deposits and their reservoir characterizations: A look back to see forward and hot issues[J]. Journal of Palaeogeography, 2018, 20(5): 713-736.
    [4] 朱筱敏,董艳蕾,刘成林,等. 中国含油气盆地沉积研究主要科学问题与发展分析[J]. 地学前缘,2021,28(1):1-11.

    Zhu Xiaomin, Dong Yanlei, Liu Chenglin, et al. Major challenges and development in Chinese sedimentological research on petroliferous basins[J]. Earth Science Frontiers, 2021, 28(1): 1-11.
    [5] 于兴河,瞿建华,谭程鹏,等. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式[J]. 新疆石油地质,2014,35(6):619-627.

    Yu Xinghe, Qu Jianhua, Tan Chengpeng, et al. Conglomerate lithofacies and origin models of fan deltas of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 619-627.
    [6] 付鑫,杜晓峰,官大勇,等. 渤海海域沙河街组一二段扇三角洲混合沉积特征、沉积模式及勘探意义[J]. 地球科学,2020,45(10):3706-3720.

    Fu Xin, Du Xiaofeng, Guan Dayong, et al. Depositional system, plane distribution and exploration significance of fan-delta mixed siliciclastic-carbonate sediments in lacustrine basin: An example of member 1-2 of Shahejie Formation in offshore Bohai Bay, eastern China[J]. Earth Science, 2020, 45(10): 3706-3720.
    [7] Liu Q H, Zhu X M, Zhu H T, et al. Three-dimensional forward stratigraphic modelling of the gravel-to mud-rich fan-delta in the slope system of Zhanhua Sag, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 18-30.
    [8] Xu W, Fang L, Zhang X Y, et al. Object-based 3D geomodel with multiple constraints for Early Pliocene fan delta in the south of Lake Albert Basin, Uganda[J]. Journal of African Earth Sciences, 2017, 125: 1-10.
    [9] Mahata H K, Maiti R. Evolution of Damodar fan delta in the western Bengal Basin, West Bengal[J]. Journal of the Geological Society of India, 2019, 93(6): 645-656.
    [10] 陈欢庆,穆剑东,王珏,等. 扇三角洲沉积储层特征与定量评价:以辽河西部凹陷某试验区于楼油层为例[J]. 吉林大学学报(地球科学版),2017,47(1):14-24.

    Chen Huanqing, Mu Jiandong, Wang Jue, et al. Reservoir characteristics of fan delta deposits and its quantitative evaluation: Taking Yulou oil bearing sets in a certain experimental area of West Depression in Liaohe Basin as an example[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1): 14-24.
    [11] 纪友亮,吴胜和,周勇,等. 河北滦平东杨树沟剖面砂岩中的发散状层理及其成因探讨[J]. 古地理学报,2013,15(1):43-48.

    Ji Youliang, Wu Shenghe, Zhou Yong, et al. Radiational bedding in sandstone and analysis of its origin in Dongyangshugou section of Luanping, Hebei province[J]. Journal of Palaeogeography, 2013, 15(1): 43-48.
    [12] 张昌民,朱锐,郭旭光,等. 干旱地区河流扇三角洲—河流扇演替模式:来自黄羊泉扇的启示[J]. 地球科学,2020,45(5):1791-1806.

    Zhang Changmin, Zhu Rui, Guo Xuguang, et al. Arid fluvial fandelta-fluvial fan transition: Implications of Huangyangquan fan area[J]. Earth Science, 2020, 45(5): 1791-1806.
    [13] Miller K L, Kim W, McElroy B. Laboratory investigation on effects of flood intermittency on fan delta dynamics[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(2): 383-399.
    [14] Barrett B J, Collier R E L, Hodgson D M, et al. Quantifying faulting and base level controls on syn-rift sedimentation using stratigraphic architectures of coeval, adjacent Early-Middle Pleistocene fan deltas in Lake Corinth, Greece[J]. Basin Research, 2019, 31(6): 1040-1065.
    [15] 彭飚,金振奎,朱小二,等. 扇三角洲沉积模式探讨:以准噶尔盆地玛北地区下三叠统百口泉组为例[J]. 古地理学报,2017,19(2):315-326.

    Peng Biao, Jin Zhenkui, Zhu Xiao’er, et al. Discussion about depositional models of fan delta: A case study from the Lower Triassic Baikouquan Formation in Mabei area, Junggar Basin[J]. Journal of Palaeogeography, 2017, 19(2): 315-326.
    [16] 孙乐,于兴河,李胜利,等. 北部湾盆地乌石凹陷东区始新统流三段水进型扇三角洲沉积特征[J]. 中国地质,2017,44(3):485-498.

    Sun Le, Yu Xinghe, Li Shengli, et al. Sedimentary characteristics of transgressive fan delta of the 3rd member of Eocene Liushagang Formation in eastern Wushi Sag, Beibuwan Basin[J]. Geology in China, 2017, 44(3): 485-498.
    [17] Jobe Z R, Sylvester Z, Howes N, et al. High-resolution, millennial-scale patterns of bed compensation on a sand-rich intraslope submarine fan, western Niger Delta slope[J]. GSA Bulletin, 2017, 129(1/2): 23-37.
    [18] 朱筱敏,刘芬,谈明轩,等. 济阳坳陷沾化凹陷陡坡带始新统沙三段扇三角洲储层成岩作用与有利储层成因[J]. 地质论评,2015,61(4):843-851.

