Advanced Search
Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents

XU ZhongBo, LIU YingXian, LIN GuoSong, YAO YuanRong, GAN LiQin. Sedimentary Model and Evolution Law of Meandering Rivers: A case study from the lower Minghuazhen Formation of L oilfield in Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 994-1002. doi: 10.14027/j.issn.1000-0550.2022.074
Citation: XU ZhongBo, LIU YingXian, LIN GuoSong, YAO YuanRong, GAN LiQin. Sedimentary Model and Evolution Law of Meandering Rivers: A case study from the lower Minghuazhen Formation of L oilfield in Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 994-1002. doi: 10.14027/j.issn.1000-0550.2022.074

Sedimentary Model and Evolution Law of Meandering Rivers: A case study from the lower Minghuazhen Formation of L oilfield in Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2022.074
Funds:

National Science and Technology Major Project 2016ZX05058001

  • Received Date: 2022-01-27
  • Accepted Date: 2022-08-18
  • Rev Recd Date: 2022-06-27
  • Available Online: 2022-08-18
  • Publish Date: 2024-06-10
  • Objective There are many meandering river depositional models in the lower Minghuazhen Formation in L oilfield. Their sedimentary models and evolutionary laws are not yet clear. Methods The meandering river characteristics and their paleogeological background in different periods are systematically analyzed by using paleo-ntological, core, sidewall core, well logging data, and seismic data. Then, the evolution law is summarized. Results The study shows that during the sedimentary period of the lower Minghuazhen Formation, there are 5 types of meandering rivers developing successively in the study area. The river type of the L44 sublayer is a braided-meandering symbiotic model. The river type of the L42-L40 sublayer is a high-curvature meandering river. The river type of the L32 sublayer is a restricted high-curvature meandering river. The river type of the L30 sublayer is a string-beads meandering river. The river type of the L2 oil group is a low-curvature meandering river under lake-level. Conclusions During the sedimentary period of the lower Minghuazhen Formation, the paleogeological background of the studied area also evolved continuously. Because of the coupling effect of different paleogeological factors, such as sedimentary base level cycles, paleoclimate, paleogeomorphology, and the water environment in sedimentary area, various types of meandering rivers were formed in the different periods.
  • [1] 李胜利,于兴河,姜涛,等. 河流辫—曲转换特点与废弃河道模式[J]. 沉积学报,2017,35(1):1-8.

    Li Shengli, Yu Xinghe, Jiang Tao, et al. Meander-braided transition features and abandoned channel patterns in fluvial environment[J]. Acta Sedimentologica Sinica, 2017, 35(1): 1-8.
    [2] 刘海,林承焰,张宪国. 孔店油田馆陶组辫状河—曲流河转换及其控制因素[J]. 断块油气田,2017,24(6):735-739.

    Liu Hai, Lin Chengyan, Zhang Xianguo. Controlling factors and transformation from braided river to meandering river, Guantao Formation, Kongdian oilfield[J]. Fault-block Oil & Gas Field, 2017, 24(6): 735-739.
    [3] 赵一波,李胜利,周练武,等. 近源河流相辫状河—曲流河微相转换沉积特征及控制因素—以刘官庄油田馆陶组三段为例[J]. 东北石油大学学报,2022,46(1):14-23.

    Zhao Yibo, Li Shengli, Zhou Lianwu, et al. Sedimentary characteristics and controlling factors of microfacies transformation from braided river to meandering river of near source fluvial facies: Taking the Third member of Guantao Formation in Liguanzhuang oilfield as an example[J]. Journal of Northeast Petroleum University, 2022, 46(1): 14-23.
    [4] 苏东旭,于兴河,李胜利,等. 基准面变化对分流河道沉积特征的影响:以鄂尔多斯盆地南部石盒子组为例[J]. 东北石油大学学报,2015,39(1):59-68.

    Su Dongxu, Yu Xinghe, Li Shengli, et al. Study of sedimentary characteristics of deltaic distributary channels controlled by base level change: A case from Shihezi Formation of south of Ordos Basin[J]. Journal of Northeast Petroleum University, 2015, 39(1): 59-68.
    [5] 陈彬滔,于兴河,王磊,等. 河流相沉积的河型转换特征与控制因素及其油气地质意义:以南苏丹Melut盆地Ruman地区坳陷期Jimidi组为例[J]. 沉积学报,2021,39(2):424-433.

