Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

JIN Yuan, WANG Yong, HU Jie, HAN RuiChao, XIANG ChaoSheng. Geochemical Element Records and Hydrological Significance of Lake Shengjin Sediments During the Past Millennium[J]. Acta Sedimentologica Sinica, 2023, 41(1): 219-232. doi: 10.14027/j.issn.1000-0550.2022.081
Citation: JIN Yuan, WANG Yong, HU Jie, HAN RuiChao, XIANG ChaoSheng. Geochemical Element Records and Hydrological Significance of Lake Shengjin Sediments During the Past Millennium[J]. Acta Sedimentologica Sinica, 2023, 41(1): 219-232. doi: 10.14027/j.issn.1000-0550.2022.081

Geochemical Element Records and Hydrological Significance of Lake Shengjin Sediments During the Past Millennium

doi: 10.14027/j.issn.1000-0550.2022.081
Funds:

National Natural Science Foundation of China 41771228

Anhui Normal University Ph.D. Start-up Project 2017XJJ36

  • Received Date: 2022-02-27
  • Accepted Date: 2022-09-16
  • Rev Recd Date: 2022-07-01
  • Available Online: 2022-09-16
  • Publish Date: 2023-02-10
  • The hydrological changes in the monsoon region of eastern China over the past thousand years have been extensively studied and substantial progress has been made. However, there are significant apparent regional differences between the time interval, spatial characteristics and the combination of temperature and humidity. The driving mechanisms of humidity changes in the monsoon region of eastern China are also still unclear. To better understand the hydrological variations and internal and external mechanisms in the region over the past thousand years, it is necessary to continue to strengthen the reconstruction and driving mechanism of high-resolution hydrological changes. Lake Shengjin (30°15'⁃30°28' N, 116°58'⁃117°14' E) is located in Chizhou city, Anhui province, on the southern bank of the Yangtze River and covers an area of 133 km2. The lake consists of upper, middle and lower lakes. The climate of the lake basin is subtropical monsoonal, with an annual average temperature of 16.1 °C and an annual average precipitation of 1 600 mm.The 86 cm long sediment core SJPC19-3 was drilled in the shallow wetland area of the lake in March, 2019. The sampling site is located at 30°20' N, 117°00' E. The core was divided into intervals of 0.5 cm between 9 and 30 cm and intervals of 1 cm between 30 cm and 86 cm. The hydrological significance of geochemical elements was analyzed from reliable accelerator mass spectrometer (AMS) 14C isotope data. The paleohydrological changes in Lake Shengjin during the past millennium were reconstructed from geochemical elements and combined with total organic carbon (TOC), carbon-nitrogen ratio (C/N), inorganic carbon (IC) and other environmental proxies. The changes were divided into three stages: (1) In Period I (1 000⁃1 350 A.D.), corresponding to the Medieval Warm Period (MWP), Ti, Rb/Sr, Cr and SiO2 content gradually decreased, and Sr and CaO content fluctuated at low values, indicating general aridification of the lake basin during the MWP. (2) Period II (1 350⁃1 850 A.D.), corresponding to the Little Ice Age (LIA), was divided into two substages: (2A) From 1 350 A.D. to 1 600 A.D. (early LIA), Ti, Rb/Sr, Cr and SiO2 fluctuated at a high level, and Sr and CaO content remained low, probably reflecting more precipitation in the basin. (2B) From 1 600 A.D. to 1 850 A.D. (i.e., the later LIA), Ti, Rb/Sr, Cr, SiO2 content decreased and the overall trend was low, whereas Sr and CaO content was high and increasing, indicating less precipitation and a drier environment. (3) In Period III (1 850⁃2 000 A.D.), corresponding to the modern warm period (MWP), Ti, Rb/Sr, Cr and SiO2 content was increasing and Sr and CaO decreased, indicating high precipitation and humid conditions in the lake basin. It is notable that the hydrological changes reconstructed in this study correspond closely with historical documents for the period from 1 137 A.D. to 1 993 A.D. A comparison with other reported regional reconstruction results indicates that these hydrological changes in Lake Shengjin are consistent with the environmental changes for Lake Daijiu and Nüshan, and for Dajiu peat. To further understand the driving mechanisms of the hydrological variations in Lake Shengjin, the results of this study were compared with trends of the Asia-Pacific oscillation (APO) and northern hemisphere solar irradiance change. Their close consistency suggests that the hydrology of Lake Shengjin during the past millennium may have been mainly driven by changes in the APO and solar radiation in the northern hemisphere.
  • [1] Moberg A, Sonechkin D M, Holmgren K, et al. Highly variable northern hemisphere temperatures reconstructed from low-and high-resolution proxy data[J]. Nature, 2005, 433(7026): 613-617.
    [2] Mann M E, Jones P D. Global surface temperatures over the past two millennia[J]. Geophysical Research Letters, 2003, 30(15): 1820.
    [3] Mann M E, Zhang Z H, Rutherford S, et al. Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly[J]. Science, 2009, 326(5957): 1256-1260.
    [4] Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-Year Chinese cave record[J]. Science, 2008, 322(5903): 940-942.
    [5] 韩超,肖生春,丁爱军,等. 腾格里沙漠南缘青海云杉(Picea crassifolia)和油松(Pinus tabulaeformis)年轮记录的气候变化[J]. 中国沙漠,2020,40(2):50-58.

    Han Chao, Xiao Shengchun, Ding Aijun, et al. Radial growth climatic response characteristics and tree ring climate records of conifer species at south margin of Tengger Desert, China[J]. Journal of Desert Research, 2020, 40(2): 50-58.
    [6] 段克勤,姚檀栋,王宁练,等. 青藏高原中部全新世气候不稳定性的高分辨率冰芯记录[J]. 中国科学(D辑):地球科学,2012,42(9):1441-1449.

    Duan Keqin, Yao Tandong, Wang Ninglian, et al. The unstable Holocene climatic change recorded in an ice core from the central Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2012, 42(9): 1441-1449.
    [7] 强明瑞,陈发虎,张家武,等. 2 ka来苏干湖沉积碳酸盐稳定同位素记录的气候变化[J]. 科学通报,2005,50(13):1385-1393.

    Qiang Mingrui, Chen Fahu, Zhang Jiawu, et al. Climatic changes documented by stable isotopes of sedimentary carbonate in Lake Sugan,northeastern Tibetan Plateau of China, since 2 ka BP [J]. Chinese Science Bulletin, 2005, 50(13): 1385-1393.
    [8] 葛全胜,刘健,方修琦,等. 过去2000年冷暖变化的基本特征与主要暖期[J]. 地理学报,2013,68(5):579-592.

    Ge Quansheng, Liu Jian, Fang Xiuqi, et al. General characteristics of temperature change and centennial warm periods during the past 2000 years[J]. Acta Geographica Sinica, 2013, 68(5): 579-592.
    [9] Nyberg J, Malmgren B A, Kuijpers A, et al. A centennial-scale variability of tropical North Atlantic surface hydrography during the Late Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(1/2): 25-41.
    [10] Yang B, Brauning A, Shi Y F. Late Holocene temperature fluctuations on the Tibetan Plateau[J]. Quaternary Science Reviews, 2003, 22(21/22): 2335-2344.
    [11] 邓云凯,李亮,马春梅,等. 江西玉华山泥炭2000a BP以来的元素地球化学记录及其气候意义[J]. 地层学杂志,2019,43(4):352-363.

    Deng Yunkai, Li Liang, Ma Chunmei, et al. The geochemical records and paleoclimate significance in peat from the Yuhua Mountain in Jiangxi province since the last two millennia[J]. Journal of Stratigraphy, 2019, 43(4): 352-363.
    [12] 郑景云,张学珍,刘洋,等. 过去千年中国不同区域干湿的多尺度变化特征评估[J]. 地理学报,2020,75(7):1432-1450.

    Zheng Jingyun, Zhang Xuezhen, Liu Yang, et al. The Assessment on hydroclimatic changes of different regions in China at multi-scale during the past millennium[J]. Acta Geographica Sinica, 2020, 75(7): 1432-1450.
    [13] 葛全胜,刘路路,郑景云,等. 过去千年太阳活动异常期的中国东部旱涝格局[J]. 地理学报,2016,71(5):707-717.