    Zhu Xiaomin, Liu Fen, Tan Mingxuan, et al. Diagenesis and genesis of favorable reservoir of fan delta in Eocene Shahejie Fm., Zhanhua Sag Jiyang Depression, Bohai Bay Basin[J]. Geological Review, 2015, 61(4): 843-851.
    [19] Wei W, Zhu X M, Tan M X, et al. Facies controls on the distribution of diagenetic alterations in fan delta deposits: A case study from the Lower Cretaceous sandstone, Chagan Sag, Inner Mongolia, China[J]. Geological Journal, 2017, 52(4): 539-558.
    [20] Csibri T, Rybár S, Šarinová K, et al. Miocene fan delta conglomerates in the north-western part of the Danube Basin: Provenance, paleoenvironment, paleotransport and depositional mechanisms[J]. Geologica Carpathica, 2018, 69(5): 467-482.
    [21] 纪友亮,刘君龙,王天云,等. 陆相湖盆三角洲—滩坝复合砂体分布模式及编图方法[J]. 古地理学报,2016,18(4):615-630.

    Ji Youliang, Liu Junlong, Wang Tianyun, et al. Distributing pattern and mapping method of delta and beach-bar composite sand-bodies in continental lacustrine basin[J]. Journal of Palaeogeography, 2016, 18(4): 615-630.
    [22] 姜在兴,王俊辉,张元福,等. “风—源—盆”三元耦合油气储集体预测方法及其应用:对非主力物源区储集体的解释与预测[J]. 石油学报,2020,41(12):1465-1476.

    Jiang Zaixing, Wang Junhui, Zhang Yuanfu, et al. Ternary “Windfield-Source-Basin” system for the prediction of hydrocarbon reservoirs: Interpretation and prediction of hydrocarbon reservoirs deviated from the main provenance areas[J]. Acta Petrolei Sinica, 2020, 41(12): 1465-1476.
    [23] 支东明,唐勇,郑孟林,等. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质,2018,39(1):1-8,22.

    Zhi Dongming, Tang Yong, Zheng Menglin, et al. Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 1-8, 22.
    [24] 陈彬滔,于兴河,王磊,等. 河流相沉积的河型转换特征与控制因素及其油气地质意义:以南苏丹Melut盆地Ruman地区坳陷期Jimidi组为例[J]. 沉积学报,2021,39(2):424-433.

    Chen Bintao, Yu Xinghe, Wang Lei, et al. Features and controlling factors of river pattern transition in fluvial deposition and its significance for petroleum geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan[J]. Acta Sedimentologica Sinica, 2021, 39(2): 424-433.
    [25] 史忠生,王天琦,方乐华,等. 南苏丹Melut裂谷盆地扇体的发现及油气意义[J]. 天然气地球科学,2015,26(1):81-89.

    Shi Zhongsheng, Wang Tianqi, Fang Lehua, et al. Discovery of fans in Melut Rift Basin, South Sudan and its petroleum geological significance[J]. Natural Gas Geoscience, 2015, 26(1): 81-89.
    [26] 杨丽莎,陈彬滔,马轮,等. 陆相湖盆坳陷期源—汇系统的要素特征及耦合关系:以南苏丹Melut盆地北部坳陷新近系Jimidi组为例[J]. 岩性油气藏,2021,33(3):27-38.

    Yang Lisha, Chen Bintao, Ma Lun, et al. Element feature and coupling model of source-to-sink system in depression lacustrine basin: A case study of Neogene Jimidi Formation in Melut Basin, South Sudan[J]. Lithologic Reservoirs, 2021, 33(3): 27-38.
    [27] 史忠生,方乐华,薛罗,等. 中非Melut盆地与我国东部裂谷盆地的类比及意义[J]. 地球科学,2019,44(2):588-602.

    Shi Zhongsheng, Fang Lehua, Xue Luo, et al. Analogy between Melut Basin of Central Africa and rift basins of East China and implication[J]. Earth Science, 2019, 44(2): 588-602.
    [28] 陈彬滔,史忠生,马凤良,等. 南苏丹Melut盆地Ruman凹陷白垩系层序地层级次与砂质滩坝的沉积响应[J]. 古地理学报,2018,20(6):1013-1022.

    Chen Bintao, Shi Zhongsheng, Ma Fengliang, et al. Cretaceous sequence stratigraphic hierachies and the sedimentary response of sandy beach-bar in Ruman Sag, Melut Basin, South Sudan[J]. Journal of Palaeogeography, 2018, 20(6): 1013-1022.
    [29] 陈彬滔,潘树新,梁苏娟,等. 陆相湖盆深水块体搬运体优质储层的主控因素:以松辽盆地英台地区青山口组为例[J]. 吉林大学学报(地球科学版),2015,45(4):1002-1010.

    Chen Bintao, Pan Shuxin, Liang Sujuan, et al. Main controlling factors of high quality deep-water mass transport deposits (MTDs) reservoir in lacustrine basin: An insight of Qingshankou Formation, Yingtai area, Songliao Basin, northeast China[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 1002-1010.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(119) PDF downloads(61) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-04-02
  • Revised:  2022-07-15
  • Accepted:  2022-08-18
  • Published:  2024-06-10

Sedimentary Evolution and Controlling Factors of Fan Delta and Slump Fan Complex Deposition in a Steep Slope Belt of a Faulted Basin: A case study from the Cretaceous deposits of the A Sag in Melut Basin, Central Africa

doi: 10.14027/j.issn.1000-0550.2022.087
Funds:

