Advanced Search
Volume 42 Issue 1
Feb.  2024
Turn off MathJax
Article Contents

YANG YongZhen, GUO Ling, FANG ZeXin, XU Kai, ZHANG HuanMeng, SHI YuXiang, WU FangFang, TAO Wei. Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China[J]. Acta Sedimentologica Sinica, 2024, 42(1): 324-341. doi: 10.14027/j.issn.1000-0550.2022.073
Citation: YANG YongZhen, GUO Ling, FANG ZeXin, XU Kai, ZHANG HuanMeng, SHI YuXiang, WU FangFang, TAO Wei. Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China[J]. Acta Sedimentologica Sinica, 2024, 42(1): 324-341. doi: 10.14027/j.issn.1000-0550.2022.073

Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China

doi: 10.14027/j.issn.1000-0550.2022.073
Funds:

National Natural Science Foundation of China 42130206

  • Received Date: 2022-03-03
  • Accepted Date: 2022-07-11
  • Rev Recd Date: 2022-06-22
  • Available Online: 2022-07-11
  • Publish Date: 2024-02-10
  • Objective The Qiongzhusi Formation in the Yangtze region is an essential horizon for shale gas exploration. This study was conducted to determine the weathering degree,paleoclimate,tectonic background and provenance of the sedimentary rock in the Qiongzhusi Formation at the eastern margin of the Ancient Kangding-Yunnan Land. Methods Quantitative geochemical data was obtained from profile measurement,sample collection and analysis for major elements and trace elements in the Wulongcun profile. [Results and Conclusions] (1) The Qiongzhusi Formation sedimentary rock is mainly strongly weathered,and the climate of the provenance area was warm and humid during the period of deposition. (2) The rock was mainly formed in a passive continental margin environment. The source rocks were formed in a continental island-arc environment. (3) The sedimentary rocks were mainly tuff,tuffaceous sandstone,slate and granite,together with some basic rocks of the Proterozoic Dongchuan Group,Huili and Tangdan Groups in the Ancient Kangding-Yunnan Land.
  • [1] Huyan Y Y,Yao W S. Geochemical comparisons of weathering,provenance and tectonics in the fluvial sediments from Yarlung Zangbo to Brahmaputra River[J]. Catena,2022,210: 105944.
    [2] 杨剑. 黔北地区下寒武统黑色岩系形成环境与地球化学研究[D]. 西安:长安大学,2009:5.
    [3] 程涌,胡煜昭,李丕优,等. 滇东会泽地区下寒武统筇竹寺组黑色岩系微量元素地球化学特征及其古环境演化[J]. 地质找矿论丛,2019,34(3):416-422.

    Cheng Yong,Hu Yuzhao,Li Piyou,et al. The geochemical characteristics of trace elements and paleoenvironmental evolution of black rock series in the Lower Cambrian Qiongzhusi Formation from Huize area,eastern Yunnan province[J]. Contributions to Geology and Mineral Resources Research,2019,34(3): 416-422.
    [4] 黄俨然,肖正辉,余烨,等. 湘西北下寒武统黑色岩系元素地球化学特征及地质意义[J]. 地球化学,2020,49(5):516-527.

    Huang Yanran,Xiao Zhenghui,Yu Ye,et al. Geological significance of the elemental geochemistry of Lower Cambrian black shales from northwestern Hunan[J]. Geochimica,2020,49(5): 516-527.
    [5] 久凯,丁文龙,黄文辉,等. 上扬子地区下寒武统海相富有机质页岩形成环境与主控因素分析[J]. 现代地质,2012,26(3):547-554.

    Kai Jiu,Ding Wenlong,Huang Wenhui,et al. Formation environment and controlling factors of organic-rich shale of Lower Cambrian in Upper Yangtze region[J]. Geoscience,2012,26(3): 547-554.
    [6] 李仁泽,周正兵,万建军,等. 江西省黄坑黑色岩系钒矿床微量元素地球化学特征及成矿背景分析[J]. 地质找矿论丛,2021,36(4):425-438.

    Li Renze,Zhou Zhengbing,Wan Jianjun,et al. Trace element geochemical characteristics and metallogenic background of V deposits in black rock series at Huangkeng area,Jiangxi provine[J]. Contributions to Geology and Mineral Resources Research,2021,36(4): 425-438.
    [7] 李昂,丁文龙,张国良,等. 滇东地区马龙区块筇竹寺组海相页岩储层特征及对比研究[J]. 地学前缘,2016,23(2):176-189.

    Li Ang,Ding Wenlong,Zhang Guoliang,et al. Reservoir characteristics of marine shale in the Malong block of eastern Yunnan province and comparison analysis[J]. Earth Science Frontiers,2016,23(2): 176-189.
    [8] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

    Zhao Jianhua,Jin Zhijun,Lin Changsong,et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology,2019,40(4): 701-715.
    [9] 姜永果,郭欣,周洪瑞,等. 云南曲靖地区下寒武统黑色岩系岩石地球化学特征与成因[J]. 矿物学报,2015,35(4):489-496.

    Jiang Yongguo,Guo Xin,Zhou Hongrui,et al. Geochemistry and genesis of Lower Cambrian black rocks from Qujing area,Yunnan province,China [J]. Acta Mineralogica Sinica,2015,35(4): 489-496.
    [10] 杨帅杰,王伟锋,张道亮,等. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学,2020,31(4):507-517.

    Yang Shuaijie,Wang Weifeng,Zhang Daoliang,et al. Distribution characteristics and formation environment of high quality source rocks of Qiangzhusi Formation in northeastern Sichuan Basin[J]. Natural Gas Geoscience,2020,31(4): 507-517.
    [11] 刘建清,何利,何平,等. 康滇古陆东缘筇竹寺组地球化学特征及意义:以云南省昭通市昭阳区锌厂沟剖面为例[J]. 沉积学报,2021,39(5):1305-1319.