    Ge Quansheng, Liu Lulu, Zheng Jingyun, et al. Spatial patterns of drought/flood over eastern China in the periods of anomalous solar activity during the past millennium[J]. Acta Geographica Sinica, 2016, 71(5): 707-717.
    [14] 郝志新,吴茂炜,张学珍,等. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展,2020,35(1):18-25.

    Hao Zhixin, Wu Maowei, Zhang Xuezhen, et al. An overview on changes of dry/wet pattern in China in decadal to centennial warm and cold periods during the past millennium[J]. Advances in Earth Science, 2020, 35(1): 18-25.
    [15] Zhu J H, Wang S W. 80 yr oscillation of summer rainfall over North China and East Asian summer monsoon[J]. Geophysical Research Letters, 2002, 29(14): 1672.
    [16] Zhong W, Xue J B, Zheng Y M, et al. Variations of monsoonal precipitation over the last 16000 years in the eastern Nanling Mountains, South China[J]. Journal of Paleolimnology, 2010, 44(1): 177-188.
    [17] 陈文,丁硕毅,冯娟,等. 不同类型ENSO对东亚季风的影响和机理研究进展[J]. 大气科学,2018,42(3):640-655.

    Chen Wen, Ding Shuoyi, Feng Juan, et al. Progress in the study of impacts of different types of ENSO on the East Asian monsoon and their mechanisms[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 640-655.
    [18] Jiang S W, Zhou X, Sachs J P, et al. Central eastern China hydrological changes and ENSO-like variability over the past 1800 yr[J]. Geology, 2021, 49(11): 1386-1390.
    [19] Zhang W C, Yan H, Liu C C, et al. Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age[J]. Quaternary International, 2018, 487: 54-60.
    [20] Duan F C, Zhang Z Q, Wang Y, et al. Hydrological variations in central China over the past millennium and their links to the tropical Pacific and North Atlantic oceans[J]. Climate of the Past, 2020, 16(2): 475-485.
    [21] Ling Y, Dai X Q, Zheng M P, et al. High-resolution geochemical record for the last 1100 yr from Lake Toson, northeastern Tibetan Plateau, and its climatic implications[J]. Quaternary International, 2018, 487: 61-70.
    [22] Liu J B, Shen Z W, Chen W, et al. Dipolar mode of precipitation changes between North China and the Yangtze River Valley existed over the entire Holocene: Evidence from the sediment record of Nanyi Lake[J]. International Journal of Climatology, 2021, 41(3): 1667-1681.
    [23] Wu Y H, Lücke A, Jin Z D, et al. Holocene climate development on the central Tibetan Plateau: A sedimentary record from Cuoe Lake[J]. Palaeogeography, Palaeoclimatology, Paleoecology, 2006, 234(2/3/4): 328-340.
    [24] 蒋诗威. 江淮地区高分辨率湖泊沉积记录的过去1800年环境演变[D]. 合肥:中国科学技术大学,2021:41-51.

    Jiang Shiwei. High resolution environmental changes in Jianghuai region over the last 1800 years recorded in lake sediments[D]. Hefei: University of Science and Technology of China, 2021: 41-51.
    [25] 马晓晨,王家生,陈粲,等. 华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义[J]. 地球科学,2018,43(11):3853-3872.

    Ma Xiaochen, Wang Jiasheng, Chen Can, et al. Major element compositions and paleoclimatic implications of paleo-regolith on top Jingeryu Formation in Fangshan, North China[J]. Earth Science, 2018, 43(11): 3853-3872.
    [26] Wang L, Wang C, Deng D G, et al. Temporal and spatial variations in phytoplankton: Correlations with environmental factors in Shengjin Lake, China[J]. Environmental Science and Pollution Research, 2015, 22(18): 14144-14156.
    [27] Cheng L J, Xue B, Yao S C, et al. Response of Cladocera fauna to environmental change based on sediments from Shengjin Lake, a Yangtze River-connected lake in China[J]. Quaternary International, 2020, 536: 52-59.
    [28] 许信旺,朱诚,田晓四. 升金湖湿地沉积物地球化学特征[J]. 池州学院学报,2010,24(3):58-61.

    Xu Xinwang, Zhu Cheng, Tian Xiaosi. Geochemical characteristics of wetland sediments in Shengjin Lake[J]. Journal of Chizhou College, 2010, 24(3): 58-61.
    [29] Peng L, Dong B, Wang P, et al. Research on ecological risk assessment in land use model of Shengjin Lake in Anhui province, China[J]. Environmental Geochemistry and Health, 2019, 41(6): 2665-2679.
    [30] 张明真,周军,葛方,等. 升金湖国家级自然保护区湖泊沉积物重金属分布及污染评价[J]. 生态科学,2019,38(1):9-16.

    Zhang Mingzhen, Zhou Jun, Ge Fang, et al. Distribution and contamination evaluation of heavy metals in the sediments from Shengjin Lake National Nature Reserve[J]. Ecological Science, 2019, 38(1): 9-16.
    [31] 王维晴,周立志,陈薇,等. 长江下游升金湖湿地保护有效性评价(1989—2019)[J]. 湖泊科学,2021,33(3):905-921.

    Wang Weiqing, Zhou Lizhi, Chen Wei, et al. Evaluation of conservation effectiveness of Lake Shengjin, lower reaches of the Yangtze River, 1989-2019[J]. Journal of Lake Sciences, 2021, 33(3): 905-921.
    [32] 商乃萱,张坤,袁素强,等. 围网拆除后升金湖后生浮游动物群落结构及环境影响因子[J]. 水生态学杂志,2022,43(1):86-94.

    Shang Naixuan, Zhang Kun, Yuan Suqiang, et al. Metazoan zooplankton community structure and influencing factors in Shengjin Lake after purse seine removal[J]. Journal of Hydroecology, 2022, 43(1): 86-94.
    [33] 朱鸣,董斌,崔杨林,等. 升金湖湿地生态系统健康评价与越冬候鸟的响应[J]. 安徽农业大学学报,2020,47(1):88-94.

    Zhu Ming, Dong Bin, Cui Yanglin, et al. Shengjin Lake wetland ecosystem health assessment and the response of overwintering migratory birds[J]. Journal of Anhui Agricultural University, 2020, 47(1): 88-94.
    [34] 龚雄虎,丁琪琪,金苗,等. 升金湖水体优先污染物筛选与风险评价[J]. 环境科学,2021,42(10):4727-4738.

    Gong Xionghu, Ding Qiqi, Jin Miao, et al. Screening of priority pollutants and risk assessment for surface water from Shengjin Lake[J]. Environmental Science, 2021, 42(10): 4727-4738.
    [35] 王苏民,窦鸿身. 中国湖泊志[M]. 北京:科学出版社,1998:250-251.

    Wang Sumin, Dou Hongshen. Chinese lakes[M]. Beijing: Science Press, 1998: 250-251.
    [36] 池州地区地方志编纂委员会. 池州地区志[M]. 北京:方志出版社,1996:108-110.

    Chorography Complication Committee of Chizhou Region. Chorography of Chizhou region[M]. Beijing: Fangzhi Publishing House of Local Records, 1996: 108-110.
    [37] 胡洁,汪勇,金院,等. 长江下游升金湖沉积物记录的过去千年高分辨率气候环境变化[J]. 第四纪研究,2022,42(2):421-434.

    Hu Jie, Wang Yong, Jin Yuan, et al. High-resolution paleoclimatic changes recorded in Lake Shengjin, lower reaches of the Yangtze River over the last millennium[J]. Quaternary Sciences, 2022, 42(2): 421-434.
    [38] 牟保磊. 元素地球化学[M]. 北京:北京大学出版社,1999:5-14.

    Mu Baolei. Element geochemistry[M]. Beijing: Peking University Press, 1999: 5-14.
    [39] 胡砚泊, Wünnemann B,张永战,等. 14 ka以来苦海沉积物地球化学记录及其古环境意义[J]. 沉积学报,2019,37(1):104-114.