National Natural Science Foundation of China 41472091

National Natural Science Foundation of China 41872116

Abstract: Objective As an important type of coarse-grained sedimentary system and oil and gas reservoir in faulted basins, fan delta and slump fan complex deposition has been the hot topic of research on lacustrine sedimentary and reservoir formation, such as distribution area, evolution period and accumulation model. Methods Based on high resolution 3D seismic and drilling and logging data in the A Sag of Melut Basin in central Africa region, the sedimentary characteristics and evolution of fan delta-slump fan complex are studied by using core observation, sequence division, seismic reflection characteristics and seismic attribute analysis. Results and Conclusions The results showed that the types of sedimentary facies of fan in the study area included fan delta and slump fan caused by gravity flow, slump fan had two types of morphology characteristic, the first one was line source slump fan controlled by slope break, the second one was multistage slump fan with single point source controlled by steep topographic slope. Combined with seismic profiles and well logging features, five periods of fans were recognized in the Cretaceous study section. The single-stage fan all had the characteristics of retrogradation, the vertical evolution of multiple periods of fans was characterized by “first progradation and later retrogradation”. The fan distribution was the largest at the end of Renk Formation deposition in the Lower Cretaceous, reaching 148 km2. However, the fan evolution was mainly influenced by tectonic activity, palaeogeomorphology, provenance supply, and base-level cycle. The fan distribution was larger in the period of strong tectonic activity, abundant provenance supply and large short-axis tectonic uplift, and the slump fan was most developed in the early period of relative base-level rising cycle and decreasing cycle. A new understanding of the sedimentary pattern transformation occurred in the Early Cretaceous and Late Cretaceous in the A Sag was put forward. The exploration potential of the fan delta and slump fan complex deposition in the faulted depression is clarified, which guided the exploration deployment.

CHEN BinTao, MA Lun, HONG Liang, SHI ZhongSheng, PANG WenZhu, XUE Luo, WANG Lei, DAI HanSong, ZHAO YanJun. Sedimentary Evolution and Controlling Factors of Fan Delta and Slump Fan Complex Deposition in a Steep Slope Belt of a Faulted Basin: A case study from the Cretaceous deposits of the A Sag in Melut Basin, Central Africa[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1058-1072. doi: 10.14027/j.issn.1000-0550.2022.087
Citation: CHEN BinTao, MA Lun, HONG Liang, SHI ZhongSheng, PANG WenZhu, XUE Luo, WANG Lei, DAI HanSong, ZHAO YanJun. Sedimentary Evolution and Controlling Factors of Fan Delta and Slump Fan Complex Deposition in a Steep Slope Belt of a Faulted Basin: A case study from the Cretaceous deposits of the A Sag in Melut Basin, Central Africa[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1058-1072. doi: 10.14027/j.issn.1000-0550.2022.087
  • 断陷湖盆陡坡带扇三角洲和滑塌扇组成的复合扇体是一种形成于地形高差大、盆缘斜坡陡、物源供给强且近物源区环境下的沉积体[12],作为断陷盆地重要的粗粒沉积体系和油气储层[34],其展布规模、演化期次、储层物性、成藏模式等一直是断陷湖盆沉积和成藏研究的热点。近年来,在沉积模式研究方面,涌现出成因模式和混合模式两类新观点,其中于兴河等[5]以玛湖凹陷百口泉组为例,建立了帚状扇三角洲、朵状扇三角洲、扇状扇三角洲三种成因模式;付鑫等[6]提出了扇三角洲—重力流混合沉积特征,建立了扇三角洲重力流驱动混合模式和扇三角洲建设—废弃互层型混合模式。在沉积演化研究方面,采用最新的正演模拟和类比分析等方法,再现了地质历史时期的沉积体发育与演化过程,其中Liu et al.[7]揭示了断陷湖盆陡坡沉积体系的概念地质模型,Xu et al.[8]再现了Albert湖盆扇三角洲复合体的演化过程与空间分布规律,Mahata et al.[9]以西孟加拉盆地的Damodar扇三角洲复合体为研究对象,提出供源水道摆动和海平面变化控制其演化。在优质储层控制因素方面,微相类型仍然是研究重点,例如陈欢庆等[10]通过对辽河西部凹陷的研究提出了扇三角洲优质储层受控于分流河道和河口坝微相。总体而言,国内外众多学者通过露头研究[1112]和实验室模拟[1314],进一步明确了扇三角洲发育的控制因素[1517],指出了扇三角洲优质储层的形成机理[1820],形成了砂体展布的预测方法和编图方法[34,2122],指导了一系列以扇三角洲作为主要储层类型的大型油气田勘探发现与开发建产[23]。前人针对扇三角洲和滑塌扇复合扇体的成因类型、识别特征、控制因素等开展了大量研究,提出了基于成因或基于形态的复合扇体类型、优势储层受控于微相类型、复合扇体发育受控于物源供给和海平面变化等新认识,但是针对勘探区块不同地质时期扇三角洲—滑塌扇复合扇体演化特征、控制因素及其油气勘探价值的研究仍相对薄弱,亟需加强。

    南苏丹Melut盆地A凹陷白垩系属于典型的断陷期沉积[24],前期研究详细论述了白垩系长轴缓坡方向的三角洲沉积特征,亦论证了陡坡带白垩系扇三角洲发育特征并初步描述了多期叠置扇三角洲的总体平面展布特征[25],但是未系统分析扇三角洲和滑塌扇复合扇体的期次及不同期次复合扇体的平面展布与垂向演化特征。因此,聚焦于陡坡带复合扇体,基于高分辨率三维地震数据以及钻测井数据,以复合扇体沉积特征分析作为切入点,井震结合划分复合扇体演化期次,并通过高分辨率三维地震数据刻画不同期次的复合扇体平面展布,明确控制因素与成藏模式,以期指导勘探实践。