    Chen Bintao, Yu Xinghe, Wang Lei, et al. Features and controlling factors of river pattern transition in fluvial deposition and its significance for petroleum geology: An insight from the Jimidi Formation in the Ruman area, Melut Basin, South Sudan[J]. Acta Sedimentologica Sinica, 2021, 39(2): 424-433.
    [6] 晋剑利,黄奇志,赵国良,等. 南苏丹Melut盆地Palogue油田古近系Yabus组河型演化规律及主控因素分析[J]. 古地理学报,2018,20(6):951-962.

    Jin Jianli, Huang Qizhi, Zhao Guoliang, et al. Evolution of fluvial pattern and analysis of dominated factors in the Paleogene Yabus Formation of Palogue oilfield in Melut Basin, South Sudan[J]. Journal of Palaeogeography, 2018, 20(6): 951-962.
    [7] 唐武,王英民,赵志刚,等. 河型转化研究进展综述[J]. 地质论评,2016,62(1):138-152.

    Tang Wu, Wang Yingmin, Zhao Zhigang, et al. A review of fluvial pattern transformation[J]. Geological Review, 2016, 62(1): 138-152.
    [8] 谭程鹏,于兴河,李胜利,等. 辫状河—曲流河转换模式探讨:以准噶尔盆地南缘头屯河组露头为例[J]. 沉积学报,2014,32(3):450-458.

    Tan Chengpeng, Yu Xinghe, Li Shengli, et al. Discussion on the model of braided river transform to meandering river: As an example of Toutunhe Formation in southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014, 32(3): 450-458.
    [9] 郭岭,姜在兴,李瑞锋. 一种辫状河、曲流河复合沉积体层序特征及其成因[J]. 大庆石油学院学报,2011,35(2):29-33.

    Guo Ling, Jiang Zaixing, Li Ruifeng. Characteristics of composite sedimentary sequence of braided and meandering river and their genetic interpretation[J]. Journal of Daqing Petroleum Institute, 2011, 35(2): 29-33.
    [10] 王海峰,范廷恩,宋来明,等. 高弯度曲流河砂体规模定量表征研究[J]. 沉积学报,2017,35(2):279-289.

    Wang Haifeng, Fan Tingen, Song Laiming, et al. Quantitative characterization study on sand body scale in high sinuosity meandering river[J]. Acta Sedimentologica Sinica, 2017, 35(2): 279-289.
    [11] 刘超,赵春明,廖新武,等. 海上油田大井距条件下曲流河储层内部构型精细解剖及应用分析[J]. 中国海上油气,2014,26(1):58-64.

    Liu Chao, Zhao Chunming, Liao Xinwu, et al. A refined anatomy of the internal structure of meandering river reservoirs under large well spacing in offshore oilfields and its application[J]. China Offshore Oil and Gas, 2014, 26(1): 58-64.
    [12] 张涛,林承焰,张宪国,等. 开发尺度的曲流河储层内部结构地震沉积学解释方法[J]. 地学前缘,2012,19(2):74-80.

    Zhang Tao, Lin Chengyan, Zhang Xianguo, et al. Method for seismic sedimentology interpretation of reservoir architectures on development scale in meandering river[J]. Earth Science Frontiers, 2012, 19(2): 74-80.
    [13] 甘立琴,苏进昌,谢岳,等. 曲流河储层隔夹层研究:以秦皇岛32-6油田为例[J]. 岩性油气藏,2017,29(6):128-134.

    Gan Liqin, Su Jinchang, Xie Yue, et al. Interlayers of meandering river reservoir: A case from Qinhuangdao 32-6 oilfield[J]. Lithologic Reservoirs, 2017, 29(6): 128-134.
    [14] 杨晓萍,赵文智,邹才能,等. 低渗透储层成因机理及优质储层形成与分布[J]. 石油学报,2007,28(4):57-61.

    Yang Xiaoping, Zhao Wenzhi, Zou Caineng, et al. Origin of low-permeability reservoir and distribution of favorable reservoir[J]. Acta Petrolei Sinica, 2007, 28(4): 57-61.
    [15] 柳成志,辛仁臣,郝景波,等. 松辽盆地北部齐北地区杨大城子油层河流相沉积特征[J]. 大庆石油学院学报,1998,22(1):71-74.