    Hu Yanbo, Wūnnemann B, Zhang Yongzhan, et al. Geochemistry record and their environmental implications during the past 14 ka in Kuhai Lake, NE Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2019, 37(1): 104-114.
    [40] 金海燕,翦知湣,谢昕,等. 南海北部晚第四纪高分辨率元素比值反映的东亚季风演变[J]. 第四纪研究,2011,31(2):207-215.

    Jin Haiyan, Jian Zhimin, Xie Xin, et al. Late Quaternary East Asian monsoonal evolution recorded by high resolution elemental ratios in the northern South China Sea[J]. Quaternary Sciences, 2011, 31(2): 207-215.
    [41] 李长安,张玉芬,熊德强,等. “巫山黄土”常量元素地球化学特征[J]. 地球科学,2013,38(5):916-922.

    Li Chang’an, Zhang Yufen, Xiong Deqiang, et al. Major element compositions of the “Wushan Loess”[J]. Earth Science, 2013, 38(5): 916-922.
    [42] Morellón M, Anselmetti F S, Ariztegui D, et al. Human-climate interactions in the central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania)[J]. Quaternary Science Reviews, 2016, 136: 134-152.
    [43] Mao L J, Mo D W, Yang J H, et al. Geochemistry of trace and rare earth elements in red soils from the Dongting Lake area and its environmental significance[J]. Pedosphere, 2009, 19(5): 615-622.
    [44] 颜永毫,周杰,何忠,等. 3万年来卤阳湖沉积物地球化学元素变化特征及其环境意义[J]. 水土保持学报,2016,30(3):208-219.

    Yan Yonghao, Zhou Jie, He Zhong, et al. The characteristics of geochemical elements in Luyang Lake sediments and its paleoclimatic environmental implications for the Last 30000 years[J]. Journal of Soil and Water Conservation, 2016, 30(3): 208-219.
    [45] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77.
    [46] Chawchai S, Chabangborn A, Kylander M, et al. Lake Kumphawapi-an archive of Holocene palaeoenvironmental and palaeoclimatic changes in northeast Thailand[J]. Quaternary Science Reviews, 2013, 68: 59-75.
    [47] 弋双文,鹿化煜,周亚利,等. 晚第四纪科尔沁黄土堆积的Rb-Sr地球化学特征及古气候变化[J]. 海洋地质与第四纪地质,2013,33(2):129-136.

    Yi Shuangwen, Lu Huayu, Zhou Yali, et al. Rb/Sr geochemistry of loess deposits in the Horqin dunefield, northeastern China, and its implications for climate change during Late Quaternary[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 129-136.
    [48] 杨龙,孙永娟,鄂崇毅,等. 江西沟1号风成剖面地球化学元素特征及古环境意义[J]. 盐湖研究,2016,24(2):44-53.

    Yang Long, Sun Yongjuan, Chongyi E, et al. Geochemical element characteristics and paleoenvironmental significance of aeolian sediments in JXG1 section[J]. Journal of Salt Lake Research, 2016, 24(2): 44-53.
    [49] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [50] 蔡观强,邱燕,彭学超,等. 南海西南海域表层沉积物微量和稀土元素地球化学特征及其意义[J]. 海洋地质与第四纪地质,2010,30(5):53-62.

    Cai Guanqiang, Qiu Yan, Peng Xuechao, et al. The geochemical characteristics of trace elements and rees in surficial sediments of the southwestern South China Sea and their implications[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 53-62.
    [51] Zou C H, Mao L J, Tan Z H, et al. Geochemistry of major and trace elements in sediments from the Lubei Plain, China: Constraints for paleoclimate, paleosalinity, and paleoredox environment[J]. Journal of Asian Earth Sciences: X, 2021, 6: 100071.
    [52] 东至县地方志编纂委员会. 东至县志[M]. 合肥:安徽人民出版,1990:123-129.

    Chorography Complication Committee of Dongzhi Region. Chorography of Dongzhi region[M].Hefei: Publishing House of Anhui People, 1990: 123-129.
    [53] 沈吉,张恩楼,夏威岚. 青海湖近千年来气候环境变化的湖泊沉积记录[J]. 第四纪研究,2001,21(6):508-513.

    Shen Ji, Zhang Enlou, Xia Weilan. Records from lake sediments of the Qinghai Lake to mirror climatic and environmental changes of the past about 1 000 years[J]. Quaternary Sciences, 2001, 21(6): 508-513.
    [54] 陈骏,汪永进,季峻峰,等. 陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义[J]. 第四纪研究,1999,19(4):350-356.

    Chen Jun, Wang Yongjin, Ji Junfeng, et al. Rb/Sr variations and its climatic stratigraphical significance of a loess-paleosol profile from Luochuan, Shaanxi province[J]. Quaternary Sciences, 1999, 19(4): 350-356.
    [55] 舒强,赵志军,陈晔,等. 江苏兴化DS浅孔沉积物地球化学元素与粒度所揭示的古环境意义[J]. 地理科学,2009,29(6):923-928.

    Shu Qiang, Zhao Zhijun, Chen Ye, et al. Palaeoenvironmental significance of geochemistry elements and grain size of DS core sediments in Xinghua, Jiangsu province[J]. Scientia Geographica Sinica, 2009, 29(6): 923-928.
    [56] 张愈,马春梅,赵宁,等. 浙江天目山千亩田泥炭晚全新世以来Rb/Sr记录的干湿变化[J]. 地层学杂志,2015,39(1):97-107.

    Zhang Yu, Ma Chunmei, Zhao Ning, et al. Late Holocene Rb/Sr ratios as a paleoclimate procy in the Qianmutian peat of Tianmu Mountains, Zhejiang province[J]. Journal of Stratigraphy, 2015, 39(1): 97-107.
    [57] 丁馨,杜雨薇,徐欣,等. 中国早期人类分布的环境制约因素探讨[J]. 第四纪研究,2021,41(5):1342-1356.

    Ding Xin, Du Yuwei, Xu Xin, et al. Preliminary analysis on the distribution patterns of early human occupation influenced by environmental factors during Pleistocene in China[J]. Quaternary Sciences, 2021, 41(5): 1342-1356.
    [58] 周秀骥,赵平,刘舸,等. 中世纪暖期、小冰期与现代东亚夏季风环流和降水年代—百年尺度变化特征分析[J]. 科学通报,2011,56(25):2060-2067.

    Zhou Xiuji, Zhao Ping, Liu Ge, et al. Characteristics of decadal-centennial-scale changes in East Asian summer monsoon circulation and precipitation during the Medieval Warm Period and Little Ice Age and in the present day[J]. Chinese Science Bulletin, 2011, 56(25): 2060-2067.
    [59] 张德二. 中国三千年气象记录总集[M]. 2版. 南京:江苏教育出版社,2013:73-78.

    Zhang Deer. China three thousand years meteorological records collection [M]. 2nd ed. Nanjing: Jiangsu Education Press, 2013: 73-78.
    [60] 葛全胜. 中国历朝气候变化[M]. 北京:科学出版社,2011:180-199.

    Ge Quansheng. The climate change in China during the past dynasties[M]. Beijing: Science Press, 2011: 180-199.
    [61] 何报寅,张穗,蔡述明. 近2600年神农架大九湖泥炭的气候变化记录[J]. 海洋地质与第四纪地质,2003,23(2):109-115.

    He Baoyin, Zhang Sui, Cai Shuming. Climatic changes recorded in peat from the Dajiu Lake Basin in Shennongjia since the last 2600 years[J]. Marine Geology & Quaternary Geology, 2003, 23(2): 109-115.
    [62] Zheng J Y, Wang W C, Ge Q S, et al. Precipitation variability and extreme events in eastern China during the past 1500 years[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(3): 579-592.
    [63] 周秀骥,赵平,刘舸. 近千年亚洲—太平洋涛动指数与东亚夏季风变化[J]. 科学通报,2009,54(20):3144-3146.

    Zhou Xiuji, Zhao Ping, Liu Ge. Asian-Pacific oscillation index and variation of East Asian summer monsoon over the past millennium[J]. Chinese Science Bulletin, 2009, 54(20): 3144-3146.
    [64] Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19): L19704
    [65] 崔树昆,蒋诗威,刘孝艳,等. 雁荡山湖泊沉积物记录的中国东部季风区小冰期以来气候干湿变化[J]. 湖泊科学,2021,33(3):947-956.