    Liu Jianqing,He Li,He Ping,et al. Geochemical characteristics and significance of the Qiongzhusi Formation on the eastern margin of the Ancient Kangding-Yunnan Land: Taking the Xinchanggou section of Zhaoyang district,Zhaotong city,Yunnan province as an example[J]. Acta Sedimentologica Sinica,2021,39(5): 1305-1319.
    [12] Taylor S R,McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publication,1985.
    [13] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry,1984,2: 63-114.
    [14] Nesbitt H W,Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299(5885): 715-717.
    [15] McLennan S M. Weathering and global denudation[J]. The Journal of Geology,1993,101(2): 295-303.
    [16] Panahi A,Young G M,Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada[J]. Geochimica et Cosmochimica Acta,2000,64(13): 2199-2220.
    [17] Zhai L N,Wu C D,Ye Y T,et al. Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran-Cambrian transition: Implications for paleoclimatic conditions and the marine carbon cycle[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2018,490: 280-292.
    [18] Yang J H,Cawood P A,Du Y S,et al. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high-and low-paleolatitude sedimentary records[J]. Geology,2014,42(10): 835-838.
    [19] 李小清. 滇东北巧家白马厂铅锌矿床地质:地球化学特征及成因研究[D]. 昆明:昆明理工大学,2013:35.
    [20] 陈丹婷,彭渤,方小红,等. 洞庭湖“四水”入湖河床沉积物主量元素地球化学特征及意义[J]. 第四纪研究,2021,41(5):1267-1280.

    Chen Danting,Peng Bo,Fang Xiaohong,et al. Geochemistry of major elements in bed sediments from inlets of the Four Rivers to Dongting Lake,China[J]. Quaternary Sciences,2021,41(5): 1267-1280.
    [21] 曾金华,兰晓东,司晨晨. 京西坳陷周口店地区洪水庄组地球化学特征及其地质意义[J]. 东北石油大学学报,2021,45(6):52-67.

    Zeng Jinhua,Lan Xiaodong,Si Chenchen,et al. Geochemical characteristics and geological significance of the Hongshuizhuang Formation in the Zhoukoudian area of Jingxi Depression[J]. Journal of Northeast Petroleum University,2021,45(6): 52-67.
    [22] 胡宝群,高海东,申玉科,等. 玲珑金矿大开头矿区Bi特征及指示意义[J]. 物探与化探,2014,38(6):1134-1139.

    Hu Baoqun,Gao Haidong,Shen Yuke,et al. Bi anomaly of the Dakaitou ore district in the Linglong gold mine and its indication significance[J]. Geophysical and Geochemical Exploration,2014,38(6): 1134-1139.
    [23] 侯阳红,康志宏,赵晨君,等. 下扬子地区下寒武统幕府山组黑色岩系地球化学特征及其地质意义[J]. 沉积学报,2020,38(4):886-897.

    Hou Yanghong,Kang Zhihong,Zhao Chenjun,et al. Geochemical characteristics and geological significance of the black rock series at the bottom of the Mufushan Formation in the Lower Cambrian,Lower Yangtze area[J]. Acta Sedimentologica Sinica,2020,38(4): 886-897.
    [24] 汪彪,施立志,阮壮,等. 内蒙古正镶白旗贡淖尔地区中二叠统额里图组下段细碎屑岩地球化学特征及意义[J]. 地球学报,2022,43(3):569-583.

    Wang Biao,Shi Lizhi,Ruan Zhuang,et al. Geochemistry and significance of siliciclastic rocks from the lowest Elitu Formation of Middle Permian in the Gongnaoer area,Zhengxiangbaiqi,Inner Mongolia[J]. Acta Geoscientica Sinica,2022,43(3): 569-583.
    [25] Chen J B,Algeo T J,Zhao L S,et al. Diagenetic uptake of rare earth elements by bioapatite,with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews,2015,149: 181-202.
    [26] 王鹏万,邹辰,李娴静,等. 滇黔北地区筇竹寺组元素地球化学特征及古环境意义[J]. 中国石油大学学报,2021,45(2):51-62.

    Wang Pengwan,Zou Chen,Li Xianjing,et al. Geochemical characteristics of element Qiongzhusi Group in Dianqianbei area and paleoenvironmental significance[J]. Journal of China University of Petroleum,2021,45(2): 51-62.
    [27] 方泽鑫. 滇东下寒武统筇竹寺组黑色页岩沉积环境及烃源岩特征[D]. 西安:西北大学,2020:49.
    [28] 裴羽,何幼斌,曾艳涛,等. 微量元素在华南武陵统沉积环境和物源分析中的应用[J]. 海相油气地质,2015,20(2):29-36.

    Pei Yu,He Youbin,Zeng Yantao,et al. Application of trace elements in analysis of sedimentary environments and provenance of Wulingian series,South China[J]. Marine Origin Petroleum Geology,2015,20(2): 29-36.
    [29] 侯东壮. 黔东地区黑色岩系地球化学特征及沉积环境研究[D]. 长沙:中南大学,2011:41.
    [30] Zhao L S,Chen Z Q,Algeo T J,et al. Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?[J]. Global and Planetary Change,2013,105: 135-151.
    [31] Li Y,Zhao L S,Chen Z Q,et al. Oceanic environmental changes on a shallow carbonate platform (Yangou,Jiangxi province,South China) during the Permian-Triassic transition: Evidence from rare earth elements in conodont bioapatite[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2017,486: 6-16.
    [32] Herron M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research,1988,58(5): 820-829.
    [33] Nesbitt H W,Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta,1984,48(7): 1523-1534.
    [34] Nesbitt H W,Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology,1989,97(2): 129-147.
    [35] 郭若舜,叶思源,何磊,等. 全新世以来辽河三角洲地区的化学风化及其对气候变化的响应[J]. 海洋科学,2018,42(9):38-50.