    Liu Chengzhi, Xin Renchen, Hao Jingbo, et al. Sedimentary features of the stream facies of Yangdachengzi Formation in Qibei area, north Songliao Basin[J]. Journal of Daqing Petroleum Institute, 1998, 22(1): 71-74.
    [16] 孙天建,李胜利,许磊,等. 长春岭油田C107区块扶余油层密井网曲流河储层构型分析[J]. 地学前缘,2012,19(2):126-132.

    Sun Tianjian, Li Shengli, Xu Lei, et al. Architectural analysis of meandering river reservoirs in Fuyu oil layer, C107 block, Changchunling oil field[J]. Earth Science Frontiers, 2012, 19(2): 126-132.
    [17] 程岳宏,于兴河,刘玉梅,等. 正常曲流河道与深水弯曲水道的特征及异同点[J]. 地质科技情报,2012,31(1):72-81.

    Cheng Yuehong, Yu Xinghe, Liu Yumei, et al. Characteristics, similarities and differences of fluvial and deep-water sinuous channels[J]. Geological Science and Technology Information, 2012, 31(1): 72-81.
    [18] 易志凤,张尚锋,王雅宁,等. 差异曲率下的曲流河点坝砂体定量表征:以黄河源区白河现代沉积为例[J]. 岩性油气藏,2022,34(1):34-42.

    Yi Zhifeng, Zhang Shangfeng, Wang Yaning, et al. Quantitative characterization of point bar sand bodies in meandering river under different curvatures: A case study of modern deposition of Baihe River in the source area of Yellow River[J]. Lithologic Reservoirs, 2022, 34(1): 34-42.
    [19] 朱悦. 曲流河几何学特征及定量参数研究[D]. 北京:中国石油大学(北京),2018:15-45.

    Zhu Yue. Study on the geometry characteristics and quantitative parameters of meandering river[D]. Beijing: China University of Petroleum (Beijing), 2018: 15-45.
    [20] 李冰娥,尹太举,王杨君. 渤海海域稀井网条件下曲流河储层构型表征[J]. 大庆石油地质与开发,2022,41(2):1-10.

    Li Bing'e, Yin Taiju, Wang Yangjun. Characterization of meandering-river reservoir architecture under sparse well pattern condition in Bohai Sea[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2): 1-10.
    [21] 王珏,高兴军,周新茂. 曲流河点坝储层构型表征与剩余油分布模式[J]. 中国石油大学学报(自然科学版),2019,43(3):13-24.

    Wang Jue, Gao Xingjun, Zhou Xinmao. Reservoir achitecture characterization and remaining oil distribution of meandering river[J]. Journal of China University of Petroleum, 2019, 43(3): 13-24.
    [22] 李廷礼,韩建斌,梁世豪,等. 曲流河储层展布特征:以渤海P油田为例[J]. 海洋地质前沿,2018,34(12):39-46.

    Li Tingli, Han Jianbin, Liang Shihao, et al. Distribution pattern of the meandering river reservoir: A case from the P oilfield in Bohai[J]. Marine Geology Frontiers, 2018, 34(12): 39-46.
    [23] 杨婷,金振奎,张雷,等. 低弯度曲流河露头储层地质模型及应用实例[J]. 沉积与特提斯地质,2017,37(2):96-102.

    Yang Ting, Jin Zhenkui, Zhang Lei, et al. Geological model for the low-sinuosity meandering river outcrop reservoirs: Case studies[J]. Sedimentary Geology and Tethyan Geology, 2017, 37(2): 96-102.
    [24] 李嘉光. 干旱湖盆曲流河末端细粒沉积体系及沉积模式[J]. 地球科学,2018,43(增刊1):264-276.

    Li Jiaguang. Sedimentary model of fine-grained dryland meandering river terminus systems in a semi-arid or arid endorheic basin[J]. Earth Science, 2018, 43(Suppl.1): 264-276.
    [25] 楼章华,赵霞飞. 准噶尔盆地低弯度河和曲流河沉积细段与粗段厚度比的反常现象及沉积过程[J]. 成都地质学院学报,1991,18(3):61-68.

    Lou Zhanghua, Zhao Xiafei. Abnormal thickness ratio of fine member and coarse member of meandering stream or low-sinuousity stream and its origin[J]. Journal of Chengdu College of Geology, 1991, 18(3): 61-68.
    [26] 王惠君,吴伟,于静. 渤海辽中凹陷古近系孢粉组合带及地层划分[J]. 微体古生物学报,2017,34(2):192-200.