    Cui Shukun, Jiang Shiwei, Liu Xiaoyan, et al. Climate change in the monsoon region of eastern China since the Little Ice Age (LIA) recorded from lacustrine sediments in Yandang Mountain[J]. Journal of Lake Sciences, 2021, 33(3): 947-956.
    [66] Ding Y H, Wang Z Y, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences[J]. International Journal of Climatology, 2008, 28(9): 1139-1161.
    [67] 马春梅,朱诚,郑朝贵,等. 晚冰期以来神农架大九湖泥炭高分辨率气候变化的地球化学记录研究[J]. 科学通报,2008,53(增刊I):26-37.

    Ma Chunmei, Zhu Cheng, Zheng Chaogui, et al. Climate changes in East China since the Late-Glacial inferred from high-resolution mountain peat humification records[J]. Chinese Science Bulletin, 2008, 53(Suppl.I): 26-37.
    [68] Yan H, Sun L G, Wang Y H, et al. A record of the southern Oscillation Index for the past 2,000 years from precipitation proxies[J]. Nature Geoscience, 2011, 4(9): 611-614.
    [69] 董才桂. 冬季亚洲—太平洋涛动的年际变化与东亚气候异常和太平洋海温异常的关系[D]. 北京:中国气象科学研究院,2013:2-4.

    Dong Caigui. Interannual variability of winter Asia-Pacific oscillation and its relationship with the East Asian climate anomalies and Pacific SST anomalies[D]. Beijing: Chinese Academy of Meteorological Sciences, 2013: 2-4.
    [70] 赵平,周秀骥. 近40年我国东部降水持续时间和雨带移动的年代际变化[J]. 应用气象学报,2006,17(5):548-556.

    Zhao Ping, Zhou Xiuji. Decadal variability of rainfall persistence time and rainbelt shift over eastern China in recent 40 years[J]. Journal of Applied Meteorological Science, 2006, 17(5): 548-556.
    [71] 赵平,陈军明,肖栋,等. 夏季亚洲—太平洋涛动与大气环流和季风降水[J]. 气象学报,2008,66(5):716-729.

    Zhao Ping, Chen Junming, Xiao Dong, et al. Summer Asian-Pacific oscillation and its relationship with atmospheric circulation and monsoon rainfall[J]. Acta Meteorologica Sinica, 2008, 66(5): 716-729.
    [72] 周波涛,赵平,崔绚. 亚洲—太平洋涛动变化与北太平洋海温异常的联系[J]. 科学通报,2010,55(1):74-79.

    Zhou Botao, Zhao Ping, Cui Xuan. Linkage between the Asian-Pacific oscillation and the sea surface temperature in the North Pacific[J]. Chinese Science Bulletin, 2010, 55(1): 74-79.
    [73] 章颖,赵平. 夏季亚洲—太平洋遥相关季节演变与大气环流和降水[J]. 气象学报,2012,70(5):1055-1063.

    Zhang Ying, Zhao Ping. Seasonal evolutions of the summer Asian-Pacific teleconnection and associated atmospheric circulation and rainfall[J]. Acta Meteorologica Sinica, 2012, 70(5): 1055-1063.
    [74] Zhou X J, Zhao P, Liu G, et al. Characteristics of decadal-centennial-scale changes in East Asian summer monsoon circulation and precipitation during the Medieval Warm Period and Little Ice Age and in the present day[J]. Chinese Science Bulletin, 2011, 56(28): 3003-3011.
    [75] 王星,华维. 夏季亚洲—太平洋涛动与东亚气候异常的关系[J]. 成都信息工程大学学报,2019,34(4):420-427.

    Wang Xing, Hua Wei. The relationship between the Asia-Pacific oscillation in summer and East Asian summer climate abnormality[J]. Journal of Chengdu University of Information Technology, 2019, 34(4): 420-427.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(1)

Article Metrics

Article views(259) PDF downloads(90) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-02-27
  • Revised:  2022-07-01
  • Accepted:  2022-09-16
  • Published:  2023-02-10

Geochemical Element Records and Hydrological Significance of Lake Shengjin Sediments During the Past Millennium

doi: 10.14027/j.issn.1000-0550.2022.081
Funds:

National Natural Science Foundation of China 41771228

Anhui Normal University Ph.D. Start-up Project 2017XJJ36

Abstract: The hydrological changes in the monsoon region of eastern China over the past thousand years have been extensively studied and substantial progress has been made. However, there are significant apparent regional differences between the time interval, spatial characteristics and the combination of temperature and humidity. The driving mechanisms of humidity changes in the monsoon region of eastern China are also still unclear. To better understand the hydrological variations and internal and external mechanisms in the region over the past thousand years, it is necessary to continue to strengthen the reconstruction and driving mechanism of high-resolution hydrological changes. Lake Shengjin (30°15'⁃30°28' N, 116°58'⁃117°14' E) is located in Chizhou city, Anhui province, on the southern bank of the Yangtze River and covers an area of 133 km2. The lake consists of upper, middle and lower lakes. The climate of the lake basin is subtropical monsoonal, with an annual average temperature of 16.1 °C and an annual average precipitation of 1 600 mm.The 86 cm long sediment core SJPC19-3 was drilled in the shallow wetland area of the lake in March, 2019. The sampling site is located at 30°20' N, 117°00' E. The core was divided into intervals of 0.5 cm between 9 and 30 cm and intervals of 1 cm between 30 cm and 86 cm. The hydrological significance of geochemical elements was analyzed from reliable accelerator mass spectrometer (AMS) 14C isotope data. The paleohydrological changes in Lake Shengjin during the past millennium were reconstructed from geochemical elements and combined with total organic carbon (TOC), carbon-nitrogen ratio (C/N), inorganic carbon (IC) and other environmental proxies. The changes were divided into three stages: (1) In Period I (1 000⁃1 350 A.D.), corresponding to the Medieval Warm Period (MWP), Ti, Rb/Sr, Cr and SiO2 content gradually decreased, and Sr and CaO content fluctuated at low values, indicating general aridification of the lake basin during the MWP. (2) Period II (1 350⁃1 850 A.D.), corresponding to the Little Ice Age (LIA), was divided into two substages: (2A) From 1 350 A.D. to 1 600 A.D. (early LIA), Ti, Rb/Sr, Cr and SiO2 fluctuated at a high level, and Sr and CaO content remained low, probably reflecting more precipitation in the basin. (2B) From 1 600 A.D. to 1 850 A.D. (i.e., the later LIA), Ti, Rb/Sr, Cr, SiO2 content decreased and the overall trend was low, whereas Sr and CaO content was high and increasing, indicating less precipitation and a drier environment. (3) In Period III (1 850⁃2 000 A.D.), corresponding to the modern warm period (MWP), Ti, Rb/Sr, Cr and SiO2 content was increasing and Sr and CaO decreased, indicating high precipitation and humid conditions in the lake basin. It is notable that the hydrological changes reconstructed in this study correspond closely with historical documents for the period from 1 137 A.D. to 1 993 A.D. A comparison with other reported regional reconstruction results indicates that these hydrological changes in Lake Shengjin are consistent with the environmental changes for Lake Daijiu and Nüshan, and for Dajiu peat. To further understand the driving mechanisms of the hydrological variations in Lake Shengjin, the results of this study were compared with trends of the Asia-Pacific oscillation (APO) and northern hemisphere solar irradiance change. Their close consistency suggests that the hydrology of Lake Shengjin during the past millennium may have been mainly driven by changes in the APO and solar radiation in the northern hemisphere.