    Guo Ruoshun,Ye Siyuan,He Lei,et al. Chemical weathering and its implications regarding climate changes in the Liaohe Delta since the Holocene[J]. Marine Sciences,2018,42(9): 38-50.
    [36] Sheldon N D. Abrupt chemical weathering increase across the Permian-Triassic boundary[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,231(3/4): 315-321.
    [37] Wignall P B. The end-Permian mass extinction-how bad did it get?[J]. Gebiology,2007,5(4): 303-309.
    [38] Algeo T J,Chen Z Q,Fraiser M L,et al. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2011,308(1/2): 1-11.
    [39] 朱欣然,刘立,贾士琚,等. 鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征:以靖边县龙洲乡露头为例[J]. 世界地质,2018,37(3):702-711.

    Zhu Xinran,Liu Li,Jia Shiju,et al. Geochemical and provenance characteristics of eolian sandstone of Cretaceous Luohe Formation in Ordos Basins: An example from outcrop in Longzhou,Jingbian[J]. Global Geology,2018,37(3): 702-711.
    [40] 吴素娟,张永生,邢恩袁. 桌子山地区奥陶系乌拉力克组碎屑岩地球化学特征及其对物源的制约[J]. 地质学报,2016,90(8):1860-1873.

    Wu Sujuan,Zhang Yongsheng,Xing Enyuan. Geochemistry of Ordovician detrital rocks and its constrains on provenance in Zhuozishan area,northwest Ordos Basin[J]. Acta Geologica Sinica,2016,90(8): 1860-1873.
    [41] 吴黎军,李明龙,陈林,等. 鄂西走马地区ZK701孔南华系大塘坡组主量元素地球化学对古气候的指示[J]. 河南理工大学学报(自然科学版),2019,38(6):47-54.

    Wu Lijun,Li Minglong,Chen Lin,et al. Geochemistry characteristics of major elements and their indication to paleoclimate in the Datangpo Formation of Nanhua system of ZK701 drillcore in Zouma area of western Hubei province[J]. Journal of Henan Polytechnic University (Natural Science),2019,38(6): 47-54.
    [42] McLennan S M,Hemming S,McDaniel D K,et al. Geochemical approaches to sedimentation,provenance,and tectonics[M]//Johnsson M J,Basu A. Processes controlling the composition of clastic sediments. Geological Society of America,1993: 21-40.
    [43] Derry L A,Jacobsen S B. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations[J]. Geochimica et Cosmochimica Acta,1990,54(11): 2965-2977.
    [44] Uysal I T,Zhao J X,Golding S D,et al. Sm-Nd dating and rare-earth element tracing of calcite: Implications for fluid-flow events in the Bowen Basin,Australia[J]. Chemical Geology,2007,238(1/2): 63-71.
    [45] Zhu B,Jiang S Y,Yang J H,et al. Rare earth element and Sr-Nd isotope geochemistry of phosphate nodules from the Lower Cambrian Niutitang Formation,NW Hunan province,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2014,398: 132-143.
    [46] Xie S C,Pancost R D,Huang J H,et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J]. Geology,2017,35(12): 1083-1086.
    [47] 杨世文,楼法生,杨坤光,等. 江西南部震旦—寒武纪寻乌岩组变沉积岩地球化学特征及构造意义[J]. 中国地质,2016,43(1):349-364.

    Yang Shiwen,Lou Fasheng,Yang Kunguang,et al. The geochemical characteristics and tectonic significance of metasedimentary rocks in Sinian-Cambrian Xunwu rock group,southern Jiangxi province[J]. Geology in China,2016,43(1): 349-364.
    [48] Moyen J F,Martin H. Forty years of TTG research[J]. Lithos,2012,148: 312-336.
    [49] 王奖臻,李泽琴,黄从俊. 康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿响应[J]. 地球科学进展,2012,27(10):1074-1079.

    Wang Jiangzhen,Li Zeqin,Huang Congjun. The main geological events of the Kangdian Proterozoic eon and response from to the La-La IOCG deposit[J]. Advances in Earth Sciences,2012,27(10): 1074-1079.
    [50] 宋昊,倪师军,张成江,等. 康滇地轴基底IOCG铜铁矿床中岩浆岩的成矿及找矿指示意义[J]. 矿物学报,2015,35(增刊1):156-157.

    Song Hao,Ni Shijun,Zhang Chengjiang,et al. Mineralization and mineralization indication of magmatic rocks in IOCG copper and iron ore deposit in the basement of Kangdian axial[J]. Acta Mineralogica Sinica,2015,35(Suppl.1): 156-157.
    [51] 刘军平,孙柏东,王晓峰,等. 滇中禄丰地区中元古代早期球颗玄武岩的锆石U-Pb年龄、地球化学特征及其大地构造意义[J]. 地质论评,2020,66(1):35-51.

    Liu Junping,Sun Baidong,Wang Xiaofeng,et al. The zircon U-Pb age,geochemical characteristics and tectonic significance of the spherical basalt in the early Mesoproterozoic in Lufeng area central Yunnan[J]. Geological Review,2020,66(1): 35-51.
    [52] 王生伟,廖震文,孙晓明,等. 会东菜园子花岗岩的年龄、地球化学:扬子地台西缘格林威尔造山运动的机制探讨[J]. 地质学报,2013,87(1):55-70.

    Wang Shengwei,Liao Zhenwen,Sun Xiaoming,et al. Age and geochemistry of the Caiyuanzi granite in Sichuan,SW China: Mechanism of the Grenvillian orogenic movement in the western margin of Yangtze block[J]. Acta Geologica Sinica,2013,87(1): 55-70.
    [53] Sugisaki R,Yamamoto K,Adachi M. Triassic bedded cherts in central Japan are not pelagic[J]. Nature,1982,298(5875): 644-647.
    [54] Murray R W,ten Brink M R B,Jones D L,et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology,1990,18(3): 268-271.
    [55] Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology,1994,90(3/4): 213-232.
    [56] Boström K,Kraemer T,Gartner S. Provenance and accumulation rates of opaline silica,Al,Ti,Fe,Mn,Cu,Ni and Co in Pacific pelagic sediments[J]. Chemical Geology,1973,11(2): 123-148.
    [57] Roser B P,Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology,1986,94(5): 635-650.
    [58] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology,1983,91(6): 611-627.
    [59] Bhatia M R,Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology,1986,92(2): 181-193.
    [60] 王腾宇,毕天卓,徐焕友,等. 基于微量元素和稀土元素的物源分析:以金湖凹陷戴一段为例[J]. 复杂油气藏,2021,14(4):36-46.