    Wang Huijun, Wu Wei, Yu Jing. The Paleogene palynological assemblages and stratigraphic subdivision of the Liaozhong Sag, Bohai, China[J]. Acta Micropalaeontologica Sinica, 2017, 34(2): 192-200.
    [27] 陈金霞,石学法,乔淑卿. 渤海地区全新世孢粉序列及古环境演化[J]. 海洋学报,2012,34(3):99-105.

    Chen Jinxia, Shi Xuefa, Qiao Shuqing. Holocene palynological sequences and palaeoenvironmental changes in the Bohai Sea area[J]. Acta Oceanologica Sinica, 2012, 34(3): 99-105.
    [28] 汪舒,尹太举. 渤海湾盆地东部中新世馆陶组古植物群及其古气候分析[J]. 地质与资源,2019,28(6):503-511,552.

    Wang Shu, Yin Taiju. Paleoflora and paleoclimate analysis of the Miocene Guantao Formation in eastern Bohai Bay Basin[J]. Geology and Resources, 2019, 28(6): 503-511, 552.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(1)

Article Metrics

Article views(195) PDF downloads(103) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-01-27
  • Revised:  2022-06-27
  • Accepted:  2022-08-18
  • Published:  2024-06-10

Sedimentary Model and Evolution Law of Meandering Rivers: A case study from the lower Minghuazhen Formation of L oilfield in Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2022.074
Funds:

National Science and Technology Major Project 2016ZX05058001

Abstract: Objective There are many meandering river depositional models in the lower Minghuazhen Formation in L oilfield. Their sedimentary models and evolutionary laws are not yet clear. Methods The meandering river characteristics and their paleogeological background in different periods are systematically analyzed by using paleo-ntological, core, sidewall core, well logging data, and seismic data. Then, the evolution law is summarized. Results The study shows that during the sedimentary period of the lower Minghuazhen Formation, there are 5 types of meandering rivers developing successively in the study area. The river type of the L44 sublayer is a braided-meandering symbiotic model. The river type of the L42-L40 sublayer is a high-curvature meandering river. The river type of the L32 sublayer is a restricted high-curvature meandering river. The river type of the L30 sublayer is a string-beads meandering river. The river type of the L2 oil group is a low-curvature meandering river under lake-level. Conclusions During the sedimentary period of the lower Minghuazhen Formation, the paleogeological background of the studied area also evolved continuously. Because of the coupling effect of different paleogeological factors, such as sedimentary base level cycles, paleoclimate, paleogeomorphology, and the water environment in sedimentary area, various types of meandering rivers were formed in the different periods.

XU ZhongBo, LIU YingXian, LIN GuoSong, YAO YuanRong, GAN LiQin. Sedimentary Model and Evolution Law of Meandering Rivers: A case study from the lower Minghuazhen Formation of L oilfield in Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 994-1002. doi: 10.14027/j.issn.1000-0550.2022.074
Citation: XU ZhongBo, LIU YingXian, LIN GuoSong, YAO YuanRong, GAN LiQin. Sedimentary Model and Evolution Law of Meandering Rivers: A case study from the lower Minghuazhen Formation of L oilfield in Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 994-1002. doi: 10.14027/j.issn.1000-0550.2022.074
  • 渤海湾盆地明下段沉积相以大型远源曲流河相沉积为主,目前在渤海湾盆地不同的油田分别发现了多种不同类型的曲流河。其中,L油田明下段曲流河类型最为丰富,垂向演化序列最为完整,所发育的曲流河种类,几乎涵盖了渤海油田已发现的所有类型。因此,L油田明下段曲流河在渤海油田具有很强的代表性,对其开展沉积模式以及演化规律研究,将对全渤海油田曲流河砂体刻画以及沉积机理研究具有较大的指导意义。目前国内外学者对不同类型河流均进行了详细解剖,但对河型转换研究较少,且研究方向多限于辫曲转换[13]。因此,加强不同曲流河类型间河型过渡、演化研究,具有重要的理论与实践意义[47]