JIN Yuan, WANG Yong, HU Jie, HAN RuiChao, XIANG ChaoSheng. Geochemical Element Records and Hydrological Significance of Lake Shengjin Sediments During the Past Millennium[J]. Acta Sedimentologica Sinica, 2023, 41(1): 219-232. doi: 10.14027/j.issn.1000-0550.2022.081
Citation: JIN Yuan, WANG Yong, HU Jie, HAN RuiChao, XIANG ChaoSheng. Geochemical Element Records and Hydrological Significance of Lake Shengjin Sediments During the Past Millennium[J]. Acta Sedimentologica Sinica, 2023, 41(1): 219-232. doi: 10.14027/j.issn.1000-0550.2022.081
  • 过去千年是气候变化当前与过去更长时间尺度相联系的关键时段,也是自然气候变化和人类活动联系最为紧密的时段,主要包括1 800 A.D.前以自然变率为主的气候波动时期和过去200年中自然和人为因素共同影响的气候变化时期[13]。近年来,学者们通过整合石笋[4]、树轮[5]、冰芯[6]、湖泊沉积物[7]和历史文献[8]等水文记录,建立了半球及全球尺度的温度与降水变化曲线,揭示了过去千年中世纪暖期、小冰期以及工业革命以来全球变暖的典型气候变化过程,但是对于这些特征时期内部起始结束时间、降水变化幅度、产生机制、内部波动及区域响应等认识存在差异[912]。因此,加强过去千年水文环境变化研究对于认识当前全球变暖背景下气候变化机理及预测未来水文变化趋势具有重要价值。

    中国东部主要受东亚夏季风影响,其水文变化具有显著的时空异质性,主要表现为区内降水时空分布不均,呈现“南涝北旱”或“南旱北涝”的分布特征[1314]。Zhu et al.[15]认为夏季降水在中国呈“湿—干—湿”或“干—湿—干”经向模式,即夏季降水更多在中国北部,华南和长江中下游流域降水少,反之亦然。Zhong et al.[16]认为中国东部湿度变化的空间格局在全新世早期和晚期表现为“干—湿—干”模式,而在全新世中期表现为“湿—干—湿”模式。尽管近年来在中国东部开展了大量的东亚夏季风变化历史重建研究,然而一方面不同区域东亚夏季风降水重建结果差异较大,另一方面对影响东亚夏季风变化的内外部驱动机制认识也存在不同观点。例如,陈文等[17]总结不同区域重建结果认为显著影响我国东部降水变化的海洋ENSO态在中世纪暖期为拉尼娜态,小冰期为厄尔尼诺态;最近Jiang et al.[18]关于江淮流域女山湖高分辨区域水文重建结果也持相同观点;而对中国南海地区湖泊水文重建以及中国东部永兴洞石笋重建过去千年水文变化结果,均认为小冰期为拉尼娜态[1920]。因此,为加深对近千年来中国东部东亚夏季风演替历史以及内外部机制的认识,继续加强东亚地区高分辨率过去水文变化重建与驱动机制研究非常必要。

    沉积物元素含量变化能够敏感地反映沉积时期湖泊水体环境变化过程[2122],是重建古水文环境变化的重要手段,近年来被广泛应用于过去水文变化重建研究[23]。X射线荧光分析(X-Ray Fluorescence,XRF)方法具有分析速度快、无损样品、分辨率高、连续性好等特点,在获取高分辨率环境记录信息方面具有独特优势[2425]。升金湖位于长江下游,是典型的长江连接湖[26]。Cheng et al.[27]通过生物指标与地球化学指标分析了升金湖的生态环境演化。许信旺等[28]利用元素与磁化率探讨了升金湖流域环境变化。升金湖是一个重要的国家级自然保护区,同时也是国际重要的湿地名录所收录的湖泊之一[29]。目前对升金湖的研究主要集中在生态环境[30]、湿地保护评价[31]、动植物保护研究[32]、越冬候鸟生境[33]、水污染评价[34],在古水文环境研究方面较为薄弱。因此,本文对长江下游升金湖沉积岩心元素地球化学指标含量变化进行研究,在可靠的年代数框架基础上,重建该地区过去千年水文环境变化,并通过与区域历史文献记录的东亚夏季风区及邻近地区的指标序列进行对比研究,探讨该区过去千年水文变化的可能驱动机制,为深入理解长江中下游地区水文环境变化提供依据。

  • 升金湖(30°15′ N~30°28′ N,116°58′ E~117°14′ E)位于安徽省池州市境内,跨东至县、贵池区,濒长江南岸,系长江中下游河漫滩洼地经泥沙封淤,积水而成保存较为完好的浅水河间洼地湖泊[35]图1),湖泊面积133 km2,湖泊自西向东分为水面相连的上、中、下湖[26]。流域气候属亚热带季风气候,年平均气温16.1 ℃,最热月7月平均气温28.2 ℃,最冷月1月平均气温3.9 ℃,无霜期240天,年平均降水量1 600 mm[27]。升金湖长20.5 km,最大宽7.5 km,平均宽3.83 km;湖泊丰水期湖面最高水位17 m,年平均水位10.88 m[27]。流域雨量充沛,地表径流丰富,水源以大气降水补给为主,地表径流主要来自西南张溪河(张溪镇)和东部唐田河(唐田镇),以及周边少数地表径流[31]

    Figure 1.  Map of drainage basin of Lake Shengjin and sediment core site

    升金湖东南岸属九华山山脉一部分,为低山丘陵,西北属沿江冲积平原,为平原圩畈[35]。其东南湖岸为中生代三叠纪与古生代二叠纪地质构造,以灰岩、页岩为主;西北湖岸为第四纪地层构造,以亚黏土、砂砾为主。湖床自南向北逐渐倾斜,形成现代冲积层,泥沙淤积,土壤为黄色亚黏土、黄红壤和粉砂、砂砾[36]

  • 课题组于2019年3月利用重力钻在升金湖浅水湿地区域采集岩心样品,采样点位于30°20′ N,117°0′ E,所采集岩心总长度为86 cm,编号SJPC19-3,岩心采集后迅速运输至实验室并采用低温保存。由于岩心9 cm以上部分为含水量很高的稀泥质沉积物,无法进行有效分样,以及考虑沉积速率等问题,因此本研究选用9~86 cm范围内的样品。岩心9~30 cm范围内以0.5 cm为间隔、30~86 cm范围以每1 cm间隔进行分样,共分得样品98个。将分得的样品用真空冷冻干燥机进行冻干处理后进行下一步分析。

  • 从SJPC19-3钻孔中分别挑选了深度为10 cm、45 cm、86 cm的三个样品,送往美国Beta Analytic公司进行AMS14C年代分析,测年材料包括植物残体和全岩有机碳,测试结果使用INTCAL 13数据库进行年代校正。

  • 将分好的沉积物样品冻干,尽量小心去除现代根系、植物残体、贝壳等,之后用研钵将样品磨成粉末,后过200目塑料尼龙筛(0.074 mm孔径),搅拌均匀,将测试样品进行粉末压片制备。将仪器自带的粉末压片标准样品,在沉积物样品测试前对XRF进行标准曲线绘制及校准。将处理好的粉末压片样品放入日本理学公司生产的Rigaku ZSX Primus II型波长色散X射线荧光光谱仪内进行元素分析,通过微区定量分析测定主量元素氧化物的质量分数及部分微元素的含量,测得Ti、Cr、Sr、CaO、Rb/Sr、SiO2。分析测试过程采用国家地球化学标准沉积物样(GSS1和GSD9)进行全程监控,分析误差小于±1%。

  • 总有机碳(TOC)、总氮(TN)、C/N、无机碳(IC)等指标测定均在中国科学院青藏高原环境变化与地表过程重点实验室内完成。利用日本岛津公司的总有机碳分析仪(TOC-VCPH型)完成IC含量的测量,由德国vario MAX cub型元素分析仪测量(TC)和TN的含量,再通过差减法,即利用TC含量减去IC含量得出样品的TOC含量,同时利用TOC和TN的比值计算得出C/N。

  • SJPC19-3沉积岩心三个沉积物样品AMS 14C年代测试结果表1所示。岩心从顶部至底部年代由新变老,岩心顶部10 cm处年代为1 995~1 999 A.D.,底部年代约为980~1 052 A.D.。已有研究发现升金湖沉积岩心基本无碳库效应[37],因此该岩心完整覆盖升金湖地区约过去一千年水文变化。本研究根据三个年代数据进行二次多项式拟合,建立岩心最终的年代—深度序列[37]图2)。