    Wang Tengyu,Bi Tianzhuo,Xu Huanyou,et al. Source analysis based on trace elements and rare earth elements: An example from the lower Dainan Formation of Jinhu Sag[J]. Complex Hydrocarbon Reservoirs,2021,14(4): 36-46.
    [61] 李利平,田军,张克信,等. 东昆仑造山带下中三叠统沉积岩地球化学特征[J]. 同济大学学报,2002,30(8):938-943.

    Li Liping,Tian Jun,Zhang Kexin,et al. Geochemical characteristics of low to Middle Triassic sedimentary rocks of eastern Kunlun orogenic belt[J]. Journal of Tongji University,2002,30(8): 938-943.
    [62] 刘俊海,杨香华,于水,等. 东海盆地丽水凹陷古新统沉积岩的稀土元素地球化学特征[J]. 现代地质,2003,17(4):421-427.

    Liu Junhai,Yang Xianghua,Yu Shui,et al. The REE geochemical characteristics of Paleocene-Eocene in the Lishui Sag of the Donghai Basin[J]. Geoscience,2003,17(4): 421-427.
    [63] 李双建,肖开华,沃玉进,等. 湘西、黔北地区志留系稀土元素地球化学特征及其地质意义[J]. 现代地质,2008,22(2):273-280.

    Li Shuangjian,Xiao Kaihua,Yujin Wo,et al. REE geochemical characteristics and their geological signification in Silurian,west of Hunan province and north of Guizhou province[J]. Geoscience,2008,22(2): 273-280.
    [64] 许效松,门玉澎,张海全. 古陆、古隆与古地理[J]. 沉积与特提斯地质,2010,30(3):1-10.

    Xu Xiaosong,Yupeng Men,Zhang Haiquan. Old land,old uplift and palaeogeography[J]. Sedimentary Geology and Tethyan Geology,2010,30(3): 1-10.
    [65] 孙珍,刘思青,庞雄,等. 被动大陆边缘伸展—破裂过程研究进展[J]. 热带海洋学报,2016,35(1):1-16.

    Sun Zhen,Liu Siqing,Pang Xiong,et al. Recent research progress on the rifting-breakup process in passive continental margins[J]. Journal of Tropical Oceanography,2016,35(1): 1-16.
    [66] 鲁国. 四川盆地震旦—寒武纪关键构造期构造—沉积响应[D]. 北京:中国地质大学(北京),2021:4.
    [67] 刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版),2013,40(5):511-520.

    Liu Shugen,Sun Wei,Luo Zhili,et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2013,40(5): 511-520.
    [68] 李伟,刘静江,邓胜徽,等. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用[J]. 石油学报,2015,36(5):546-556,563.

    Li Wei,Liu Jingjiang,Deng Shenghui,et al. The nature and role of Late Sinian-Early Cambrian tectonic movement in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica,2015,36(5): 546-556, 563.
    [69] 王志伟,钟怡江,刘磊,等. 鄂西—渝东地区早寒武世克拉通内裂陷演化及对古地理格局的控制[J]. 沉积学报,2023,41(4):1110-1123.

    Wang Zhiwei,Zhong Yijiang,Liu Lei,et al. Evolution of Early Cambrian intracraton rift and its influence on the paleogeographical pattern,western Hubei-eastern Chongqing[J]. Acta Sedimentologica Sinica,2023,41(4):1110-1123.
    [70] 于炳松,陈建强,李兴武,等. 塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J]. 沉积学报,2004,22(1):59-66.

    Yu Bingsong,Chen Jianqiang,Li Xingwu,et al. Rare earth and trace element patterns in bedded-cherts from the bottom of the Lower Cambrian in the northern Tarim Basin,northwest China: Implication for depositional environments[J]. Acta Sedimentologica Sinica,2004,22(1): 59-66.
    [71] Choi J H,Hariya Y. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro belt,northeastern Hokkaido,Japan[J]. Economic Geology,1992,87(5): 1265-1274.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(5)

Article Metrics

Article views(189) PDF downloads(67) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-03-03
  • Revised:  2022-06-22
  • Accepted:  2022-07-11
  • Published:  2024-02-10

Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China

doi: 10.14027/j.issn.1000-0550.2022.073
Funds:

National Natural Science Foundation of China 42130206

Abstract: Objective The Qiongzhusi Formation in the Yangtze region is an essential horizon for shale gas exploration. This study was conducted to determine the weathering degree,paleoclimate,tectonic background and provenance of the sedimentary rock in the Qiongzhusi Formation at the eastern margin of the Ancient Kangding-Yunnan Land. Methods Quantitative geochemical data was obtained from profile measurement,sample collection and analysis for major elements and trace elements in the Wulongcun profile. [Results and Conclusions] (1) The Qiongzhusi Formation sedimentary rock is mainly strongly weathered,and the climate of the provenance area was warm and humid during the period of deposition. (2) The rock was mainly formed in a passive continental margin environment. The source rocks were formed in a continental island-arc environment. (3) The sedimentary rocks were mainly tuff,tuffaceous sandstone,slate and granite,together with some basic rocks of the Proterozoic Dongchuan Group,Huili and Tangdan Groups in the Ancient Kangding-Yunnan Land.