    在L油田开发早期,由于井网密度较低、地震资料品质较差,对明化镇组储层的认知程度较低,早期分别尝试利用定向井网和水平井开发,但是由于钻遇率较低,无法形成有效注采关系,致使L油田明化镇组的储量一直未得到高效开发。随着油田开发的进行,资料不断完善,井网密度逐步增大,为明化镇组储层再认识打下了坚实的基础。目前,通过地震砂描,对部分砂体部署了水平井,取得了一定的开发效果。但是,随之也暴露了一些问题,如地震资料无法有效刻画砂体内部结构、气云区内地震资料品质差,沉积微相间连通性不确定等。为了解决上述问题,亟需对L油田明化镇组开展沉积模式及演化规律研究,以期为明化镇组主力砂体预测、以及储层内部结构刻画奠定理论基础,进而推动L油田明化镇组高效开发。

  • L油田明下段先后发育辫曲共生沉积模式、高弯度曲流河、限制性曲流河、串珠状曲流河、低弯度入湖曲流河,共五种曲流河类型。不同类型的曲流河,其主力砂体微相、平面展布特征、岩心相、测井相、地震相等均有较大的差异。

  • 辫曲共生沉积模式兼具辫状河与曲流河的特征,是一种辫状河向曲流河转化的过渡相类型[89]。该模式中,辫状河部分规模较大,心滩较发育,曲流河部分则规模较小,以小型曲流河道和小型点坝为主。

    该模式主要发育于L4油组底部的L44小层,岩心显示,储层以箱型和正韵律为主,岩性以中砂岩为主,分选较好,储层层理多样且复杂,既发育大量的指示心滩微相的大型槽状交错层理、板状交错层理、楔状交错层理、平行层理等,又发育指示曲流河点坝的小型槽状交错层理、上攀波纹交错层理等(图1)。

    Figure 1.  Core characteristics of braided⁃meandering river symbiotic fluvial facies

    辫曲共生沉积模式砂地比较高,电阻率和伽马曲线表现为厚层箱形或胖钟形。平面展布特征为砂体叠置连片发育,局部厚度大、展布面积广、连续性强,与L油田馆陶组辫状河储层相似,辫流带特征明显。

    统计心滩平均宽度为600 m,平均厚度为12 m(表1)。同时,在辫流带之外发育薄层钟形砂体,平面上窄条带状展布,为小型曲流河道(图2)。

    小层亚相主要微相曲率钻遇率主力砂体参数
    平均宽度/m平均厚度/m宽厚比长宽比
    L20低弯度入湖曲流河河道1.20.4232012.825∶1
    L30串珠状曲流河点坝3.10.191504.335∶11.5∶1
    L32限制性曲流河点坝1.80.314008.945∶12∶1
    L40+42高弯度曲流河点坝2.20.3645018.824∶11.5∶1
    L44辫曲共生心滩0.5460012.050∶12.5∶1

    Table 1.  Comparison of characteristic parameters for different types of meandering rivers

    Figure 2.  Sedimentary model of a meandering river in the lower Minghuazhen Formation

  • 高弯度曲流河为常规曲流河,主要发育于L4油组中上部L42、L40小层。沉积微相以曲流河点坝为主。高弯度曲流河沉积过程中,河道侧向侵蚀严重,不同时期河道频繁改道,导致点坝内部受侧积泥岩夹层及废弃河道影响,储层结构复杂。

    岩心显示,高弯度曲流河储层多为正韵律,岩性以中—细砂岩为主,下粗上细,底部可见滞留沉积,发育大量板状、楔状、槽状交错层理,平行层理等,整体指示了点坝的沉积构造特征。储层内部可见薄层泥岩(图1)。

    高弯度曲流河测井曲线为底部突变、顶部渐变的齿状中高幅钟形特征,储层厚度大(图2)。平面上围绕废弃河道呈新月状分布。

    地震90°相移剖面可见多期次点坝侧向叠置,不同期次点坝之间地震能量有明显变化[1017]。平面上,井震结合分析显示,储层局部厚度较大,平均可达18.8 m,但分布较为局限,统计钻遇率为0.36。单一点坝平均宽度约450 m,长宽比为1.5,河道曲率为2.2[1819],弯度较大(表1图2)。

  • 常规的高弯度曲流河不受固定河床的限制,侧向摆动能力较强,平面上表现为点坝砂体、废弃河道连片。而研究区内L3油组L32小层发育的限制性曲流河则与常规高弯度曲流河有较大的差异[2022]。限制性曲流河受低弯度河床的限制,整体呈窄条带状,河道下切作用强,摆动能力相对较弱,储层以垂向加积为主,储层结构相对简单。