    样品编号深度/cm测年材料AMS14C年龄(2σ)/a B.P.校正后日历 年龄/A.D.
    SJPC19-31510植物残体-48±21 995~1 999
    SJPC19-3-7045植物残体550±301 386~1 434
    SJPC19-3-11186总有机质990±30989~1 052

    Figure 2.  Age vs. depth model of core SJPC19⁃3

  • 通过对SJPC19-3孔XRF岩心扫描得到的Ti、Cr、Sr、CaO、Rb/Sr、SiO2含量变化进行描述(图3);Ti含量波动范围为4 800~6 000 mg/kg,平均为5 529 mg/kg;Rb/Sr波动范围为2~8,平均为5.13;Sr含量波动范围在15~60 mg/kg,平均为24.60 mg/kg;Cr含量波动范围在70~98 mg/kg,平均为83.77 mg/kg;SiO2含量波动范围在56%~62%,平均为59.57%;CaO含量波动范围在0~5%,平均为1.38%。

    Figure 3.  Changes of elements and oxides in core SJPC19⁃3

    总体来看,升金湖沉积岩心Ti、Cr、SiO2、Rb/Sr变化趋势大致相似,高强度值出现在约1 000~1 100 A.D.与1 300~1 600 A.D.之间,且后一阶段波动强度较前一阶段显著,在1 600 A.D.之前含量较高,1 600 A.D.之后含量相对较低,在1 850 A.D.以来有上升的趋势;元素Sr、CaO含量总体变化趋势大致相同,1 600 A.D.之前含量相对较低,1 600 A.D.之后含量相对较高。在1 000~1 350 A.D.元素Sr、CaO含量保持在低值范围,在约1 100 A.D.元素Sr、CaO含量为岩心最高值,在1 350~1 850 A.D.元素Sr、CaO含量由低值向高值变化,1 850 A.D.以来,元素Sr、CaO含量呈显著下降趋势。

  • 沉积物中TOC、TN、C/N、IC测定结果显示(图4),TOC含量波动范围为0.5%~2.5%,平均为1.349%;TN含量波动范围为0.05%~0.25%,平均为0.156%;C/N波动范围为5~15,平均为8.433;IC含量波动范围为0~1.5%,平均为0.183%。TOC、TN和C/N过去千年呈波动增加趋势,在1 000~1 600 A.D.期间TOC、C/N与TN含量缓慢波动增加,在1 600~1 650 A.D.期间迅速增加,之后保持在高值水平;在1 350 A.D.前,IC含量呈波动变化并以1 100~1 150 A.D.较为显著,1 350~1 600 A.D.时段接近0值,1 600~1 850 A.D.期间IC为岩心最高值水平,1 850 A.D.以来呈显著降低趋势[37]

    Figure 4.  Changes of Rb/Sr, Ti, TN, TOC, IC and C/N in core SJPC19⁃3

  • 沉积物地球化学元素来源、组成及含量变化特征等受沉积时期流域侵蚀、湖泊物理化学过程、元素本身地球化学行为等多种因素控制,在沉积过程中记录丰富的流域环境变化信息,是重建过去沉积环境变化的基础方法之一[3840]。在自然条件下,湖泊沉积物中无机、有机化学元素主要有两种来源:一是流域外源组分;二是湖泊水体中各种物理、化学及生物过程所产生的内生沉淀组分[41]

    Ti、Rb/Sr、Cr、SiO2等元素及氧化物为典型外源碎屑物来源,其化学组成一般与外源物质的输入有关,主要受气候与人类活动影响[4244]。降水充足湿润条件下有利于Ti元素富集,且湖泊沉积物中Ti元素主要来自湖泊汇水盆地的陆源物质输入,一般情况下,Ti元素高值反映降水较多、陆源碎屑物大量入湖的湿润环境,Ti元素低值指示降水较少、陆源物质入湖量少的干旱环境[4546]。SiO2是一种难迁移的物质,沉积物中SiO2主要包括两个方面的来源:一是以碎屑颗粒搬运沉积下来的石英碎屑和其他硅酸盐矿物碎屑;二是以胶体和黏土矿物搬运并沉积下来的物质。SiO2作为相对稳定的元素,气候越暖湿,相对富集程度越高;反之,当气候越干冷,其含量也就相对越低[4748]。升金湖位于季风湿润区,湖泊流域降水较多,地表水与地下水淋溶程度大,地表径流丰富且湖泊周边植被丰富,沉积环境中元素Ti高值指示降水多,低值指示降水少。SiO2可能代表湖泊外源碎屑,高值指示降水多,低值指示降水少。Cr元素及氧化物都是变价元素,其含量变化基于它对不同氧化—还原条件的敏感性。一般在湿热气候条件下,氧化性增强,这些元素相对富集,而气候干冷还原环境下,含量相对较低[4950]。升金湖地处亚热带,区域水文组合夏季高温多雨,冬季寒冷干燥。因此Cr元素可能指示干湿变化,Cr高值时指示降水多,低值指示降水少。元素Sr、CaO化学性质活泼、易迁移、与碳酸盐化学沉淀过程相关,其来源与湖泊沿岸岩石性质、湖泊内源理化性质有关,Sr、CaO活动性相对较高,被认为在暖湿气候条件下更容易淋失,使得含量降低;在干冷条件下,地表化学作用微弱而使其相对富集[47,51]。升金湖周边岩石多为灰岩、页岩及第四纪沉积岩,土壤为典型的亚热带红壤土[52],区域降水丰富,湖泊水来源主要为区域降水,但湖泊周边植被丰富外源碎屑输入较少,所以流域湖泊沉积物中的碳酸盐可能主要来自湖泊自身的碳酸盐沉淀作用。因此认为Sr、CaO可以有效指示流域外源输入的增减与内源的增减,Sr、CaO高值指示降水减少,水文环境偏干,低值指示降水增加,水文环境偏湿。Rb/Sr高低可以指示外源碎屑输入的多少,间接反映区域降水变化,不同研究对于其高低变化与降水强度关系不尽相同[5355]。当水文条件较好时,年降水量较大,地表或地下水淋溶程度增加,导致Sr迁移量增加从而湖泊中的淀积量减少,此时Rb淋失量略有上升但其淋溶程度远不如Sr,根据Rb、Sr矿物的性质,由于比值受到物理、化学风化的多重影响,当湖泊中含有较多碎屑岩物质时,Rb含量上升速度快于Sr,从而Rb/Sr升高,即沉积环境中Rb/Sr高值说明气候湿润,低值则反映了水文环境较干[56]。升金湖沉积物岩心钻孔所在地,地势低平为湖沼沉积环境,是水流汇集场所,因此我们认为当Rb/Sr出现高值时,指示降水量增加,水文环境相对偏湿;Rb/Sr出现低值时,指示降水量减少,水文环境相对偏干。

    升金湖地处亚热带季风性湿润气候区,属于开放性淡水湖。经过对湖泊周边植被调查发现湖泊为浅水湖,且湖泊周边陆生与水生植被丰富,湖泊水位的升高可能使湖底形成缺氧的还原条件,减少了有机质的氧化,有利于有机质的保存,但过去千年中国东部地区一直受人类活动影响较大[57]。课题组的前期研究结果中TOC与TN为低值时指示湖泊有机质含量低,湖泊营养水平较差,相反指示湖泊有机质含量高,湖泊营养水平较好。C/N为低值时指示湖泊有机质主要来源于水生生物,高值时主要来源于陆生生物。IC为低值时指示湖泊水位高,水文环境偏湿,反之则指示湖泊水位低,水文环境偏干旱[37]。因此我们认为沉积物TOC、TN、C/N、IC含量可以反映湖泊水文环境与人类活动强弱关系。

  • 通过上述对元素及氧化物指标的古水文意义解释,选取Ti、SiO2、Cr、CaO、Sr、Rb/Sr与TOC、TN、T/N、IC作为升金湖流域水文环境指标。根据地球化学元素特征,将SJPC19-3岩心沉积物指标揭示的升金湖过去千年以来水文环境变化分为3个阶段(图3,4)。

    阶段Ⅰ:深度为86~49 cm,年代1 000~1 350 A.D.(中世纪暖期)