YANG YongZhen, GUO Ling, FANG ZeXin, XU Kai, ZHANG HuanMeng, SHI YuXiang, WU FangFang, TAO Wei. Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China[J]. Acta Sedimentologica Sinica, 2024, 42(1): 324-341. doi: 10.14027/j.issn.1000-0550.2022.073
Citation: YANG YongZhen, GUO Ling, FANG ZeXin, XU Kai, ZHANG HuanMeng, SHI YuXiang, WU FangFang, TAO Wei. Weathering Characteristics of Sedimentary Source Area of Qiongzhusi Formation, Eastern Margin of Ancient Kangding-Yunnan Land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China[J]. Acta Sedimentologica Sinica, 2024, 42(1): 324-341. doi: 10.14027/j.issn.1000-0550.2022.073
  • 陆源碎屑沉积岩的元素化学特征主要受源岩矿物和源岩风化条件的控制,因此陆源沉积岩的多元素化学特征已被广泛用于揭示物源、构造、风化过程、气候变化和大陆地壳演化的性质[1]。扬子地区下寒武统筇竹寺组是目前页岩气勘探的重要层位,其中包含的黑色岩系是地球岩石圈、水圈、气圈以及生物圈共同作用的结果,能够反映地球演化中特定的地质环境,尤其是沉积时古海洋的环境[23]。前人对筇竹寺组的研究主要集中在黑色岩系,因为油气田的生油、生气母岩均来自黑色岩系,而且许多金属矿床的形成与黑色岩系有关[36]。目前四川盆地下寒武统筇竹寺组已经发现了良好的天然气显示,展现出巨大的勘探前景,但是对筇竹寺组开展的研究主要集中在黑色岩系的烃源岩评价,储层生、储能力以及沉积环境上[5,710],而对于筇竹寺组沉积岩的物质来源、母岩特征、沉积构造背景以及风化程度还缺乏较为深入的认识[3,11]

    因此,以滇东地区乌龙村剖面筇竹寺组为研究对象,利用主量元素和微量元素解析了筇竹寺组沉积岩源区的风化程度和古气候,分析了筇竹寺组沉积岩的物质来源和沉积构造背景。旨在补充筇竹寺组的研究工作,加强筇竹寺组的基础地球化学研究,期望能对滇东地区筇竹寺组的矿产资源选区提供一定的基础参数和地质依据。

  • 滇东地区位于上扬子地区南缘,印度板块与欧亚板块的碰撞接触地带东侧(图1a),属于环太平洋构造域与特提斯构造域的交接复合带。在地史发展中,经过欧亚板块与冈瓦纳板块中的印度、兰坪—思茅、保山、扬子、腾冲等板块相互拼接,形成了如今复杂的大地构造格局[3,7]。早寒武世,该区处于康滇古陆、牛首山古陆以及泸冕古陆三大古陆之间,武定县乌龙村剖面具体位于滇东地区的西侧、康滇古陆的东侧,其沉积时以浅水陆棚相为优势相带(图1b)。该剖面靠近康滇古陆,且出露完整,因此研究该剖面可以揭示筇竹寺组沉积岩物源区特征以及气候变化。剖面起点坐标为25°34′55″ N、102°22′49″ E,海拔1 849.5 m;终点坐标为25°35′44″ N、102°23′49″ E,海拔1 890 m。

  • 武定县乌龙村剖面筇竹寺组地层出露完整(图2),底部与下寒武统渔户村组大海段灰色灰岩呈整合接触,顶部与下寒武统沧浪铺组厚层灰色粗砂岩呈整合接触。乌龙村剖面共分13层,2~12层发育筇竹寺组,其中2~5层为筇竹寺组石岩头段,厚46.25 m,岩性以灰褐色—灰色粉砂岩、细砂岩为主,为滨岸相沉积;6~12层为筇竹寺组玉案山段,厚90.75 m,玉案山段沉积时期,海平面上升,岩性以灰绿色页岩、灰色粉砂质页岩为主,为陆棚相中浅水陆棚相沉积。

  • 在乌龙村剖面筇竹寺组共采集了38件样品,并对其中的10件样品进行测试分析。样品的主量元素分析在西北大学大陆动力学国家重点实验室完成。首先在小型颚式破碎机对样品进行破碎,然后将破碎后的碎石放在碳化钨研钵托盘中,再放进振动式碎样机中碎至200目以下。主量元素采用XRF法完成,分析精度一般优于5%。样品的微量元素和稀土元素分析在核工业北京地质研究所分析测试研究中心完成,利用ELEMENT XR等离子体质谱仪进行分析,测试方法和依据符合GB/T 14506.30—2010《碳酸盐岩石化学分析方法第30部分:44个元素含量测定》。主量元素、微量元素及稀土元素的分析结果分别见表1~3

    主量元素WLC-01WLC-02WLC-03WLC-04WLC-05WLC-06WLC-07WLC-08WLC-09WLC-10UCC
    SiO265.0379.3166.5365.8762.8957.0449.6857.2145.0549.8165.89
    TiO20.650.500.640.870.870.730.640.740.590.640.50
    Al2O313.748.6212.6814.9615.9418.9716.0118.9614.0914.8015.17
    TFe2O34.762.893.484.615.507.336.307.135.685.624.49
    MnO0.060.100.070.010.050.050.120.040.150.080.07
    MgO3.611.213.463.073.904.326.494.177.967.072.20
    CaO1.270.381.990.030.360.484.640.437.435.404.19
    Na2O0.100.080.110.110.090.080.070.080.100.093.89
    K2O5.544.085.424.464.694.964.234.973.724.003.19
    P2O50.290.390.560.230.250.280.310.270.370.270.20
    LOI4.812.264.965.365.145.5611.305.6714.6612.08
    TOTAL99.8699.8299.9099.5899.6899.8099.7999.6799.8099.86
    K2Ocorr1.601.011.491.731.842.191.852.191.641.72
    CIAcorr86.9386.3786.5487.6387.8987.7987.7587.7986.9887.27
    注:UCC含量参考文献[12]。