    实际钻井以及地震属性显示L32小层砂体在平面上整体表现为低弯度窄条带状的特征,曲率较低,仅为1.8。条带平均宽度约750 m。河床内部河流曲化,侧向摆动、废弃,形成废弃河道、末期河道和点坝微相(图2)。统计单一点坝平均宽度为400 m,长宽比为2,点坝砂体平均厚度约8.9 m,钻遇率为0.31(表1)。沿层相干体切片揭示,条带内部发育多条高弯度废弃河道。

    岩心上主要发育平行层理和楔状交错层理,具有点坝的层理特征。底部有明显的底冲刷面和点坝滑塌形成的撕扯状泥砾,证明河流的下切能力较强,对点坝具有较强的侵蚀切割作用。限制性曲流河泥岩颜色整体以红褐色为主,代表了沉积基准面的短期下降,河流下切能力增强(图1)。

    测井以齿化钟形或箱形为主,整体厚度较小,指示了单期侧积体规模小、厚度薄(图2)。由于末期河道强侵蚀切割作用,泥质充填后形成侧向渗流屏障,导致不同点坝间连通性差,分别具有独立的油水界面。

  • 串珠状曲流河往往形成于炎热—半潮湿气候,沉积基准面较低,沉积古地形平缓,可容空间大,河道侧向摆动能力强且频繁大幅度摆动,易形成规模小、数量多的分散点坝。L30小层主要发育串珠状曲流河模式,平面上主要表现为小规模点坝大量发育,河道串连小型点坝,呈串珠状展布,河道弯曲度大,曲率为3.1。

    岩心以粉砂质细砂岩为主,发育小型交错层理。测井相以钟形和复合箱形为主,井间对比显示砂体横向变化快,对比性较差。地震属性呈分散的土豆状,属性变化快。根据地震属性刻画,统计单一点坝平均宽度仅150 m,由于点坝宽度小于井距,常表现为“一井一砂”的特征。平均厚度约4.3 m,平均长宽比为1.5,钻遇率仅为0.19(表1图2)。

  • 常规低弯度曲流河,往往形成于炎热潮湿气候,沉积基准面较低,其沉积环境为陆上沉积,由于长期的干旱,水道规模较小,水动力较弱,以垂向加积为主,对河床两侧堤岸的侵蚀作用弱,同时河堤岸与河床内部有大量植物分布,增大了河岸稳定性,因此形成低弯度曲流河[2325]。L22、L20小层虽然也是低弯度曲流河,但是与常规低弯度曲流河相比,在地质背景、沉积机理等方面具有明显差异。

    通过岩心观察,可将砂体垂向结构分为两类:第一类砂体以块状层理为主,砂体底部没有明显冲刷面,顶部具有灰色浅灰色泥质粉砂岩、泥岩沉积,该岩相为水下河道滞留沉积,以垂向加积为主;第二类具有明显的二元结构,底部具有明显的冲刷面,并发育大量的撕扯状泥砾,下部以块状层理和平行层理为主,为水上河道滞留沉积和点坝沉积,上部为浅灰色、灰色粉砂质泥岩、泥岩,为洪泛期泛滥平原或堤岸亚相沉积,该岩相组合指示了水上小规模河道沉积,底冲刷以及侧向侵蚀能力相对较强。两类岩相交替发育,指示了沉积环境以及沉积方式的更替(图1)。

    测井相显示以厚层箱形砂体为主,也可见薄层钟形砂体,夹层发育相对稳定,指示了该类型曲流河以水下河道沉积为主,河流的下切剥蚀能力整体较弱。地震属性呈低弯度窄条带状,能量较强。井震结合分析揭示,顺河道方向储层展布稳定,垂直河道方向储层变化快,窄河道沉积特征明显,河道弯度较低,曲率仅为1.2,河道平均宽度为320 m,平均厚度为12.8 m(表1图2),钻遇率为0.42。

  • 应用高精度层序地层学的理论和方法,以岩心、测井资料、地震资料为基础,对L油田进行了精细的层组划分与对比,建立了明化镇组下段、馆陶组上段以及馆陶组下段地层的高精度层序地层格架,将馆陶组及明化镇组下段的地层自下而上划分为四个长期旋回,包括三个上升半旋回和一个下降半旋回,其中馆陶组下段和馆陶组上段分别为两个上升半旋回,明化镇组下段划分为一个上升半旋回和一个下降半旋回。

