Advanced Search
Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents

NIE WanCai, ZHANG TingShan, WANG MingWei, WU Wen, TAN XiuCheng. Fractal Characteristics and Interfering Factors of Microscopic Pores in Marine-Continental Transitional Coal Shale: A case study of the Taiyuan Formation in the northern Qinshui Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1047-1057. doi: 10.14027/j.issn.1000-0550.2022.078
Citation: NIE WanCai, ZHANG TingShan, WANG MingWei, WU Wen, TAN XiuCheng. Fractal Characteristics and Interfering Factors of Microscopic Pores in Marine-Continental Transitional Coal Shale: A case study of the Taiyuan Formation in the northern Qinshui Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1047-1057. doi: 10.14027/j.issn.1000-0550.2022.078

Fractal Characteristics and Interfering Factors of Microscopic Pores in Marine-Continental Transitional Coal Shale: A case study of the Taiyuan Formation in the northern Qinshui Basin

doi: 10.14027/j.issn.1000-0550.2022.078
Funds:

National Natural Science Foundation of China 41772150

  • Received Date: 2022-03-08
  • Accepted Date: 2022-08-22
  • Rev Recd Date: 2022-07-01
  • Available Online: 2022-08-22
  • Publish Date: 2024-06-10
  • Objective To analyze the pore fractal characteristics and interference factors from the coal measure shale of the Taiyuan Formation in the northern Qinshui Basin. Methods Total organic carbon (TOC) content, maturity, X-ray diffraction, and low-temperature nitrogen adsorption experiments were conducted on samples of the Taiyuan Formation in the Yangquan block. The fractal dimension of a sample pore was calculated based on the (Frenkel Halsey Hill, FHH) theoretical model, which analyzes the influence of mineral content, organic geochemical characteristics, and pore structure parameters on the pore fractal dimension. Results The results show that the TOC content of coal measure shale in the Taiyuan Formation is between 0.57% and 6.40%, and the average is 3.18%; the vitrinite reflectance of organic matter (Ro) is between 1.96% and 3.24%, and the average is 2.49%. The coal-measure shale micropores have double fractal characteristics, of which fractal (D1) is between 2.507 9 and 2.663 9, dimension (D2) is between 2.527 1 and 2.809 4, and the organic matter content and maturity are positively correlated with D1 and D2. The pore structure parameters have a positive correlation with D1 and D2, but the correlation coefficient with D2 is higher than that of D1, indicating that micropores have stronger influence on pore structure parameters. The input of terrigenous clastic quartz with high sorting and roundness leads to regular pore morphology, resulting in a negative correlation between quartz content and D1 and D2. Carbonate minerals and feldspar primarily provide macropores, and their contents are related to shale. Both D1 and D2 are negatively correlated, and the pore size of the clay minerals decreases under long-term compaction, whereas the number of micropores increases, and the pore shape is complex, which is positively correlated with fractal dimensions D1 and D2. Conclusions The micropores of the coal measure shale in marine continental transitional facies have dual fractal characteristics. The increase of organic matter content, maturity, pore structure parameters, and clay mineral content can lead to the increase of micropore fractal dimension, and an increase in terrigenous clastic quartz, feldspar, and carbonate mineral content can lead to a decrease in micropore fractal dimension.
  • [1] Li Y, Zhou D H, Wang W H, et al. Development of unconventional gas and technologies adopted in China[J]. Energy Geoscience, 2020, 1(1/2): 55-68.
    [2] Zhong C, Qin Q R, Fan C H, et al. Effect of nanometer pore structure on methane adsorption capacity in organic-rich shale[J]. Petroleum Science and Technology, 2019, 37(11): 1243-1250.
    [3] He S, Li H, Qin Q R, et al. Influence of mineral compositions on shale pore development of Longmaxi Formation in the Dingshan area, southeastern Sichuan Basin, China[J]. Energy & Fuels, 2021, 35(13): 10551-10561.
    [4] 姜振学,唐相路,李卓,等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘,2016,23(2):126-134.

    Jiang Zhenxue, Tang Xianglu, Li Zhuo, et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2): 126-134.
    [5] 罗胜元,陈孝红,刘安,等. 中扬子宜昌地区下寒武统水井沱组页岩现场解吸气特征及地质意义[J]. 石油学报,2019,40(8):941-955.

    Luo Shengyuan, Chen Xiaohong, Liu An, et al. Characteristics and geological significance of canister desorption gas from the Lower Cambrian Shuijingtuo Formation shale in Yichang area, Middle Yangtze region[J]. Acta Petrolei Sinica, 2019, 40(8): 941-955.
    [6] 符宏斌,苑坤,卢树藩,等. 黔西上二叠统龙潭组高煤级煤微观孔隙结构特征及其对含气性的影响[J]. 天然气地球科学,2020,31(12):1814-1825.

    Fu Hongbin, Yuan Kun, Lu Shufan, et al. Microscopic pore structure characteristics and its effect on gas-bearing property of high-rank coal in Upper Permian Longtan Formation in western Guizhou[J]. Natural Gas Geoscience, 2020, 31(12): 1814-1825.
    [7] 王濡岳,聂海宽,胡宗全,等. 压力演化对页岩气储层的控制作用:以四川盆地五峰组—龙马溪组为例[J]. 天然气工业,2020,40(10):1-11.

    Wang Ruyue, Nie Haikuan, Hu Zongquan, et al. Controlling effect of pressure evolution on shale gas reservoirs: A case study of the Wufeng-Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 1-11.
    [8] 廖东良,路保平,陈延军. 页岩气地质甜点评价方法:以四川盆地焦石坝页岩气田为例[J]. 石油学报,2019,40(2):144-151.