    微量元素WLC-01WLC-02WLC-03WLC-04WLC-05WLC-06WLC-07WLC-08WLC-09WLC-10UCC
    Li51.7048.9048.9085.40120.0074.4078.2087.8080.3075.8020.00
    Be3.102.542.912.473.454.083.705.084.163.403.00
    Sc16.308.8714.1021.4021.8023.4019.6024.3017.4016.9011.00
    V103.0052.5068.60107.0076.50103.0087.7075.60150.00135.0060.00
    Cr75.7038.0049.6085.9076.3073.9086.2072.9086.3086.2035.00
    Co25.5068.3018.1027.4082.4019.4027.9022.4021.8028.6010.00
    Ni44.1040.4022.2043.7045.3054.5049.6059.2047.5048.8040.00
    Cu33.305.879.2924.3025.9081.3048.0077.1028.3022.3025.00
    Zn63.7034.2039.9065.1082.80103.0087.20121.00118.0087.7071.00
    Ga20.6013.1015.9017.7020.0025.0020.8025.9023.9022.5017.00
    Rb136.0095.80107.00112.00128.00162.00135.00178.00141.00131.00112.00
    Sr48.8051.5050.7063.0095.0061.9068.7056.1060.5053.50350.00
    Y30.4036.9033.4042.1036.0034.4033.5043.4035.9028.9022.00
    Mo1.070.340.432.380.780.491.040.460.490.641.50
    Cd0.180.120.110.150.060.080.080.080.110.140.10
    In0.060.070.060.040.040.070.070.100.100.060.05
    Sb0.790.320.330.500.330.430.480.280.600.820.20
    Cs8.063.225.895.927.4711.0010.9010.208.978.973.70
    Ba555.00456.00490.00520.00548.00420.00325.00414.00344.00360.00550.00
    Tl0.730.880.500.770.210.620.560.610.650.680.75
    Pb20.605.377.8614.108.015.467.135.084.664.6020.00
    Bi4.830.480.183.110.150.300.380.350.720.440.13
    Th9.4112.4011.2011.1011.3013.7010.5016.0010.5010.2010.70
    U2.693.052.808.272.573.643.823.063.632.852.80
    Nb15.709.9413.1015.0016.9017.0014.3019.4013.8014.5025.00
    Ta1.221.201.051.011.211.140.961.160.970.901.00
    Zr139.00154.00159.00210.00191.00159.00145.00181.00133.00138.00190.00
    Hf3.744.313.994.674.464.863.484.103.052.875.80
    Th/U3.494.064.001.344.393.762.755.232.893.57
    Th/Sc0.581.400.790.520.520.590.540.660.600.60
    Zr/Sc8.5217.3611.279.818.766.797.397.447.648.16
    注:UCC含量参考文献[12]。

    稀土元素WLC-01WLC-02WLC-03WLC-04WLC-05WLC-06WLC-07WLC-08WLC-09WLC-10球粒陨石
    La36.8033.9034.2043.8045.0049.8043.1053.0038.4041.200.30
    Ce60.1070.2066.1074.2083.4086.3085.50103.0072.0075.400.80
    Pr8.568.198.5511.3011.4010.8010.4012.009.388.850.12
    Nd31.7033.6030.2040.8039.9039.0039.2048.7032.9031.700.60
    Sm5.667.595.997.406.697.376.077.887.455.430.19
    Eu1.301.711.321.591.361.261.171.441.461.030.07
    Gd5.047.055.537.136.006.256.107.117.285.250.26
    Tb0.871.321.031.151.011.020.981.081.100.880.05
    Dy4.546.385.065.815.426.915.156.485.024.430.32
    Ho0.881.291.101.341.171.131.171.441.231.100.07
    Er2.663.392.954.333.133.793.493.573.442.980.21
    Tm0.400.550.480.580.530.560.500.540.440.430.03
    Yb2.953.173.044.043.573.643.213.803.272.690.21
    Lu0.390.490.460.600.450.490.440.530.450.400.03
    ∑REE161.86178.83166.02204.08209.03218.32206.49250.57183.83181.77
    ∑LREE144.12155.19146.36179.09187.75194.53185.44226.02161.59163.61
    ∑HREE17.7423.6419.6624.9921.2823.7921.0524.5522.2418.16
    (La /Yb)n1.211.041.091.051.221.331.301.351.141.48
    (La/Sm)N4.122.833.623.754.264.284.504.263.264.80
    Y/Ho34.5528.6030.3631.4230.7730.4428.6330.1429.1926.27
    δEu0.870.830.820.780.760.660.680.680.710.69
    δCe0.700.860.790.680.760.760.830.840.780.81
    注:稀土元素含量∑REE=La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;轻稀土元素含量∑LREE=La+Ce+Pr+Nd+Sm+Eu;重稀土元素含量∑HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;(La/Yb)n为经北美页岩标准化的比值;δEu=EuN/(SmN×GdN)12,δCe=CeN/(LaN×PrN)12,此处的N代表经球粒陨石标准化的比值;球粒陨石稀土元素含量参考文献[13]。
  • 化学蚀变指数(CIA)是定量分析源区风化程度和古气候条件的重要指标。相关计算公式如下[14]

    CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]
             ×100 (1)

    式中:氧化物的含量都是摩尔含量,CaO*指硅酸盐矿物中的CaO,在无法独立获得硅酸盐矿物中的CaO含量时,要对CaO含量进行校正。CaO*的间接计算公式如下[15]

    CaOresidual=CaO-P2O5×103 (2)

    若计算后的CaOresidual<Na2O,则认为CaO*=CaOresidual;若计算后的CaOresidual>Na2O,则认为CaO*=Na2O。若计算后的CaOresidual<0,则比较CaO和Na2O的含量,当样品的CaO<Na2O时,则CaO*=CaO;当样品的CaO>Na2O时,则CaO*=Na2O。