    短期基准面旋回是高分辨层序地层基本的地层单元,反映了一个较短期的基准面旋回变化,在沉积特征上表现为单一的上升半旋回或者下降半旋回,反映了单一河道与洪泛期间的沉积演化过程,据此可将馆陶组及明化镇组下段地层划分为二十一个短期旋回(图3)。

    Figure 3.  Paleoclimate evolution map

    总体来看,L4油组位于中/长期上升半旋回的底部,基准面低,水体规模相对较小,沉积环境为陆上沉积。L3油组位于中/长期上升半旋回的中部,沉积基准面以上升为主,伴随短期波动。L32小层时期基准面短期波动下降,L30小层基准面则再次升高。L2油组位于中/长期上升半旋回的顶部,基准面高,水体规模相对较大,沉积环境以水下沉积为主。而在短/超短期旋回内,基准面会有波动,伴随短期的水进与水退,引起沉积环境的变化。整体上L4油组到L2油组为水进,水体规模逐渐扩大,水动力逐渐减弱,对应沉积物粒度变细。

  • 孢粉及藻类等古生物分析化验数据对古气候有重要的指示作用[2628]。孢粉中的喜热分子指示炎热气候,喜热分子越多,指示气候越炎热;相反,松科孢粉属于喜凉分子,松科孢粉含量越多,指示气候越寒冷。湖相藻类与滨岸沼泽类共同指示古水体环境,间接指示古气候的湿润程度;当滨岸沼泽类明显多于湖相藻类,指示水体较浅,为干旱气候条件下的滨岸沼泽沉积环境;当湖相藻类大量发育,则指示水体相对较深,为潮湿气候条件下湖相沉积环境。

    通过P-1井孢粉、藻类等古生物资料,恢复了新近纪的古气候。馆陶组时期(L10~L5油组),松科孢粉含量多,湖相藻类少,滨岸沼泽类较多,指示气候相对寒冷干燥,为干旱气候条件下的滨岸沼泽沉积环境。馆陶组末期(L5油组)至明下段时期(L4~L1油组),松科孢粉含量快速降低,湖相藻类快速增多,滨岸沼泽类减少,喜热分子增多,指示气候由寒冷干燥快速向炎热潮湿转变。在整个明下段时期,藻类植物最为繁盛,表明此时雨水充沛,湖泊面积较大。L4油组至L1油组,藻类植物有逐渐增多的趋势,指示湖平面不断上升,古气候由温暖—半湿润逐渐变为炎热—潮湿气候(图3)。

  • 新近纪,渤海湾盆地进入拗陷期,断层活动减弱,盆地趋于平原化,盆地边缘地势逐渐由陡变缓。跨工区地震剖面显示,馆陶组时期,受控盆断层影响,地层厚度横向变化较快,指示局部古地形具有较大的起伏。而明下段时期(L4油组~L2油组),地层厚度稳定,且该时期古地貌坡度较小,地势平缓,从L4油组到L2油组地势逐渐平缓(图4)。

    Figure 4.  Palaeogeomorphic map of the lower Minghuazhen period

  • 泥岩颜色、藻类、岩石粒度、泥质含量等对古沉积水体环境有很好的指示作用。通过对比L4~L1油组的泥岩颜色、藻类、岩石粒度、泥质含量特征(图3,5),可以分析明下段时期水体环境的演化规律。L4油组泥岩颜色以红褐色为主,无湖相藻类,泥质含量较低,指示地表裸露的氧化沉积环境,为滨湖亚相,沉积区位于洪泛面附近。L3油组泥岩颜色以黄绿色为主,见少量湖相藻类,砂地比较低,指示弱氧化的沉积环境,为滨湖亚相,沉积区位于洪泛面与枯水面之间。L2油组泥岩颜色为灰绿色,指示弱氧化—弱还原的浅水沉积环境,且滨岸沼泽、湖相藻类孢粉数量较多,表明水体深度逐渐增加,为浅湖亚相,沉积区位于枯水面与浪基面之间。L1油组泥岩颜色为黑绿色,指示水下还原沉积环境,滨岸沼泽减少,湖相藻类进一步增加,指示半深湖环境,沉积区位于浪基面附近。整体上L4油组到L2油组水体规模不断扩大,沉积环境由陆上氧化环境逐渐过渡为水下还原环境。