    在1 100 A.D.之前,Ti、Cr、SiO2、Rb/Sr波动下降,但总体呈高值水平,Sr、CaO含量为低值,指示降水较多,水文环境较湿,在1100 A.D.左右出现明显波动指示一次极端干旱事件;在1 100 A.D.之后,Ti、Cr、SiO2、Rb/Sr为高值呈波动变化,Sr、CaO含量为低值呈缓慢波动上升趋势,指示1 100 A.D.之前升金湖流域降水增加,1 100 A.D.之后降水有所下降。同时TOC、TN处于沉积序列的最低水平,说明湖泊营养水平一般,有机质含量低,较低的C/N说明有机质主要来源于水生生物影响,IC为低值,呈波动增长,说明湖泊水位波动变化。综上,在年代误差范围内,部分指标内部出现波动,但多指标综合指示该时期水文环境变化总体由湿润向干旱化转变。

    阶段Ⅱ:深度为49~17.5 cm,年代1 350~1 850 A.D.(小冰期)

    根据Ti、Rb/Sr、Cr、SiO2、CaO、Sr与TOC、TN、T/N、IC变化,该阶段可分为两个阶段。1)49~31 cm,1 350~1 600 A.D.小冰期前期。Ti、Cr、SiO2、Rb/Sr为高值呈下降趋势,Sr、CaO含量为低值水平,指示该阶段升金湖流域降水较前一阶段增加,同时TOC、TN含量呈波动缓慢上升,说明湖泊营养水平有所提高,C/N比值上升说明湖泊有机质受到陆生植物与水生生物的共同影响,IC含量进一步降低,说明湖泊水位维持在较高水位,指示该时期升金湖流域水文环境变化偏湿润。2)31~17.5 cm,1 600~1 850 A.D.小冰期后期。Ti、Cr、SiO2含量为低值呈缓慢下降趋势,Rb/Sr维持在低值范围,Sr、CaO含量为高值呈上升趋势,指示该时期升金湖流域水文变化向干旱化发展。同时TN、TOC含量在此阶段上升呈高值水平说明湖泊有机质增加,湖泊营养水平提高,C/N波动增大可能是流域降水减少,水位下降,流域周边植被发育导致。IC含量也出现波动增加呈现千年以来最高值水平,进一步说明此阶段湖泊水位偏低。综上,多指标分析在小冰期升金湖流域水文环境变化趋势为由湿润向干旱发展。

    阶段Ⅲ:深度为17.5~9 cm,年代1 850~2 000 A.D.(现代暖期)

    该阶段Ti、Cr、SiO2含量呈缓慢上升趋势,Rb/Sr由低值向高值变化,Sr、CaO含量较前一阶段有所下降,指示该阶段升金湖流域降水增加,水文环境较前一阶段有所改善。同时TOC、TN含量继续波动上升呈高值范围,说明湖泊有机质增加,营养水平呈现千年以来最高水平。这可能与人类活动导致的外源有机质输入有关,C/N较前一阶段持平,IC含量迅速下降至低水平,指示降水增加,湖泊水位升高,水动力条件变弱。综上,多指标指示该时期升金湖流域水文环境变化总体偏向湿润。

  • 据池州地方志与东至县志等资料记录的大量古水文信息,共整理出升金湖流域自宋绍兴七年1 137~1 993 A.D.以来800年间发生的水灾共94次,旱灾共40次。在1 137~1 350 A.D.期间记录的水灾有11次,旱灾9次;在1 350~1 850 A.D.期间记录的水灾有54次,旱灾有20次;在1 850~1 993 A.D.期间记录的水灾有29次,旱灾有11次[36,52]。我们将这些记录与南方旱涝频数距平[58]、升金湖沉积物元素记录的干湿变化在年代框架内对比分析发现(图5),升金湖沉积物地球化学元素指标Rb/Sr变化序列中指示的水文记录与历史资料记录的水旱灾基本都有响应。在Rb/Sr序列中1 100 A.D.附近出现明显的谷值(图5),可能指示一次极端干旱事件,但在历史资料中未找到相应记录,我们认为极端旱涝的发生可能存在区域性,对于少数在局部地区发生的极端旱涝事件很少记载;在1 350~1 600 A.D. Rb/Sr变化指示降水增加,水文环境偏湿润与《中国三千年气象记录总集》中记录的1 500~1 600 A.D.,长江中下游地区连续降雨3个月以上的极端气候事件响应[59]。在1 600~1 850 A.D. Rb/Sr变化指示该时期降水减少,水文环境向干旱化发展,与葛全胜[60]研究认为长江流域自1 580 A.D.后干旱程度逐渐加重及历史文献中[36]描述的相吻合。在1 650~1 800 A.D. Rb/Sr变化序列中指示降水减少,干旱化程度加剧,与历史文献中记载康熙十三年至六十六年期间记载的江南大旱,赤地千里,滴水未落,颗粒无收,民死十之四的描述基本一致[36,52]。1 850~2 000 A.D. Rb/Sr变化指示降水增加,水文环境变湿润,与历史文献[52]记载的1 880~1 950 A.D.期间发生的水灾记录:东流港口,山水暴涌,沉溺船只,其春久旱,夏大水,粮棉歉收相吻合,同时在1 930 A.D.左右Rb/Sr变化序列中指示的降水增加与历史文献记载的民国22年至31年描述的山洪陡发,洪水泛滥,江南等处大水,其东流雨雪,平地寸许,而后水荒相吻合[52]。综上,本研究各项指标分析结果与历史文献记录的水文变化特征较吻合,说明升金湖沉积物自1 000 A.D.以来的沉积序列准确反映了区域水文变化的重要信息。

    Figure 5.  Comparison of Rb/Sr ratio sequence offor core SJPC19⁃3 in Lake Shengjin with frequency anomalies of droughts and floods in southern China [58] and extreme wet and dry events recorded in historical data [36,52] (grey represents columns = drought;, blue represents columns = flood)

  • 为进一步深入理解近千年东亚季风区水文环境变化特征与区域机制响应,将升金湖SJPC19-3岩心的地球化学元素用于反映古水文变化的周边研究区域:大九湖泥炭重建降水量[61]、江淮地区干湿指数[62]、江淮流域女山湖色度a*/L*[18]、亚洲—太平洋涛动指数[63]及北半球太阳辐照度[64]进行对比分析(图6)。由于地域上邻近,均位于东亚季风区,记录具有较强的可比性,进一步讨论升金湖地区近千年以来的水文环境变化。分析发现:在年代误差范围内,SJPC19-3岩心的地球化学元素在中世纪暖期(1 000~1 350 A.D.)指示该阶段水文环境总体偏向干旱化,相对应的大九湖泥炭重建降水量偏低,江淮地区干湿指数下降,江淮流域女山湖色度比处于高值都指示该阶段水文环境偏干。当进入小冰期阶段(1 350~1 850 A.D.),在小冰期前期(1 350~1 600 A.D.),SJPC19-3岩心的地球化学元素指示该阶段水文环境偏湿润,相对应的湖北大九湖泥炭重建降水量偏高,江淮地区干湿指数上升以及江淮流域女山湖色度比处于低值,都指示该阶段水文环境湿润化;在小冰期后期(1 600~1 850 A.D.),SJPC19-3岩心的地球化学元素指标指示该阶段降水较前期有所减少,水文环境偏干,相对应的湖北大九湖泥炭重建降水较前一阶段降水量减少,江淮地区干湿指数波动变化以及江淮流域女山湖色度比值由低值向高值变化,均指示该阶段降水相对前一阶段有所下降,水文环境偏干旱。在现代暖期(1 850~2 000 A.D.),SJPC19-3岩心的地球化学元素指标指示水文环境有所改善,相对应的湖北大九湖泥炭重建降水量较前一阶段有所下降但总体呈高值水平,江淮地区干湿指数较前一阶段有所下降但总体处于正值,江淮流域女山湖色度比值降低均指示该阶段降水相对增加,水文环境偏向湿润。上述地区重建的降水变化趋势较为一致,虽然在内部会出现一些波动,但总体上在中世纪暖期(1 000~1 350 A.D.),升金湖地区水文环境向干旱化变化,说明季风带来较少的降水,输入湖泊沉积环境的外源碎屑较少。当进入小冰期(1 350~1 850 A.D.),水文环境由湿润转向干旱,说明季风带来的降水逐渐减少,输入湖泊沉积环境的外源碎屑物质减少。在现代暖期(1 850~2 000 A.D.),水文环境偏湿,说明季风带来较多降水,输入的湖泊沉积环境的外源碎屑物质增加。综上,我们认为升金湖湖泊沉积物元素地球化学能够很好地反映过去千年该区域水文环境变化。