    Liao Dongliang, Lu Baoping, Chen Yanjun. An evaluation method of geological sweet spots of shale gas reservoir: A case study of the Jiaoshiba gas field, Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(2): 144-151.
    [9] 郭旭升,李宇平,刘若冰,等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业,2014,34(6):9-16.

    Guo Xusheng, Li Yuping, Liu Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16.
    [10] 李卓,姜振学,唐相路,等. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J]. 地球科学,2017,42(7):1116-1123.

    Li Zhuo, Jiang Zhenxue, Tang Xianglu, et al. Lithofacies characteristics and its effect on pore structure of the marine shale in the low Silurian Longmaxi Formation, southeastern Chongqing[J]. Earth Science, 2017, 42(7): 1116-1123.
    [11] 熊健,刘向君,梁利喜. 四川盆地富有机质页岩孔隙分形特征[J]. 断块油气田,2017,24(2):184-189.

    Xiong Jian, Liu Xiangjun, Liang Lixi. Fractal characteristics of organic rich shale pore in Sichuan Basin, China[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 184-189.
    [12] 刘世明,唐书恒,霍婷,等. 柴达木盆地东缘上石炭统泥页岩孔隙结构及分形特征[J]. 天然气地球科学,2020,31(8):1069-1081.

    Liu Shiming, Tang Shuheng, Huo Ting, et al. Pore structure and fractal characteristics of the Upper Carboniferous shale, eastern Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1069-1081.
    [13] 杨锐,何生,胡东风,等. 焦石坝地区五峰组—龙马溪组页岩孔隙结构特征及其主控因素[J]. 地质科技情报,2015,34(5):105-113.

    Yang Rui, He Sheng, Hu Dongfeng, et al. Characteristics and the main controlling factors of micro-pore structure of the shale in Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J]. Geological Science and Technology Information, 2015, 34(5): 105-113.
    [14] 张琴,梁峰,梁萍萍,等. 页岩分形特征及主控因素研究:以威远页岩气田龙马溪组页岩为例[J]. 中国矿业大学学报,2020,49(1):110-122.

    Zhang Qin, Liang Feng, Liang Pingping, et al. Investigation of fractal characteristics and its main controlling factors of shale reservoir: A case study of the Longmaxi shale in Weiyuan shale gas field[J]. Journal of China University of Mining & Technology, 2020, 49(1): 110-122.
    [15] 何陈诚,何生,郭旭升,等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质,2018,39(3):472-484.

    He Chencheng, He Sheng, Guo Xusheng, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's First member, Jiaoshiba block, Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(3): 472-484.
    [16] 宋慧波,安红亮,刘顺喜,等. 沁水盆地武乡南煤层气赋存主控地质因素及富集区预测[J]. 煤炭学报,2021,46(12):3974-3987.

    Song Huibo, An Hongliang, Liu Shunxi, et al. Controlling geological factors and coalbed methane enrichment areas in southern Wuxiang block, Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(12): 3974-3987.
    [17] 张鹏,黄宇琪,张金川,等. 黔西北地区龙潭组海陆过渡相泥页岩孔隙分形特征[J]. 煤炭学报,2018,43(6):1580-1588.

    Zhang Peng, Huang Yuqi, Zhang Jinchuan, et al. Fractal characteristics of the Longtan Formation transitional shale in northwest Guizhou[J]. Journal of China Coal Society, 2018, 43(6): 1580-1588.
    [18] 黄宇琪,张鹏,张金川,等. 海相、海陆过渡相页岩矿物组成对页岩孔隙分形特征的影响[J]. 矿物岩石地球化学通报,2020,39(3):548-557.

    Huang Yuqi, Zhang Peng, Zhang Jinchuan, et al. The effect on the fractal characteristics of shale pores by mineral compositions of marine and marine-continental transitional shales[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3): 548-557.
    [19] 闫高原,张军建,路冠文,等. 沁水盆地太原组—山西组页岩孔隙分形特征[J]. 新疆石油地质,2021,42(5):548-553.

    Yan Gaoyuan, Zhang Junjian, Lu Guanwen, et al. Fractal characteristics of shale pores from Taiyuan Formation to Shanxi Formation in Qinshui Basin[J]. Xinjiang Petroleum Geology, 2021, 42(5): 548-553.
    [20] 邵龙义,杨致宇,房超,等. 沁水盆地石炭—二叠纪海陆过渡相含煤岩系页岩气地质条件及勘探潜力[J]. 中国煤炭地质,2021,33(10):1-10.

    Shao Longyi, Yang Zhiyu, Fang Chao, et al. Permo-Carboniferous marine-terrestrial transitional facies coal measures shale gas geological conditions and exploration potential in Qinshui Basin[J]. Coal Geology of China, 2021, 33(10): 1-10.
    [21] 李阳阳,李贤庆,张学庆,等. 沁水盆地阳泉区块上古生界煤系页岩气储层特征[J]. 煤田地质与勘探,2021,49(2):142-151.

    Li Yangyang, Li Xianqing, Zhang Xueqing, et al. Characteristics of shale gas reservoir in Upper Paleozoic coal measures in Yangquan block, Qinshui Basin[J]. Coal Geology & Exploration, 2021, 49(2): 142-151.
    [22] Zhao H, Liu W H, Wang X F. The openness degree study of the Jiaoshiba shale gas, Sichuan Basin, China-potential factor responsible for reversed isotope series[J]. Acta Geologica Sinica, 2018, 92(6): 2457-2459.
    [23] 何顺,秦启荣,范存辉,等. 川东南丁山地区五峰—龙马溪组页岩储层特征及影响因素[J]. 油气藏评价与开发,2019,9(4):61-67,78.