    Figure 5.  Comparison of shale colors in different oil formations

    通过分析P-6ST井L20小层全井段岩心泥岩颜色变化,可以看到小层内部泥岩颜色以还原色为主,夹薄层灰褐色等氧化色,指示湖面在短期内的波动,滨湖与浅湖环境的交替。

  • 基于上述各小层沉积模式分析、古地质背景及控制机理分析,还原了L油田明下段沉积演化过程(图6)。

    Figure 6.  Main controlling factors of different types of meandering rivers

    L4油组沉积早期(L44小层沉积时期),地形坡度相对较陡,古气候逐渐由馆陶组的相对干冷气候向温湿气候转变,河流规模较大,水动力较强。由于刚经历了馆陶组末期(L50小层沉积时期)沉积基准面的大幅快速下降,此时正处于中/长期上升半旋回的底部,沉积基准面低,河道下切作用强,湖盆面积小,沉积区为滨湖相,此时在沉积区主要发育辫状河,由于可容空间相对较小,沉积物侧向叠置连片发育。同时,在周边地势平缓区域开始发育小型曲流河,形成了辫曲共生的沉积模式。

    L4油组沉积中晚期(L40、L42小层沉积时期),地形坡度进一步减缓,古气候更加温暖湿润,沉积基准面抬升,可容空间增大,河流下切能力减弱,侧向摆动能力增强,此时发育高弯度曲流河相,沉积微相以点坝和曲流河道为主,点坝微相与废弃河道交错连片发育。

    L3油组沉积时期,古气候进一步变得湿热,地形坡度进一步平缓。L3油组早期(L34小层沉积时期),由于沉积基准面短期快速上升,湖盆面积增大,此时研究区为湖相沉积,主要沉积湖相泥岩。

    L3油组沉积中期(L32小层沉积时期),由于沉积基准面的短期波动下降,湖盆面积减小,可容空间略有降低,河流侧向摆动能力减弱,下切能力增强。曲流河整体上受低弯度河床控制,在河床内部表现为高曲率侧向摆动的特征,为限制性高弯度曲流河。由于下切能力强,点坝间相互分隔,连通性差。

    L3油组沉积晚期(L30小层沉积时期),气候变为湿热气候,沉积基准面抬升,可容空间增大,加之地势更加平缓,因此,河流侧向摆动能力增强,下切能力减弱。由于河流的频繁剧烈摆动、废弃,造成了点坝发育的不稳定,单个点坝规模较小,但数量较多,在平面上呈串珠状展布。

    L2油组沉积时期,整体气候炎热湿润,水量充沛,地势更加平缓。此时,古气候与沉积基准面的波动对湖盆面积影响大,导致研究区水体深度频繁变化。枯水期时,沉积基准面下降,河床出露水面,河流侧向摆动能力弱,有一定下切作用,在相对固定的低弯度河床内发育小型点坝。盛水期时,沉积基准面抬升,研究区为浅湖环境,河床位于水下,河流顺河床入湖后,侧向摆动能力以及下切能力基本消失,混杂泥砂的浊流受重力分异作用,顺低弯度水下河道垂向加积。上述两种沉积方式随气候以及基准面的波动交替发生,形成低弯度入湖曲流河沉积模式。

  • (1) 综合利用古生物、岩心、壁心、测井、地震等资料,将L油田明下段曲流河细分为辫曲共生、高弯度曲流河、限制性曲流河、串珠状曲流河、低弯度入湖曲流河五种类型。其中,辫曲共生以发育辫流带为特征,高弯度曲流河以点坝侧向叠置为特征,限制性曲流河以垂向加积为特征,串珠状曲流河以河道串联多个小规模点坝为特征,低弯度入湖曲流河以窄河道垂向加积为主。

    (2) L油田L4油组到L2油组基准面逐渐上升,气候变炎热—潮湿,古地貌地势变平缓,沉积环境由陆上氧化环境逐渐过渡为水下还原环境,受以上不同沉积基准面旋回、古气候、古地貌、沉积区水体环境等古地质因素的耦合作用影响,形成了不同类型的曲流河模式。

    (3) 基于沉积模式分析、古地质背景及控制机理分析,明确L油田明下段沉积演化过程:L4油组底部L44小层为辫曲共生模式;L42~L40小层为高弯度曲流河模式;L32小层为限制性曲流河模式;L30小层为串珠状曲流河模式;L2油组主力储层为低弯度入湖曲流河模式。

Reference (28)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return