    沉积岩在成岩过程中会存在K交代作用,K交代作用增加了沉积岩中的K含量,从而导致了低的CIA值。因此需要计算无K交代作用下的CIA值,采用了Panahi et al.[16]提出的修正CIA(即CIAcorr)的方法:

    CIAcorr=[Al2O3/(Al2O3+CaO*+Na2O+K2Ocorr)]×100 (3)
    K2Ocorr=[mAl2O3+m(CaO*+Na2O)]/(1-m) (4)
    m=K2O/(Al2O3+CaO*+Na2O+K2O) (5)

    式中:K2Ocorr是无K交代作用的岩石中K2O的含量,m代表母岩中K2O的比例,本文m的取值参考文献[17],其研究的地层是位于扬子板块的埃迪卡拉纪地层和早寒武纪地层,并对CIA进行了校正,利用了m值。因此,利用其校正后的CIA值和相关数据反推出m值,m值为0.109 889 19,并运用在了本文中(之后所有的讨论都基于校正后的CIA值)。

    另外温度作为评估古气候的关键指标,是通过CIA值计算出来的,计算公式为[18]

    T=0.56×CIA-25.7(R2=0.5) (6)

    式中:T的单位为℃。

  • 乌龙村剖面沉积岩样品主量元素含量见表1。样品SiO2的含量为45.05%~79.31%(平均值为59.84%);TiO2的含量为0.50%~0.87%(平均值为0.69%);Al2O3的含量为8.62%~18.97%(平均值为14.88%);TFe2O3(TFe2O3表示以Fe2O3表示全铁含量)的含量为2.89%~7.33%(平均值为5.33%);MnO的含量为0.01%~0.15%(平均值为0.073%);MgO的含量为1.21%~7.96%(平均值为4.53%);CaO的含量为0.03%~7.43%(平均值为2.24%);Na2O的含量为0.07%~0.11%(平均值为0.09%);K2O的含量为3.72%~5.54%(平均值为4.61%);P2O5的含量为0.23%~0.56%(平均值为0.32%)。

    将样品主量元素与Taylor et al.[12]提出的上地壳元素含量(UCC)进行对比,并做标准化处理。图3显示,Ti、Fe、Mg、K、P元素明显富集,Si、Na、Ca元素具有亏损的现象。特别是TFe2O3含量平均值高于UCC含量4.49%,可能与铁元素在该地区的富集有关。相对富集的K2O含量总体高于UCC含量3.19%,其相对高含量可能与成岩过程中K交代作用有关[17]

    样品主量元素之间的相关性分析表明(表4),TFe2O3和Al2O3具有较好的正相关关系(相关系数为0.871 6),SiO2和MgO具有很好的负相关关系(相关系数为-0.937 9)。铝通常被认为是陆源物质的代表,因此Fe元素也主要由陆源输入[19]。SiO2与TFe2O3、MgO和MnO呈负相关,说明具有一定的粒度效应特征[20],而MgO、CaO和MnO彼此呈正相关,MgO与MnO的相关系数为0.311 0;CaO和MnO的相关系数为0.646 4;MgO和CaO的相关系数为0.801 4;P2O5与其他主量元素没有很好的相关性。

    SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5
    SiO21.000 0
    TiO2-0.001 11.000 0
    Al2O3-0.335 30.372 91.000 0
    TFe2O3-0.518 00.131 80.871 61.000 0
    MnO-0.168 6-0.574 2-0.137 9-0.006 31.000 0
    MgO-0.937 9-0.013 30.134 50.291 30.311 01.000 0
    CaO-0.592 6-0.216 4-0.005 10.022 60.646 40.801 41.000 0
    Na2O0.031 00.049 8-0.077 4-0.238 1-0.068 8-0.010 401.000 0
    K2O0.132 50.077 70.051 3-0.000 2-0.336 8-0.222 9-0.357 40.065 91.000 0
    P2O50.058 6-0.327 4-0.291 5-0.326 50.160 2-0.017 00.031 40.088 60.031 21.000 0
  • 乌龙村地区筇竹寺组沉积岩微量元素在地层纵向序列上变化较大(表2图4),将微量元素与上地壳元素含量(UCC)进行标准化处理(图4)。相比上地壳元素含量,元素Sr、Mo、Tl、Pb、Nb、Hf出现亏损,其中喜干型元素Sr呈现明显的亏损,Sr的含量为48.80×10-6~95.00×10-6,明显低于上地壳的含量(350.00×10-6),Sr的亏损与其沉积水体环境有关,说明沉积期武定县乌龙村地区气候整体较为湿润[21]。元素Li、Sc、V、Cr、Co、Y、Sb、Cs、Bi、U整体上呈现正异常,其中元素Bi呈现明显的富集,Bi的含量为0.15×10-6~4.83×10-6,明显大于上地壳的含量(0.13×10-6),由于Bi元素通常被认为来源于成矿高温热液,因此乌龙村地区在沉积时可能存在热液活动[22]

    其他元素都是部分样品出现亏损,部分样品出现富集,其中Zr有部分样品出现正异常,说明锆石可能出现了沉积分异[23]。虽然个别样品的微量元素含量有所差别,但是标准化之后的整体趋势却很一致,说明筇竹寺组沉积岩具有相似的源区以及大地构造背景[24]

  • 乌龙村剖面样品稀土元素浓度显示(表3),样品稀土元素总量介于161.86×10-6~250.57×10-6,平均值为196.08×10-6。其中轻稀土元素含量介于144.12×10-6~226.02×10-6,重稀土元素含量介于17.74×10-6~24.99×10-6,轻、重稀土元素比值(∑LREE/∑HREE)介于6.56~9.21,平均值为8.06,反映研究区筇竹寺组沉积岩的轻稀土元素相对富集,而重稀土元素相对亏损,这种LREE富集可能是黏土矿物中稀土元素吸附/解吸分馏的结果[25]