  • Melut盆地主体位于中非地区南苏丹境内,是受中非剪切带控制所形成的一个中—新生代裂谷盆地(图1a),盆地面积约3.3×104 km2,平面具有四坳两隆的构造格局(图1b),剖面上表现为西断东超特征。盆地构造演化划分为三期裂陷和一期坳陷[26],其中早白垩世(Gayger组和Renk组沉积时期)对应于裂陷I幕,晚白垩世和古近纪早期(Galhak组、Melut组、Samma组、Yabus组沉积时期)对应于裂陷II幕,古近纪晚期(Adar组和Lau组沉积时期)对应于裂陷III幕,构造活动强度趋于平稳,断至该地层层段的活动断层数量明显减少。自新近纪Jimidi组沉积时期开始,转为坳陷期沉积,盆地构造活动沉寂,几乎无断裂活动。Melut盆地目前已发现原油储量约62 亿桶,主要勘探发现集中于北部坳陷,证实北部坳陷是一个典型的富油坳陷[27]。A凹陷位于北部坳陷东北部,发育盆地唯一的高产凝析油藏,油品好,产量高,白垩系断陷期陡坡带复合扇体层段获日产千桶凝析油商业发现(图1c),是增储上产和效益勘探的重点领域。A凹陷白垩系断陷期Renk-Melut组紧邻或位于主力烃源岩层段内部(图1d),储盖组合发育[28],尤其是Renk组源内复合扇体已成为拓展研究区岩性油藏勘探领域,提升整体储量规模的主要勘探目标。

    Figure 1.  Tectonic setting and stratigraphic composite histogram in A Sag of Melut Basin, Central Africa

  • 基于层序界面识别、旋回叠加样式变化等特征,对Melut盆地A凹陷白垩系研究层段进行了层序划分(图2)。白垩系底界面为Gayger组底部的大型下切谷(SB1),为一个可区域追踪的构造不整合面,顶界面为白垩系与古近系之间的转换面(SB5),也属于区域尺度的构造转换面,白垩系整体划分为1个超长期基准面旋回。在超长期基准面旋回内基于盆地内可识别追踪的层序界面,可进一步将其划分为4个长期基准面旋回,由下至上依次命名为SQ1至SQ4层序。中期基准面旋回以上升半旋回为主,下降半旋回保存不好。中期基准面上升半旋回具有两类叠加样式,第一类为中期基准面上升半旋回逐步增厚叠加构成长期基准面下降半旋回(例如,SQ2长期基准面下降半旋回),指示中期水进(退积)—长期水退(进积)现象;第二类为中期基准面上升半旋回逐步减薄叠加构成长期基准面上升半旋回(例如,SQ3长期基准面上升半旋回),指示中期水进(退积)—长期水进(退积)现象。

    Figure 2.  Sequence stratigraphic subdivision for the Cretaceous deposits in A Sag, Melut Basin

  • A凹陷下白垩统Renk组和上白垩统Galhak和Melut组为砂泥互层沉积序列,泥岩颜色以棕红色和灰绿色—灰色为主,反映氧化—半氧化、半还原环境;泥岩厚度0.5~6.0 m,以0.5~1.0 m为主,单层厚度薄,但是分布频率高。砂岩为中—粗粒度,杂基支撑,颗粒分选中等,磨圆差,以棱角状—次棱角状为主,矿物组成以石英(多晶质石英和单晶石英)为主(图3:C-E 5-6和I-J 12-14),含大量斜长石,以及少量钾长石和辉石(图3:A-D 4-6),痕量云母(主要为白云母)。此外,可见部分氧化铁(主要是赤铁矿)。

    Figure 3.  Microscopic observation of typical cutting samples from the Cretaceous study interval (2 512.5⁃2 515 m) of well A⁃S⁃1 in A Sag, Melut Basin

  • 基于A凹陷下白垩统Renk组—上白垩统Melut组研究层段的井壁取心观察结果,识别出10种典型的岩相类型(分别为Gm.块状层理含砾砂岩、Gms.变形构造—块状含砾砂岩、Gt.槽状交错层理含砾砂岩、St.槽状交错层理中粗砂岩、Sh.水平层理中粗砂岩、Sp.板状交错层理中粗砂岩、Sr.流水沙纹层理中细砂岩、Fl.水平纹层细砂岩、M.泥岩、Ms.变形构造泥岩),总结出4类典型岩相组合特征,分别为Gm→Gt→St、Gm→St→Sh、Sp→Sh、Ms→Gms(图4)。Gm→Gt→St岩相组合常表现为多期垂向叠置,之间夹薄层杂色泥岩,为典型的高能环境近源岩相组合类型(图4a);Gm→St→Sh和Sp→Sh岩相组合常伴生发育,构成“一正一反”连续沉积序列(图4b)。Ms→Gms岩相组合与厚层暗色泥岩互层产出,为典型的深水背景岩相组合类型(图4c)。

    Figure 4.  Lithofacies association features of the fan delta and slump fan in A Sag, Melut Basin