    He Shun, Qin Qirong, Fan Cunhui, et al. Shale reservoir characteristics and influencing factors of Wufeng-Longmaxi Formation in Dingshan area, southeast Sichuan[J]. Reservoir Evaluation and Development, 2019, 9(4): 61-67, 78.
    [24] 魏祥峰,刘珠江,王强,等. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学,2020,31(8):1041-1051.

    Wei Xiangfeng, Liu Zhujiang, Wang Qiang, et al. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051.
    [25] 王超,张柏桥,舒志国,等. 焦石坝地区五峰组—龙马溪组页岩纹层发育特征及其储集意义[J]. 地球科学,2019,44(3):972-982.

    Wang Chao, Zhang Boqiao, Shu Zhiguo, et al. Shale lamination and its influence on shale reservoir quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba area[J]. Earth Science, 2019, 44(3): 972-982.
    [26] 林子智,卢双舫,常象春,等. 陆相页岩微观孔隙结构及分形特征:以徐家围子断陷沙河子组为例[J]. 煤田地质与勘探,2021,49(1):151-160.

    Lin Zizhi, Lu Shuangfang, Chang Xiangchun, et al. Micro-pore structure and fractal characteristics of terrestrial shales: A case study of Shahezi Formation in Xujiaweizi Fault Depression[J]. Coal Geology & Exploration, 2021, 49(1): 151-160.
    [27] 肖磊,李卓,杨有东,等. 渝东南下志留统龙马溪组不同岩相页岩的孔隙结构与分形特征[J]. 科学技术与工程,2021,21(2):512-521.

    Xiao Lei, Li Zhuo, Yang Youdong, et al. Pore structure and fractal characteristics of different lithofacies shales of the Lower Silurian Longmaxi Formation in southeast Chong-qing[J]. Science Technology and Engineering, 2021, 21(2): 512-521.
    [28] 孙雷,高玉琼,潘毅,等. 页岩纳米孔隙表面分形特征及其影响因素[J]. 西南石油大学学报(自然科学版),2017,39(6):85-91.

    Sun Lei, Gao Yuqiong, Pan Yi, et al. Surface fractal characteristics and their influence on shale nanopores[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6): 85-91.
    [29] Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids (technical report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758.
    [30] 张闯辉,朱炎铭,刘宇,等. 不同成熟度页岩孔隙及其分形特征[J]. 断块油气田,2016,23(5):583-588.

    Zhang Chuanghui, Zhu Yanming, Liu Yu, et al. Pore and fractal characteristics of shale in different maturity[J]. Fault-Block Oil & Gas Field, 2016, 23(5): 583-588.
    [31] 邓恩德,姜秉仁,高为,等. 黔西地区龙潭组煤系泥页岩孔隙结构及分形特征研究[J]. 煤炭科学技术,2020,48(8):184-190.

    Deng Ende, Jiang Bingren, Gao Wei, et al. Study on pore structure and fractal characteristics of shale from coal measures of Longtan Formation in western Guizhou[J]. Coal Science and Technology, 2020, 48(8): 184-190.
    [32] Pfeiferper P, Avnir D. Chemistry nonintegral dimensions between two and three[J]. The Journal of Chemical Physics, 1983, 79(7): 3369-3558.
    [33] Cao X M, Gao Y, Cui J W, et al. Pore characteristics of lacustrine shale oil reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China[J]. Energies, 2020, 13(8): 2027.
    [34] Qin C, Li X Z, Shen W J, et al. Study on the pore structure and fractal characteristics of different lithofacies of Wufeng-Longmaxi Formation shale in southern Sichuan Basin, China[J]. ACS Omega, 2022, 7(17): 8724-8738.
    [35] 陈居凯,朱炎铭,崔兆帮,等. 川南龙马溪组页岩孔隙结构综合表征及其分形特征[J]. 岩性油气藏,2018,30(1):55-62.

    Chen Jukai, Zhu Yanming, Cui Zhaobang, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 55-62.
    [36] Yang Y Y, Zhang J C, Xu L F, et al. Pore structure and fractal characteristics of deep shale: A case study from Permian Shanxi Formation shale, from the Ordos Basin[J]. ACS Omega, 2022, 7(11):9229-9243.
    [37] 梁利喜,熊健,刘向君. 川南地区龙马溪组页岩孔隙结构的分形特征[J]. 成都理工大学学报(自然科学版),2015,42(6):700-708.

    Liang Lixi, Xiong Jian, Liu Xiangjun. Fractal characteristics of pore structure of Longmaxi Formation shale in south of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(6): 700-708.
    [38] 吉利明,邱军利,夏燕青,等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报,2012,33(2):249-256.

    Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(2)

Article Metrics

Article views(12) PDF downloads(1) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-03-08
  • Revised:  2022-07-01
  • Accepted:  2022-08-22
  • Published:  2024-06-10

Fractal Characteristics and Interfering Factors of Microscopic Pores in Marine-Continental Transitional Coal Shale: A case study of the Taiyuan Formation in the northern Qinshui Basin

doi: 10.14027/j.issn.1000-0550.2022.078
Funds:

National Natural Science Foundation of China 41772150

Abstract: Objective To analyze the pore fractal characteristics and interference factors from the coal measure shale of the Taiyuan Formation in the northern Qinshui Basin. Methods Total organic carbon (TOC) content, maturity, X-ray diffraction, and low-temperature nitrogen adsorption experiments were conducted on samples of the Taiyuan Formation in the Yangquan block. The fractal dimension of a sample pore was calculated based on the (Frenkel Halsey Hill, FHH) theoretical model, which analyzes the influence of mineral content, organic geochemical characteristics, and pore structure parameters on the pore fractal dimension. Results The results show that the TOC content of coal measure shale in the Taiyuan Formation is between 0.57% and 6.40%, and the average is 3.18%; the vitrinite reflectance of organic matter (Ro) is between 1.96% and 3.24%, and the average is 2.49%. The coal-measure shale micropores have double fractal characteristics, of which fractal (D1) is between 2.507 9 and 2.663 9, dimension (D2) is between 2.527 1 and 2.809 4, and the organic matter content and maturity are positively correlated with D1 and D2. The pore structure parameters have a positive correlation with D1 and D2, but the correlation coefficient with D2 is higher than that of D1, indicating that micropores have stronger influence on pore structure parameters. The input of terrigenous clastic quartz with high sorting and roundness leads to regular pore morphology, resulting in a negative correlation between quartz content and D1 and D2. Carbonate minerals and feldspar primarily provide macropores, and their contents are related to shale. Both D1 and D2 are negatively correlated, and the pore size of the clay minerals decreases under long-term compaction, whereas the number of micropores increases, and the pore shape is complex, which is positively correlated with fractal dimensions D1 and D2. Conclusions The micropores of the coal measure shale in marine continental transitional facies have dual fractal characteristics. The increase of organic matter content, maturity, pore structure parameters, and clay mineral content can lead to the increase of micropore fractal dimension, and an increase in terrigenous clastic quartz, feldspar, and carbonate mineral content can lead to a decrease in micropore fractal dimension.

NIE WanCai, ZHANG TingShan, WANG MingWei, WU Wen, TAN XiuCheng. Fractal Characteristics and Interfering Factors of Microscopic Pores in Marine-Continental Transitional Coal Shale: A case study of the Taiyuan Formation in the northern Qinshui Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1047-1057. doi: 10.14027/j.issn.1000-0550.2022.078
Citation: NIE WanCai, ZHANG TingShan, WANG MingWei, WU Wen, TAN XiuCheng. Fractal Characteristics and Interfering Factors of Microscopic Pores in Marine-Continental Transitional Coal Shale: A case study of the Taiyuan Formation in the northern Qinshui Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1047-1057. doi: 10.14027/j.issn.1000-0550.2022.078
  • 能源需求量增加与供给不足的矛盾以及油气勘探开发技术的进步使得人们开始关注非常规油气[1],随着北美地区页岩气勘探开发的成功,我国也开启了页岩气的勘探与开发实践,并取得一定的突破,获得商业性页岩气流。近年来,页岩气产量逐年增加,极大地缓解了能源压力[23]。与碳酸盐岩及砂岩等常规储层相比,页岩储层主要发育纳米级孔隙,页岩气主要储存在孔径小于0.75 μm的微—纳米孔隙内,具有低孔—低渗的特点[4]。页岩孔隙类型多样,孔径差异大,孔隙结构复杂,具有极强的非均质性。根据赋存状态的差异,页岩气可以分为游离态、吸附态及少量溶解态[56]。不同赋存状态气体含量差异与孔隙结构直接相关,通常孔隙结构越复杂,孔隙对页岩气的吸附能力越强[78]。分析页岩孔隙结构是研究页岩气渗流的基础[910]。目前,对页岩孔隙结构的研究包括离子抛光扫描电镜、岩心CT等固态观察法及高压压汞、低温气体吸附等流体注入法两种,前者主要集中于页岩孔隙类型、形态、连通性及分布信息的提取,而流体注入法主要针对孔体积、比表面积及孔径分布的定量评价[11]。低温氮气吸附法可以有效反映页岩纳米孔隙的分布情况[7]

    前人引入分形维数用于定量表征页岩孔隙的复杂程度,并根据低温气体吸附、图像分析及核磁共振等手段进行了页岩分形维数的研究,认为页岩孔隙复杂程度随分形维数的增大而增大[1213],由于我国目前主要针对南方海相富有机质页岩进行勘探与开发,因此,以往针对页岩孔隙的研究主要集中于海相页岩。张琴等[14]采用分形维数量化评价威远地区龙马溪组页岩孔隙非均质性,并结合含气性分析其显示意义,指出分形维数越大,页岩中气体扩散解吸渗流越困难。熊健等[11]认为富有机质页岩具有明显的双重分形特点,且小孔隙分形维数更大。早期针对海陆过渡相煤系页岩的研究相对较少,特别是在量化表征孔隙结构复杂程度及影响因素方面[1516]。我国海陆过渡相页岩分布广泛,页岩气资源潜力巨大。因此,对于海陆过渡相页岩的研究具有极大的现实意义。随着海相页岩的突破及勘探领域的扩展,逐渐开始了海陆过渡相及陆相页岩孔隙结构的研究,张鹏等[17]研究黔西北地区龙潭组页岩孔隙分形特征认为海陆过渡相页岩孔隙非均质性及分形维数普遍较大,当D2大于2.8时,气体滞留能力强,页岩可开采性需要进一步评价。黄宇琪等[18]对比贵州地区海陆过渡相与海相页岩孔隙差异,认为有机质及黏土矿物含量是影响海陆过渡相页岩孔隙结构的主要因素。