    Figure 6.  (a) Dry/wet index in Yangtze⁃Huaihe region [62]; (b) precipitation of peat reconstruction in Lake Dajiu [61]; (c) redness/lightness (a*/L*) in Lake Nüshan, Jianghuai Basin [18]; (d) Rb/Sr; (e) Ti; (f) Asia⁃Pacific oscillation index [63]; (g) solar irradiance in the northern hemisphere [64]

  • 中国东部地区水文环境变化受到多种因素影响,降水的时空变化及其可能的驱动机制一直备受学界关注。崔树昆等[65]认为太平洋年代际振荡(PDO)是影响小冰期以来中国东部季风区干湿变化的重要影响因子。Ding et al.[66]通过现代器测降水与海温数据,发现中国东部的降水变化与赤道中东太平洋海温(厄尔尼诺)有关。马春梅等[67]通过对大九湖泥炭及区域考古文化记录,发现中国中东部气候干湿变化的驱动机制可能是太阳辐射在中纬度地区东亚季风区的特定响应。Yan et al.[68]通过模拟海温变化与器测数据,分析认为中国长江流域降水变化的驱动因子可能与西太平洋副热带高压(WPSH)的进退密切相关。亚洲—太平洋涛动(Asian-Pacific oscillation, APO)是指夏季亚洲大陆与太平洋中纬度对流层扰动温度存在一个大尺度的遥相关,即当亚洲大陆对流层偏暖(冷)时,北太平洋对流层偏冷(暖)[6970]。现代气象观测数据,与模拟数据均显示我国东部降水的年际、十年际、百年和千年的变化与亚洲—太平洋涛动具有较好的相关性[7172]。例如,前人研究认为亚洲陆地与太平洋之间对流层热力差异对比与东部季风区降水的年代际变化密切相关,APO指数热对比弱时,东部季风降水一般具有南北相相反的特征;即北方降水较少时,长江中下游降水较多,反之则情况相反[7374]。周秀骥等[63]通过中国历史文献记录重建的旱涝指数合成分析,发现重建的APO总体上能够指示小冰期时在世纪尺度上的东亚夏季风变化和我国东部降水异常,即当APO偏高(低)时,黄河流域夏季降水偏多(少),长江流域降水偏少(多)。王星等[75]利用1948—2016年NCEP/NCAR月平均再分析资料和1948—2012年CRU降水资料以及合成分析、M-K突变检验等方法,分析发现当APO指数(APO)偏高(低)时,东亚夏季风偏强(弱),即APO减弱,南亚高压范围增大,东亚夏季风减弱,中国江淮地区降水量增加,反之则情况相反。

    本文将中国东部升金湖地区重建1 000 A.D.以来的水文记录与APO指数[63]图6f)、北半球太阳辐照度[64]图6g)进行对比,分析发现:中世纪暖期(1 000~1 350 A.D.),APO指数处于高值(正位相),东亚夏季风偏强长江流域降水偏少,同时北半球太阳辐照度变化呈波动变化但总体处于高值水平,水文环境偏向干旱化,升金湖在此期间虽然整体水位相对较高。但1 100 A.D.后的Rb/Sr与Ti含量较之前有所下降以及IC含量波动变化情况,说明在1 100 A.D.后水文环境开始向干旱化变化,表明升金湖流域在中世纪暖期的水文环境极有可能受到亚洲—太平洋涛动与北半球太阳辐照度的影响。小冰期前期(1 350~1 600 A.D.),APO指数呈下降趋势(负位相),东亚夏季风偏弱,长江流域降水偏多,太阳辐照度呈下降趋势,水文环境较前一阶段偏湿,与之相对应的升金湖沉积岩心中Rb/Sr与Ti含量呈下降趋势但总体含量保持在高水平以及IC含量保持在低值水平,说明升金湖地区水文环境在小冰期前期偏湿润。小冰期后期(1 600~1 850 A.D.),APO指数呈波动上升趋势,东亚夏季风有所增强,降水量相对减少,太阳辐照度处于波动上升阶段,水文环境偏干旱,此时升金湖Rb/Sr与Ti含量处于低值水平以及IC、C/N波动增加,水文环境向干旱变化,表明升金湖流域在小冰期的水文环境同样受到亚洲—太平洋涛动与北半球太阳辐照度的影响。现代暖期(1 850~2 000 A.D.),APO指数较前一阶段有所增加,东亚夏季风增强,太阳辐射度处于高值水平,水文环境偏干旱,与升金湖岩心沉积物中地球化学指标指示的重建结果存在差异,推测在现代暖期升金湖流域的水文环境可能受到海温异常引起的厄尔尼诺—南方涛动与人类活动影响。

    关于中国东部季风区旱涝分布变化与亚洲—太平洋涛动的联系,不少学者[7174]研究认为APO指数热对比强弱变化时,中国东部季风降水一般呈现南北相相反的格局,即在APO指数热对比较强时,季风增强,长江中下游降水减少,北方降水增加,反之季风减弱,长江中下游降水增加,北方降水减少。本研究中对长江下游升金湖的元素地球化学记录对比也表明,中世纪暖期受APO指数热对比较强影响,升金湖流域偏旱,中国东部季风区可能表现为“南旱北涝”;小冰期前期受APO指数热对比较弱影响,升金湖流域偏涝,中国东部季风区可能表现为“南涝北旱”;小冰期后期受APO指数热对比较强影响,升金湖流域偏向干旱化,中国东部季风区可能为“南旱北涝”。因此我们认为中世纪暖期与小冰期,亚洲—太平洋涛动可能对中国东部季风区南—北“偶极型”空间降水特征具有重要影响。

    综上,推测近千年来东亚季风区升金湖流域水文变化可能受到亚洲—太平洋涛动(APO指数)影响,同时在一定程度上也响应了北半球太阳辐照度的统一驱动。但需要指出的是,亚洲—太平洋涛动(APO指数)与太阳辐照度变化与我们重建的结果在现代暖期内部存在一定差异,原因可能是东部地区受到人类活动影响与厄尔尼诺—南方涛动有关。区域气候变化响应迅速,古水文环境复杂,相关问题的探讨还需综合区域器测水文环境资料、气候模拟结果以及其他指标进行深入研究。

  • (1) 在1 000~1 350 A.D.(中世纪暖期),根据该区域地球化学元素含量变化,该阶段1 100 A.D.前期,水文环境偏湿润,1 100 A.D.后降水有所减少,总体向干旱化变化。在1 350~1 850 A.D.(小冰期),根据该区域地球化学元素含量变化分为两个阶段:第一阶段(1 350~1 600 A.D.),降水增多,水文环境偏湿;第二阶段(1 600~1 850 A.D.),降水减少,水文环境偏干旱。在1 850~2 000 A.D.(现代暖期),根据该区域地球化学元素含量变化,降水增加,水文环境偏湿。

    (2) 近1 000年以来升金湖沉积物元素地球化学记录的水文变化与历史文献记载的古气候信息,在年代误差范围内能够很好的对应,说明升金湖沉积物自1 000 A.D.以来的沉积序列年代框架和环境指标所反映的水文环境变化信息较为准确。

    (3) 通过对升金湖岩心沉积物地球化学元素指标分析,并将其指标记录近千年水文(以中世纪暖期与小冰期为主)特征与周边区域研究结果对比,发现该研究区古水文变化与东亚夏季风水文变化有较好的对应关系,说明该区域水文变化对东亚夏季风有很好的响应。同时在中世纪暖期与小冰期,中国东部季风区降水的南—北“偶极型”特征可能与亚洲—太平洋涛动(APO指数)密切相关。

Reference (75)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return