  • A凹陷下白垩统Renk组—上白垩统Melut组研究层段主要发育三种典型测井相,分别为箱形、钟形、漏斗形(图5)。箱形测井相常见于邻近陡坡边界断层的近物源区,呈“底部突变、顶部突变”特征,反映垂向加积所形成的弱粒序—无粒序结构,测井曲线齿化现象较为明显,对应的录井特征指示箱形测井相之间常夹薄层杂色泥质粉砂岩(图5a),但是S-1井却表现为齿化箱形测井相与厚层暗色泥岩伴生产出(图5c),指示深水环境的块状砂岩沉积。钟形测井相底部突变,顶部渐变,反映水道侧向迁移的正粒序结构;漏斗形测井相顶部突变接触,底部渐变,指示向上变粗的反粒序结构;录井特征指示钟形或漏斗形测井相之间多夹杂厚层灰绿色—灰色泥岩(图5b)。

    Figure 5.  Typical well log responses and micro⁃facies division of the fan delta and slump fan in A Sag, Melut Basin

  • 下白垩统Renk组沉积时期,Melut盆地处于强裂陷期,发生大规模湖侵,盆地大部分地区构造沉降量大、物源供给量少,沉积一套暗色泥岩,是主要的烃源岩发育层段。此时期A凹陷因东侧边界断层活动强度大,构造沉降量大,东部物源供给强,发育中—粗粒砂岩与棕红色—灰绿色泥岩互层的沉积序列,砂岩具有粒度粗、磨圆差、杂基支撑等特征,泥岩颜色指示半氧化—半还原环境。研究层段顺物源方向的地震剖面具有单期沉积体“底平顶凸”特征,单期沉积体外部轮廓清晰,呈连续中强反射特征,内部反射呈叠瓦状逐级上超至底部轮廓线,与顶部轮廓线呈削截接触关系(图6)。

    Figure 6.  Seismic reflection features of the fan delta and slump fan complex for the Cretaceous deposits in A Sag, Melut Basin

  • 综合考虑岩石类型、岩相类型与组合特征、测井响应以及地震剖面反射特征,结合地震平面切片属性特征,研究区陡坡带白垩系Renk组—Melut组研究层段的沉积相类型可划分为扇三角洲和重力流成因的滑塌扇。扇三角洲相可进一步划分为扇三角洲平原和前缘亚相(图7)。

    Figure 7.  Sedimentary facies types and seismic response characteristics of the steep slope belt during rift stage in A Sag, Melut Basin

    扇三角洲平原具有多套厚层砂岩(普遍大于5 m)垂向叠置的特征,典型岩相组合类型为Gm(块状层理含砾砂岩)→Gt(槽状交错层理含砾砂岩)→St(槽状交错层理中粗砂岩)(图4a),测井曲线(GR)具有典型的齿化箱形特征,厚层含砾砂岩底面为冲刷面。厚层单砂体具箱形测井相,主要微相类型为分流河道,单井上表现为具箱形测井相的多期分流河道砂岩叠置,厚层分流河道砂岩内部或不同期分流河道砂岩之间夹薄层杂色—棕红色分流间湾泥岩(图5a)。连井剖面上表现为多期分流河道垂向叠置、侧向切割的块状似连通砂体,含薄层、连续性较差的分流间湾泥岩夹层(图8)。地震剖面呈中弱振幅、不连续、蠕虫状内部反射特征,隐约可见上超现象;平面地震属性(RMS振幅)表现为紧邻湖盆边缘的扇形中弱振幅异常(图7)。紧邻扇三角洲平原的边界断层上升盘物源区可见明显的大型下切谷供源通道(图9b,宽约2.5 km,高约250 m)。

    Figure 8.  Sedimentary microfacies correlation profile of the fan⁃delta plain and fan⁃delta front subfacies in A Sag, Melut Basin

    Figure 9.  Seismic reflection features of the slump fan in A Sag, Melut Basin

    扇三角洲前缘具有中厚层砂岩(3~5 m为主)与泥岩互层特征,典型岩相组合类型为Gm(块状层理含砾砂岩)→St(槽状交错层理中粗砂岩)→Sh(水平层理中粗砂岩)和Sp(板状交错层理中粗砂岩)→Sh(水平层理中粗砂岩)(图4b),测井曲线(GR)具有钟形、漏斗形等多种特征,钟形含砾砂岩底面为冲刷面。中厚层单砂体具漏斗形和钟形测井相,主要微相类型为水下分流河道和河口坝,单井上表现为具钟形测井相的水下分流河道砂岩和具漏斗形测井相的河口坝砂岩被厚层灰色—灰绿色水下分流间湾泥岩所分隔(图5b)。连井剖面上表现为水下分流河道与河口坝侧向接触,多期水下分流河道和河口坝复合体垂向叠置(图8),河口坝物性和含油性优于分流河道。地震剖面呈中强振幅、近连续、逐级上超反射特征;平面地震属性(RMS振幅)表现为呈弧形散开的中强振幅异常,弧形异常区内部具有条带状中强振幅(水下分流河道)与弱振幅(水下分流间湾)交互的特点,条带状中强振幅末端可见舌状强振幅异常(河口坝)(图7)。