    沁水盆地作为我国重要的海陆过渡相含煤盆地,煤系页岩发育,具有极大的勘探开发潜力,然而以往针对沁水盆地北部太原组煤系页岩孔隙结构特征及其影响因素的研究相对较少。因此,通过对沁水盆地太原组海陆过渡相煤系页岩开展有机质含量、成熟度测试及X衍射、低温氮气吸附实验,采用(Frenkel Halsey Hill,FHH)理论计算页岩孔隙分形特征,进而探讨有机质含量、成熟度及矿物组分对孔隙复杂程度的影响,以期为沁水盆地北部煤系页岩储层评价提供科学依据和基础资料。

  • 沁水盆地位于华北地台中部,山西省东南部[19],整体表现为近南北向的大型复式向斜构造盆地。盆地四周为隆起包围,北部为五台山隆起,南部为中条山隆起,东部为太行山隆起,西部为吕梁山隆起及霍山隆起[20]。盆地雏形形成于印支运动,受燕山运动强烈挤压作用的影响,盆地形成向斜构造,在喜山运动多幕构造作用下,盆地接受多期构造拉张、挤压,最终形成了现今的构造格局[21]。断层集中分布于盆地东部及西部,断层规模及性质差异大,以正断层为主[22],多呈北东向,局部呈近东西向和北西向(图1a)。

    Figure 1.  Regional structure[20](a, b) and comprehensive histogram[21](c) of the Qinshui Basin

    盆地沉积环境经历了华北陆表海盆地、内陆表海海陆交替沉积为主的近海坳陷以及陆相碎屑岩沉积为主的内陆坳陷的古地理演化过程,晚古生代末期,随着古蒙古洋的闭合,海水向南退出,华北板块内部转化成大型的内陆湖泊沉积环境。作为主要的煤系页岩发育层,盆地北部太原组处于海陆过渡相的沉积环境,其中太原组下段以细粒沉积的三角洲前缘亚相为主,太原组中段沉积时期,伴随大规模海侵事件的发生,研究区发育碳酸盐岩台地及潮坪潟湖亚相,太原组上段主要发育潮坪沼泽相,岩性包括煤、页岩、砂质泥岩、灰岩、粉砂岩及少量泥灰岩。与海相页岩相比,煤系页岩单层厚度小,通常在40 m以下,纵向多层发育,与粉砂岩、泥灰岩和煤层互层,横向变化快。

  • 实验所用样品均来自于沁水盆地北部YQ1井上古生界太原组煤系页岩钻井岩心及岩屑,取样深度为549~618 m。

  • 1) 总有机碳分析

    对煤系页岩有机碳含量的测定采用美国Leco公司生产的碳硫测定仪,仪器型号为CS230SH。实验前对样品进行超声波去污、研磨、酸洗、低温干燥等处理,测试依据标准为GB/T 19145—2003《沉积岩中总有机碳的测定》,有机质含量采用固态红外吸收法计算得到。

    2) 岩石热解参数

    岩石热解参数测定采用OG-2000V油气显示评价仪。采用未经烘烤、新鲜的具有代表性的岩屑样,送样前对岩屑表面进行清洗,采用过滤纸吸干后放入玛瑙研钵器中研磨至150目,测试依据标准为GB/T 18602—2012《岩石热解分析》。

    3) XRD全岩矿物分析

    矿物组分及含量通过X衍射实验测试,测试仪器为荷兰帕纳科公司生产,仪器型号为X'Pert MPD PRO。实验选取新鲜的煤系页岩,实验前对样品进行低温干燥处理,利用玛瑙研磨器进行研磨至300目,实验过程中采用Cu靶,设置压力为50 kV,电流为45 mA,以2°最小衍射角进行连续扫描。整个测量过程在室温下进行,测试标准遵照SY/T 5163—2018《沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法》。

    4) 低温氮气吸附

    低温氮气吸附采用美国Quantachrome公司生产的6站式自动比表面积和孔隙度分析仪,可测孔径范围为0.35~500 nm。实验前将样品放置于去离子水中进行超声波清洗,以清除表面杂质并进行低温烘干预处理,随后在玛瑙研钵器中采用人工研磨至20~50目,在120 ℃高温条件下对粉末样进行抽真空处理,持续时间14 h。采用纯度大于99.999%的液氮作为吸附介质,在-196.15 ℃恒温液氮条件下,测量相对压力逐渐增加下的吸附量及压力降低时的脱附量,得到吸附及脱附等温线,样品比表面积、孔径和孔体积结果分别利用BJH及BET原理计算得到。

  • 沁水盆地北部太原组海陆过渡相煤系页岩TOC分布范围大,介于0.57%~6.40%,平均为3.18%(n=8);Ro介于1.96%~3.24%,平均为2.49%(n=8),显示有机质处于过成熟阶段。

    全岩矿物X衍射实验结果显示,太原组煤系页岩矿物组成复杂,包括黏土矿物、石英、长石、方解石、白云石,同时含有少量黄铁矿及菱铁矿(表1),以黏土矿物及硅质矿物为主,其中黏土矿物含量介于28.5%~58.2%,平均为46.7%(n=8),黏土矿物以伊利石及伊/蒙混层发育为主,绿泥石及高岭石矿物含量均在10%以下。硅质矿物以石英为主,含量介于28.7%~51.3%,平均为37.8%(n=8),长石含量为1.0%~7.4%,平均为3.4%(n=8),碳酸盐岩矿物含量为2.7%~18.2%,平均为9.2%(n=8),黄铁矿及菱铁矿含量介于0.4%~2.8%,平均为1.4%(n=8)。与中国海相富有机质页岩相比[2324],具有黏土矿物含量高、硅质矿物含量低的特点。

    样品编号石英长石白云石方解石菱铁矿黄铁矿黏土矿物
    伊利石高岭石绿泥石伊/蒙混层
    TY-128.75.507.200.420.69.42.725.5
    TY-235.17.44.27.20.21.214.52.57.919.8
    TY-333.41.49.48.82.60.218.73.8021.7
    TY-432.81.22.81.03.52.613.95.86.629.8
    TY-535.73.24.44.22.01.715.504.928.4
    TY-647.61.04.53.10.60.811.14.14.722.4
    TY-751.35.86.67.400.49.92.7015.9
    TY-837.61.61.51.23.12.413.15.26.927.4

    Table 1.  Mineral composition of coal⁃measure shale from the Taiyuan Formation in the northern Qinshui Basin (%)

  • 孔隙结构包括孔隙形态、孔径大小、孔体积、比表面积等参数[2526],对气体的储集、吸附及运移能力等均具有重要意义。由于孔隙的毛细凝聚作用,低温氮气吸附实验中吸附曲线与脱附曲线会发生明显的吸附滞后现象,造成同一相对压力条件下,脱附曲线气体吸附量高于吸附曲线,形成明显的迟滞环[2728]

    根据低温氮气吸附—脱附曲线形态(图2),在相对压力(P/P0)小于0.9时,随着相对压力的增加,气体吸附量呈缓慢上升,当P/P0>0.9时,随着相对压力的增加,气体吸附量急剧增加。以P/P0=0.5为界线将曲线分为“高压段”(P/P0>0.5)及“低压段”(P/P0<0.5),在低压段,吸附曲线与脱附曲线形态一致,但是二者不重合,在高压段,吸附曲线与脱附曲线形态差异明显,二者存在明显的吸附滞后现象。根据国际理论与应用化学(IUPAC)对等温吸附曲线及迟滞环类型划分[29],太原组煤系页岩氮气吸附曲线及迟滞环形态与Ⅳ型等温吸附曲线和H3型迟滞环类型相似。显示太原组煤系页岩中微孔、介孔和宏孔均有发育,其中以介孔为主,孔隙形态以半封闭型狭缝孔为主,同时具有墨水瓶状孔隙。

    Figure 2.  Low⁃temperature nitrogen adsorption curve of the Taiyuan Formation coal⁃measure shale in the northern Qinshui Basin

    太原组煤系页岩孔隙总孔容介于0.023 0~0.058 0 mL/g,平均为0.040 9 mL/g,其中孔径小于2 nm的微孔平均孔容为0.004 5 mL/g、孔径在2~50 nm的介孔平均孔容为0.021 4 mL/g、孔径大于50 nm的宏孔平均孔容为0.015 0 mL/g。显示介孔的孔容贡献率最大,宏孔次之,微孔最小。比表面积介于14.70~41.50 m2/g,平均为28.48 m2/g,其中微孔比表面积贡献率最大,平均为17.24 m2/g,介孔次之(10.08 m2/g),宏孔最小(1.16 m2/g)。

  • 页岩微观孔隙类型多样,孔隙结构受有机质含量、有机质热演化程度及无机矿物含量等因素共同影响,具有较强的复杂性及非均质性。分形维数的大小可以量化评价孔隙的复杂程度[3031]。煤系页岩低温氮气吸附—脱附曲线具有明显的吸附不重合现象,根据曲线形态及迟滞环类型,指示页岩中以微孔及介孔发育为主,这与FHH模型适用孔径范围一致[32],因此采用FHH模型计算样品孔隙的分形维数大小,具体计算表达式为:

    lnV=Kln[ln(P0/P)]+C (1)
    D=K+3 (2)

    式中:V为在不同相对压力条件下吸附气体体积,m3P0表示饱和蒸汽压力,MPa;K为拟合直线斜率;C为常数;D为分形维数。

    利用吸附—脱附曲线的吸附支气体吸附量及相对压力制作吸附曲线lnV与ln[ln(P0 / P)]关系曲线(图3),低温氮气吸附曲线上相对压力在0.45~0.5时出现迟滞环,表明在该相对压力前后所指示的孔隙结构出现明显差异。根据图3双对数曲线特点,以P/P0=0.5为界线,对吸附曲线高压及低压段进行分段线性拟合,计算不同压力段拟合直线的斜率,采用式2计算样品分形维数大小,结果显示页岩孔隙存在两种不同的分形特征,且二者之间拟合关系良好。记低相对压力段(0<P/P0<0.5)孔隙分形维数为D1,高相对压力段(P/P0>0.5)孔隙分形维数为D2[3336]。结果显示沁水盆地北部太原组煤系页岩孔隙结构分形维数(D)介于2.507 9~2.809 3,处于较高水平,显示页岩孔隙结构复杂。不同页岩样品均显示出明显的分段分形特点,在高相对压力及低相对压力条件下的样品分形维数具有明显差异,高相对压力段(P/P0>0.5),页岩孔隙的分形维数D2介于2.527 1~2.809 3,平均为2.699 7,在低相对压力段(P/P0<0.5),孔隙分形维数D1介于2.507 9~2.663 9,平均为2.594 0(表2)。

    Figure 3.  Relationship between lnV and ln[ln(P0/P)] of the Taiyuan Formation coal⁃measure shale samples in the northern Qinshui Basin