    滑塌扇分布于扇三角洲前缘外侧,由扇三角洲前缘供源,呈独立或多级扇形展布。岩性上表现为厚层块状砂砾岩与深灰色泥岩互层,典型岩相类型为Ms(变形构造泥岩)→Gms(变形构造—块状含砾砂岩)(图4c),块状含砾砂岩底面为滑动剪切面。滑塌扇沉积体具有锯齿箱形测井相,顶、底均与深灰色—黑色半深湖—深湖相泥岩突变接触(图5c)。地震剖面上,滑塌扇呈中弱振幅、杂乱反射,向凹陷方向与具有连续平行强反射特征的半深湖沉积突变接触,向盆缘方向与具有近连续反射特征的扇三角洲前缘突变接触,滑塌扇侧壁、后壁,以及底部滑移面清晰,滑塌扇内部发育小型断裂,此类断裂延伸较短,并未断穿滑体的上下围岩,表明其为滑塌期同沉积断裂(图9)。平面地震属性(RMS振幅)表现为中强振幅扇形异常,扇形区域内的强振幅异常具有放射条带状特征(图9a)。研究区的滑塌扇具有两类形貌特征,第一类为受坡折控制的线状供源滑塌扇,杂乱反射底部为滑动剪切面(图9c),第二类为受较陡地形坡度所控制的单点供源多级滑塌扇,此类滑塌扇的扇形特征更为明显(图7)。

  • 采用“井震结合、平剖结合”的方式,开展研究层段的扇三角洲—滑塌扇复合扇体期次划分。测井上,单期复合扇体具有向上变细的正韵律特征,单期复合扇体底面在测井曲线(GR和DT)上表现为突变接触关系(图2)。地震剖面上,单期复合扇体顶—底面呈近连续中强反射,构成一个“底平顶凸”的包络面,向凹陷中心方向与湖相连续强反射突变接触;单期复合扇体内部反射特征呈蠕虫状,与底部包络面呈叠置上超接触关系,与顶部包络面呈削截接触关系(图4)。依据单井期次划分标定结果和地震剖面反射特征,在三维地震数据体上追踪单期复合扇体的顶底包络面,并据此提取多种地震属性,最终优选均方根振幅进行平面显示。

    综合测井、地震剖面反射特征、平面地震属性特征,研究层段共识别出五期复合扇体,发育于SQ2的下降半旋回和SQ3的上升半旋回,对应于裂陷I幕和裂陷II幕的强裂陷期。其中SQ2层序(对应于Renk组沉积时期)发育三期复合扇体,由下至上依次命名为SQ2-A、SQ2-B、SQ2-C期,单期复合扇体呈退积正旋回,A、B、C三期复合扇体总体构成一个向凹陷中心进积的反旋回(具有“单期退积、多期进积”的特征),C期扇三角洲向凹陷延伸最远。SQ3层序(对应于Galhak组和Melut组沉积早期)发育两期复合扇体,分别命名为SQ3-D期和SQ3-E期(A-C-1井处E期扇体不发育),单期复合扇体仍呈退积正旋回,D和E期复合扇体总体亦构成一个退积正旋回(具有“单期退积、多期退积”的特征)(图4)。

  • A凹陷白垩纪强裂陷期SQ2和SQ3层序(对应于下白垩统Renk组和上白垩统Galhak和Melut组沉积早期)共发育五期扇三角洲—滑塌扇复合扇体(图10)。SQ2层序A期复合扇体发育于下白垩统Renk组底部,此时期构造沉降量大,边界断层活动强度大,东北侧盆缘区大幅抬升,物源供给相对充足,整个A凹陷以东北方向“陡坡带强物源供给”所形成的复合扇体沉积为主(图10a)。依据测井、地震反射特征以及平面地震属性,可将复合扇体划分为扇三角洲平原(杂乱—弱振幅)、扇三角洲前缘(中强振幅),以及滑塌扇。SQ2层序A期复合扇体的扇三角洲平原呈舌状分布于A-C-1至A-S-1井区,面积约10 km2;扇三角洲前缘具扇形、呈近东西向展布,面积约39 km2,前缘分流河道向凹陷延伸约7 km。扇三角洲前缘南侧朵体外侧发育由扇三角洲前缘供源所形成的滑塌扇,面积约40 km2。滑塌扇与扇三角洲前缘之间具有明显的突变面(图9),地震剖面上具有明显的发散状内部反射特征(不同于扇三角洲前缘的逐级上超内部反射特征)。

    Figure 10.  Sedimentary evolution of fans delta and slump fan complex at different periods in A Sag, Melut Basin

    SQ2层序B期复合扇体沉积于下白垩统Renk组中部,此时期仍属于“强构造活动、强物源供给”,整个凹陷仍以东北方向“陡坡带强物源供给”所形成的复合扇体沉积为主(图10b)。SQ2层序B期复合扇体仍发育呈舌状的扇三角洲平原,面积约11 km2,但是分布位置向西北方向迁移;扇三角洲前缘面积略微增大,约42 km2,但前缘分流河道向凹陷的延伸距离减小,平面扇形特征更为明显。扇三角洲前缘南侧朵体外侧继承性发育由扇三角洲前缘供源所形成的滑塌扇,面积约39 km2

    SQ2层序C期扇三角洲沉积于下白垩统Renk组上部,此时期边界断层构造活动减弱,物源供给强,古地貌坡度减缓,东北方向“陡坡带强物源供给”所形成的扇三角洲沉积几乎充填整个凹陷(图10c)。SQ2层序C期扇三角洲平原面积约31 km2,分布位置明显向东南方向迁移;扇三角洲前缘面积显著增大至117 km2;SQ2层序C期扇三角洲总面积约148 km2,向湖盆方向延伸距离最大达15 km,是整个白垩系复合扇体发育的鼎盛时期。