    样品编号P/P0<0.5P/P0>0.5
    分形拟合方程R2D1分形拟合方程R2D2
    TY-1y=-0.436 1x+1.799 20.953 12.563 9y=-0.208 4x+1.923 80.938 62.791 6
    TY-2y=-0.492 1x+1.098 70.998 62.507 9y=-0.331 1x+1.079 30.931 92.668 9
    TY-3y=-0.417 3x+1.702 20.987 42.582 7y=-0.303 8x+1.757 50.983 72.696 2
    TY-4y=-0.411 7x+1.680 70.963 22.588 3y=-0.190 7x+1.778 00.935 52.809 3
    TY-5y=-0.386 6x+1.394 00.995 22.613 4y=-0.247 9x+1.410 30.985 02.752 1
    TY-6y=-0.403 3x+1.052 40.969 42.596 7y=-0.285 3x+1.144 00.987 02.714 7
    TY-7y=-0.453 5x+2.160 30.986 52.546 5y=-0.472 9x+2.088 70.998 32.527 1
    TY-8y=-0.344 3x+2.119 10.983 12.655 7y=-0.362 0x+1.915 50.961 12.638 0

    Table 2.  Fractal dimension of pores from the coal measure shale in the Taiyuan Formation

  • 有机质是有机孔的发育载体,其含量及热演化程度都会影响有机孔形态及页岩孔径分布,进而影响孔隙分形维数的大小[37]

    根据样品分形维数D1D2大小,分析有机质含量与D1D2之间的相关性,结果显示,TOC含量与D1D2之间均呈正相关关系,相关系数分别为0.286 2与0.350 9,表明随着有机质含量的增加,页岩孔隙结构的复杂程度上升,页岩的吸附能力增强。TOC与D2之间相关系数大于TOC与D1相关系数,一般而言,页岩孔径越小,孔隙结构越复杂,显示太原组煤系页岩有机质的增加提供了大量的微孔及介孔,对宏孔的贡献相对有限,微孔及介孔的增加,增加了页岩孔隙结构的复杂性,提高了页岩的分形维数。

    页岩有机孔形态及发育程度与生烃演化阶段直接相关。不同热演化阶段,有机孔在形态、孔径及发育程度等方面都会存在明显的差异,因此,有机质热演化程度也会造成页岩分形维数的差异,沁水盆地北部太原组煤系页岩有机质处于高—过成熟阶段,热演化程度与页岩分形维数之间具有一定的正相关性,相关系数分别为0.110 8及0.528 4(图4),整体处于中等水平。一方面,在高成熟阶段,随着成熟度的增加,有机质的生烃作用增强,有机孔形态以圆形及椭圆形为主,孔隙结构简单。在过成熟阶段,随着成熟度的增加,有机质芳构化加剧,孔隙内壁变得更加的粗糙[27],同时也会降低孔隙的支撑能力,在上覆岩层的压力下,孔隙发生形变,降低孔隙连通性,使得孔隙结构复杂化,分形维数增加。

    Figure 4.  Correlation between organic matter content and maturity and fractal dimension of shale

  • 分形维数的引入主要为了量化页岩孔隙的复杂程度,进而指示页岩孔隙对气体的吸附能力,一般而言,分形维数越大指示孔隙越复杂,对气体的吸附能力越强[3536]。根据页岩中气体赋存状态差异,孔体积及比表面积分别控制游离气及吸附气含量,页岩微孔及介孔贡献页岩绝大多数的孔体积,微孔对页岩比表面积的贡献更高,尽管微孔孔体积较小,但由于数量较多,孔隙结构复杂,对孔隙的复杂程度及非均质程度具有至关重要的作用,页岩中微孔越发育,孔隙结构越复杂,比表面积越大。页岩分形维数与页岩孔体积及比表面均呈正相关关系,其中页岩比表面积与D1D2相关系数分别为0.214 6与0.512 7(图5a),而页岩孔体积与D1D2的相关系数分别为0.330 2与0.415 2(图5b)。在孔体积、比表面积与分析维数的相关关系中,结构分形维数与孔体积及比表面积的相关性更强,表明页岩微孔、介孔越发育,孔体积及比表面积越大,页岩孔隙越复杂,分形维数越高。

    Figure 5.  Correlation between pore structure and fractal dimension of the Taiyuan Formation coal⁃measure shale in the northern Qinshui Basin

  • 分形维数大小能定量表征孔隙复杂程度,其大小与孔隙发育直接相关[7,3334],因此,控制页岩孔隙的因素均会影响分形维数的大小。主要影响因素包括页岩矿物组分、有机质含量、热演化程度、埋藏深度及成岩演化阶段等,其中成岩矿物是无机孔隙发育的直接载体,控制着无机孔隙的发育。根据矿物组成差异,可以分为硅质矿物、碳酸盐岩矿物及黏土矿物三大类。分别对这三类矿物组分含量与D1D2进行相关性分析(图6),结果显示石英含量与D1D2之间均呈弱负相关关系,相关系数分别为0.125 1与0.525 8,长石含量与D1D2呈负相关性,相关系数分别为0.190 1与0.103 4,黏土矿物含量与D1D2之间均呈正相关关系,相关系数分别为0.416 2与0.690 6,方解石、白云石等碳酸盐岩矿物与D1D2呈负相关关系,相关系数分别为0.278 2与0.169 8。在与分形维数呈负相关的无机矿物中,石英矿物含量与分形维数的相关系数最高,结合全岩矿物组分分析结果,其主要原因为石英含量高。