    SQ3层序D期复合扇体沉积于上白垩统Galhak组,此时期构造活动进一步减弱,东北部陡坡带短轴物源供给减弱,凹陷西北部抬升,形成西北和东北双高型古地貌格局(图11d)。受此种古地貌背景的影响,A凹陷的沉积体系转而受西北P隆起物源和东北A隆起陡坡带短轴物源供给的双重控制,西北P隆起物源供给形成北西—南东走向的大型三角洲,东北陡坡带短轴物源形成裙状扇三角洲,扇三角洲前端受S-1井以东的古地形陡坡影响,发育多级朵状滑塌扇。此时期复合扇体总面积约为56 km2。SQ3层序E期扇三角洲沉积于上白垩统Melut组,此时期构造平稳,东北部陡坡带短轴物源几乎消失,西北部P隆起物源供给进一步增强,整个凹陷几乎完全被西北部物源所形成的三角洲所充填(图10e),仅凹陷东侧发育面积约31 km2的扇三角洲,受古地形坡度控制,扇三角洲平面展布向东南方向拐弯。

    Figure 11.  Structural activity and structure⁃sedimentary evolution at different periods of the Cretaceous deposits in A Sag, Melut Basin

    总体而言,SQ2~SQ3层序(下白垩统Renk组—上白垩统Melut组沉积时期)的复合扇体发育具有“先进积、后退积”的垂向演化特征,SQ2层序(下白垩统Renk组沉积时期)A、B、C期复合扇体规模由89 km2逐步增大至148 km2,整体呈现进积型特征,其中SQ2层序C期扇三角洲达到鼎盛期;随后,晚白垩世发生沉积格局转换,SQ3层序时期(上白垩统Galhak组和Melut组沉积时期)西北部三角洲物源供给增强,东北部物源所形成的D期和E期复合扇体逐步萎缩,平面展布面积逐步减小至31 km2

  • A凹陷白垩系陡坡带扇三角洲—滑塌扇复合扇体的发育与构造活动强度具有明显的相关性,复合扇体发育时期对应于裂陷I幕强裂陷期和裂陷II幕强裂陷期(SQ2和SQ3层序)(图11a)。裂陷I幕强裂陷期的构造伸展速率高约10.2%,此时期边界断裂活动强度大,基底沉降速率快,复合扇体规模大,垂向上呈加积—进积式叠置;裂陷II幕强裂陷期的构造伸展速率约为4.2%,此时期边界断层活动虽仍处于强裂陷阶段,伸展速率已明显低于裂陷I幕的强裂陷期,基底沉积速率减缓,复合扇体处于萎缩期,呈退积式叠置。分析结果表明,构造活动对复合扇体的发育及其规模具有显著控制作用(图11b),复合扇体发育于裂陷幕的强裂陷期,裂陷幕的弱裂陷期不发育扇体复合体。此外,复合扇体的发育规模与构造活动强度正相关,在构造伸展速率更大的裂陷I幕强裂陷期(SQ2层序),复合扇体处于鼎盛发育期,规模大,最大面积约148 km2;在构造伸展速率相对略低的裂陷II幕强裂陷期(SQ2层序),复合扇体处于萎缩期,规模减小为三分之一,最大面积约为56 km2

  • 古地貌是控制扇三角洲和滑塌扇组成的复合扇体发育的重要因素。早白垩世SQ2层序A和B期复合扇体沉积时期(Renk组沉积早期),古地貌总体具有东北方向高,向西南方向逐渐降低的特征,地形坡度约为3°,受总体古地形特征的控制,复合扇体展布方向呈北东—南西向。此外,S-1井附近存在近东西走向延伸的坡折带(图12a),受坡折带影响,在此时期强烈构造活动的触发下,快速堆积的扇三角洲前缘沉积物在坡折带处重力失稳,形成沿坡折带分布的前缘外侧滑塌扇(图10a,b),滑塌扇面积分别达到40 km2和39 km2,分布面积接近整个复合扇体面积的50%。早白垩世SQ2层序C期扇三角洲沉积时期(Renk组沉积晚期),古地貌仍具有东北高、西南低的总体特征,地形坡度约为1.5°(图12b),相对于SQ2层序A期和B期复合扇体沉积时期,此时期地形坡度变缓。受地形坡度变缓但构造活动和物源供给仍偏强的影响,SQ2层序C期扇三角洲广泛分布于整个A凹陷。

    Figure 12.  Palaeogeomorphology maps at different periods of the Cretaceous deposits in A Sag, Melut Basin

    晚白垩世,A凹陷的古地貌特征发生重大变革,西北部P隆起快速隆升,造就了东北和西北两个构造隆起剥蚀物源区(图12c,d),成为控制A凹陷早白垩世与晚白垩世之间沉积格局转变的最重要影响因素。其中晚白垩世早期SQ3层序D期复合扇体沉积时期(Galhak组沉积时期),东北和西北两个构造隆起幅度相似,相比于早白垩世,东北部A隆起面积更大但地形宽缓,为裙带状—线状近物源供给提供了条件,G-1井附近存在东南倾向的古地形陡坡(图12c),控制了东北部物源所形成的多级滑塌扇的分布。晚白垩世晚期SQ3层序E期扇三角洲沉积时期(Melut组沉积时期)呈现出西北部P隆起更为强盛,东北部A隆起逐步衰弱的古地貌特征,受东北部A隆起近源供源区面积减小以及G-1井东北方向古地形陡坡的影响(图12d),陡坡带扇三角洲表现为规模小并且向东南方向拐弯的特征。

  • 扇体复合体发育的SQ2和SQ3层序时期(下白垩统Renk组—上白垩统Melut组沉积时期),总体呈现相对湖平面“先下降、再上升”的趋势(图2),早白垩世SQ2层序早期(Renk组沉积初期)为相对湖平面最高的时期,对应于二级构造层序的最大洪泛期,随后相对湖平面下降,成为扇三角洲和滑塌扇复合扇体的强盛发育期,对应的SQ2层序A期到C期复合扇体垂向上呈进积叠置样式,剖面上表现为向凹陷中心进积,扇体面积逐步增大,从89 km2增大至148 km2。晚白垩世SQ3层序呈现相对湖平面缓慢上升趋势,此时期沉积的SQ3层序D期和E期扇体呈退积叠置样式,扇体面积逐步萎缩,从56 km2减小至31 km2。但是,单期复合扇体内部均表现为退积特征,上超点逐步向盆缘迁移(图6)。因此,此种相对湖平面变化特征造就了早白垩世SQ2层序的A、B、C三期扇体表现为“单期退积、总体(多期)进积”,晚白垩世SQ3层序的D和E两期扇体具有“单期退积、总体(多期)退积”的特征(图2)。就滑塌扇的发育层段而言,此类扇体主要发育于早白垩世SQ2层序相对湖平面下降早期和晚白垩世SQ3层序相对湖平面上升初期,相对湖平面上升/下降转换时期亦是影响前缘滑塌扇形成的因素之一。

  • 受古地貌、构造活动强度、物源供给方向和大小等因素的影响,A凹陷早白垩世与晚白垩世发生了沉积格局转换。下白垩统Renk组沉积时期(SQ2层序),东侧边界断层活动强度大,东北部A隆起幅度大,物源供给强,西北部P隆起仍处于雏形期,物源供给弱(图12a,b),A凹陷主要受东北部陡坡带物源控制,形成大面积展布的复合扇体沉积,包括扇三角洲和扇三角洲前缘外侧的滑塌扇。上白垩统Galhak组和Melut组沉积时期(SQ3和SQ4层序),受西北部P隆起大幅度隆升并供源的影响(图12c,d),A凹陷逐步过渡为以西北方向供源的三角洲沉积为主体,东北方向供源的陡坡带复合扇体沉积逐步萎缩。

    早—晚白垩世的沉积格局转换,直接控制了下白垩统和上白垩统目的层段具有不同的油藏类型和勘探方向。下白垩统Renk组发育主流向为北东—南西方向的规模复合扇体,因构造强烈活动且东北方向物源供给强,扇三角洲前缘外侧发育受构造坡折控制、滑塌至半深湖—深湖区的滑塌扇,此类滑塌扇保留了扇三角洲前缘的良好物性并被湖相泥岩包裹,具备良好的岩性圈闭成藏条件,因此,下白垩统Renk组是岩性和构造—岩性油藏勘探的主要目的层段。上白垩统Galhak组和Melut组受西北Palogue隆起物源控制,研究区沉积格局转换为以大型三角洲为主,呈现砂包泥的岩性特征,因此上白垩统目的层段的油气勘探类型转而以构造圈闭为主。

  • 下白垩统Renk组是Melut盆地的主要烃源岩发育层段,A凹陷扇体面积大,向西南方向推进至M古隆起附近。Renk组复合扇体分布与烃源岩厚度和Ro叠合分结果表明,复合扇体南部已延伸至烃源岩厚度600 m区域,Ro值约为1.3%,复合扇体南部与有效烃源岩直接接触,有利于在凹陷中心烃源岩成熟区形成“源内”透镜体油气藏。值得一提的是,实际勘探结果证实深水区滑塌扇的物性有时优于扇三角洲前缘储层,其原因首先在于深水区烃源岩普遍发育的超压及其保孔作用,砂质滑塌扇以透镜体形式分布于超压作用最强烈的部位,超压所产生的高孔隙流体压力有效抑制了地层埋深增加所造成的机械压实作用,有利于原生孔隙的保存;其次深水区有机酸溶蚀及其增孔因素,可促进次生孔隙发育[29]

    此外,A凹陷东南方向存在一个构造脊,该构造脊于Melut组沉积时期就具有雏形,随后持续发育,其形成时间早于主要排烃期,构成优势运移通道,进而导致油气易于从东南侧生烃灶沿不整合面和构造脊向复合扇体根部运移,形成构造—岩性油气藏,造成与复合扇体相关的源内滑塌扇岩性圈闭和扇三角洲前缘构造—岩性圈闭大面积成藏。

  • (1) A凹陷断陷期陡坡带扇三角洲—滑塌扇复合扇体单期表现为退积特征,总体具有“先进积、后退积”的垂向演化特征。SQ1层序时期复合扇体规模逐步增大至148 km2,具有“单期退积、多期进积”特征;SQ2层序时期复合扇体逐步萎缩,平面展布面积逐步减小至31 km2,具有“单期退积、多期退积”特征。

    (2) 扇三角洲—滑塌扇复合扇体演化主要受幕式构造活动、古地貌和物源供给,以及相对湖平面变化的影响,构造活动强烈(幕式裂陷的强裂陷期)、物源供给充足、短轴构造隆升幅度大的时期复合扇体规模更大,相对湖平面下降早期和上升初期是扇三角洲前缘外侧滑塌扇发育的主要时期。

    (3) 沉积格局转换与油气藏类型关系密切,早白垩世和晚白垩世之间的沉积格局转换,造成下白垩统陡坡带扇三角洲—滑塌扇复合扇体目的层段以岩性和构造—岩性油藏为主要勘探目标,滑塌扇具备形成“源内”透镜体油气藏的条件,上白垩统长轴三角洲目的层段的油气勘探转而以构造圈闭为主。

Reference (29)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return