    Figure 6.  Correlation between inorganic mineral content and fractal dimension

    前人针对川东南、川南海相页岩分形维数研究指出石英矿物所能提供的储集空间有限,主要孔隙类型为晶间孔以及微裂缝[32],石英含量与孔隙分形维数呈正相关关系[36,38],主要是由于低等硅质生物死亡后,能提供有机质及硅质两种物质,硅质生物复杂体腔孔及有机质的增加放大了石英与分形维数的相关性。而沁水盆地太原组煤系页岩石英含量与分形维数呈负相关关系,对比海相页岩石英含量及石英成因,造成研究区石英含量与分形维数负相关的原因可能为太原组煤系页岩中硅质来源包括陆源碎屑硅及自生石英两种。随着石英总含量的降低,陆源碎屑石英含量占比增加[34],这类硅质通常经过远距离的搬运与沉积,造成矿物的分选性及磨圆度均较高,在压实成岩过程中,矿物排列支撑能力强,孔隙形态规则简单,降低了这部分孔隙的复杂性。

    页岩的分形维数与碳酸盐岩矿物及长石含量均呈负相关关系,但是相关系数较小,其中碳酸盐岩矿物与D1D2的相关系数分别为0.278 2与0.169 8,其原因主要为碳酸盐岩作为易溶矿物,在沉积埋藏过程中,受地层水及有机质生烃中产生的少量有机酸影响形成溶蚀孔,这些溶蚀孔的孔径通常较大,仅能提供有限的比表面积。结合前人分析碳酸盐岩对页岩孔隙结构的影响,碳酸盐岩矿物含量与页岩比表面积呈负相关关系,对宏孔的发育具有促进作用[31],因此,碳酸盐岩矿物的发育与页岩分形维数呈负相关关系。长石作为易溶矿物的一种,在埋藏过程中容易形成溶蚀孔,但抗溶蚀能力强于碳酸盐岩矿物,在埋藏过程中碳酸盐岩矿物会优先溶蚀,同时,陆源碎屑长石在长距离搬运沉积,以介—宏孔发育为主[3132],导致长石含量与页岩分形维数相关系数低于碳酸盐岩。

    海陆过渡相煤系页岩黏土矿物含量较高,研究样品黏土矿物平均含量在42%以上,是微观孔隙的重要载体,结合黏土矿物含量与孔隙分形维数的相关性分析,黏土矿物含量与D1D2均呈正相关关系,相关系数分别为0.416 2与0.690 6(图6b),处于较高水平。结合前人研究成果,沁水盆地海陆过渡相页岩黏土矿物含量与页岩微孔及介孔均具有一定的相关性,同时,黏土矿物中发育较多的宏孔[16]。结合黏土矿物与分形维数相关系数大小分析,黏土矿物含量的增加对微孔、介孔及宏孔的发育均有促进作用。推测主要是由于海陆过渡相煤系页岩中黏土矿物总含量较高,矿物颗粒细小。尽管在压实作用过程中,黏土矿物颗粒趋向定向排列,孔隙空间会变小,但伴随着压实作用,孔隙中微孔及介孔的数量会增加,这也导致黏土矿物含量与页岩的分形维数呈较强的正相关关系。

    黏土矿物组成以伊利石及伊/蒙混层发育为主,高岭石与绿泥石发育较少,部分样品并未检测到这两种黏土矿物,因此主要分析伊利石及伊/蒙混层含量与分形维数关系。结果显示,伊/蒙混层含量与页岩孔隙分形维数D1D2均呈明显的正相关关系,相关系数分别为0.432 2与0.581 2,而伊利石与孔隙分形维数D1无明显相关性,与D2相关系数为0.352 7,高岭石及绿泥石与分形维数均无明显的相关关系(图7)。这主要与在不考虑页岩含水率的前提下相同温压条件的蒙脱石对气体的吸附能力高于伊利石有关[35]。不同黏土矿物颗粒发育微观孔隙类型及结构亦存在明显的差异,其中伊/蒙混层通常呈蜂窝状、棉絮状,主要发育粒间孔及粒内孔。同时,由于混层矿物堆叠方式,孔隙形态包括楔状及不规则状,孔隙结构复杂,伊利石呈片状,发育片间孔,孔隙结构相对简单,造成伊/蒙混层的吸附能力高于伊利石。此外,研究区煤系页岩中伊/蒙混层含量较高,也是导致伊/蒙混层含量与分形维数相关性高于伊利石的重要原因。

    Figure 7.  Correlation between different clay mineral contents and pore fractal dimension

  • (1) 沁水盆地北部太原组煤系页岩具有低硅质矿物、高黏土含量的特点,TOC含量介于0.57%~6.40%,平均为3.18%,Ro介于1.96%~3.24%,处于高—过成熟阶段,通过FHH模型计算页岩分形维数D1介于2.507 9~2.663 9,平均为2.594 4,D2介于2.527 1~2.809 3,平均为2.699 7,显示太原组煤系页岩孔隙具有较强的复杂性。

    (2) 煤系页岩TOC含量及Ro控制微孔及介孔的发育,与分形维数D1D2呈正相关关系,随TOC和Ro增加,页岩比表面积及孔体积越大,孔隙分形维数越高。

    (3) 煤系页岩陆源碎屑硅质分选磨圆度高,发育孔隙规则,碳酸盐岩及长石主要提供宏孔,与分形维数呈负相关关系,黏土矿物在压实作用下,孔隙直孔径减小,微孔及介孔数量增加,孔隙形态复杂,与分形维数呈正相关关系,其中伊/蒙混层对分形维数影响最大。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return