    利用球粒陨石标准值对筇竹寺组样品的稀土元素含量进行了标准化处理(图5)。稀土元素配分模式呈现右倾的趋势,也反映了筇竹寺组轻稀土元素相对富集,而重稀土元素相对亏损。(La/Yb)n(下角的n指采用北美页岩标准化)比值反映的是稀土元素之间的分异程度,筇竹寺组样品的(La/Yb)n比值介于1.03~1.48,平均值为1.22,反映了稀土元素分异程度不明显,说明沉积物源相对稳定[26]。位于乌龙村剖面东侧的朱家箐剖面的(La/Yb)n比值介于0.82~2.09,平均值为1.27,平均值较乌龙村剖面增大[27],沉积速率有减小的趋势,说明物源来自于西侧[28],因此物源区可能为康滇古陆。当(La/Sm)N>1时,表明成岩物质来源有地幔柱或异常物质的加入,筇竹寺组样品的(La/Sm)N比值介于2.83~4.80,都大于1,表明岩石中可能有深部物质的加入[29],可能以上升洋流的方式使深部物质加入沉积岩。筇竹寺组样品的Y/Ho比值介于26.27~34.55,平均为30.04,表明硅质碎屑对两个剖面的稀土元素组成有强烈影响[30]。微量元素配分曲线在Eu元素处呈一个较明显的“V”型,说明Eu亏损,呈负异常(δEu平均为0.75);Ce元素是地球表面条件下可以表现出价态变化的稀土元素,因此可以作为氧化还原条件的指标[31]。当δCe<0.95时,沉积岩在沉积时处于氧化环境,而研究区样品的δCe平均值为0.78,表明Ce元素相对亏损,且在沉积时整体处于弱氧化环境,其中最小值0.68,对应于WLC-04,表明该样品在沉积时沉积环境氧化性较强[2]

  • Lg(SiO2/Al2O3)与Lg(TFe2O3/K2O)投影图表明(图6[32],筇竹寺组沉积岩样品落入长石砂岩、杂砂岩和页岩的范围,反映了沉积岩矿物成熟度较低的特征,其中镁铁质矿物不稳定。导致沉积岩岩性类型、化学组成发生明显变化的因素即是表征沉积岩粒度特征的SiO2/Al2O3值,即沉积岩类型由长石砂岩向页岩变化,是沉积岩粒度变细的结果[20],与对乌龙村剖面筇竹寺组岩性的划分相一致。

  • 根据研究区主量元素的特征,可以反映源区风化的强度。A-CN-K图解(图7a)[3334]显示,样品的风化趋势与A-K边平行,但理想风化趋势下,风化趋势线应与A-CN边平行,且样品点与UCC进行比较,发现存在K富集的现象。表明沉积岩在成岩过程中存在K交代作用,K交代作用增加了沉积岩中的K含量,从而导致了低的CIA值。因此,对样品的K2O含量用公式(1~5)进行校正后,筇竹寺组所有的沉积岩样品在A-CN-K图解中都落入强烈化学风化的范围内(图7b),样品均落于A-K线上。说明相较于钾长石,斜长石基本上已经完全被风化,强烈的化学风化使Na元素强烈流失,符合钠比钾更容易遭受风化的特征[35],化学风化的加剧与更高的温度、更多的酸沉降和更快的成土反应速率有关[3638],或者这些过程的组合。沉积岩可能来自玄武岩和花岗岩混合的上地壳源岩。

    样品的成分成熟度和分选程度可以用Th/Sc-Zr/Sc图解来反映。筇竹寺组沉积岩样品的Th/Sc比值为0.52~1.40,而Zr/Sc比值为6.79~17.36,分布在长英质区域附近,说明筇竹寺组沉积岩主要来自长英质基岩。沉积岩具有较低的Zr/Sc比率(有9个样品<17),表明沉积岩成分主要受源岩成分控制,而不是沉积物质的循环改造[23]

  • CIA值可以用来反映古气候。强烈的化学风化与温暖和潮湿的条件有关,而弱的化学风化则表示寒冷和干旱的条件。若CIA≤50则代表母岩未风化;若50<CIA≤65则代表弱风化;若65<CIA≤85则代表中等风化,风化产物含有蒙脱石、伊利石和白云母;若85<CIA≤100则代表强烈风化,风化产物中含有黏土矿物如三水铝石和高岭石等[39]。尽管沉积物供应变化或水力分选等其他非风化因素增加了黏土矿物,但CIA仍然是反映源区古气候最可靠的指标[4041]。乌龙村剖面筇竹寺组沉积岩的CIAcorr值均大于80,结合岩相古地理图[11],反映了亚热带温暖湿润的古气候条件。根据公式(6)计算出的古温度为22.67 ℃~23.52 ℃,也说明乌龙村地区在早寒武世处于相对温暖的环境。

  • 微量元素在沉积岩中的含量及其组合关系研究沉积岩源区母岩的性质已经被广泛应用,例如元素Th、Co、Sc、Hf、Zr、Y、Ho等不活泼元素和REE就可以用来判别物源[24]。Y-La图解显示(图8),筇竹寺组样品与上地壳的成分非常吻合;Y/Ho-ΣREE图解显示(图8),筇竹寺组样品主要落在陆源沉积物附近。硅质碎屑主要以黏土矿物和重矿物的形式向海洋沉积物提供大量稀土元素,这些稀土元素通常被释放到沉积物孔隙水中。由于稀土元素含量高,即使是少量的硅质碎屑(即岩体的百分之几)也足以赋予沉积岩陆源稀土元素特征,硅质碎屑组分的Y/Ho比值大多介于25~30,因此沉积岩的源岩可能为富含硅质成分的陆源沉积岩[25,30]。Th/Sc-Zr/Sc图解显示(图9a)[42],筇竹寺组样品主要来自长英质源岩,有一个样品可能经历了沉积物再循环。La/Yb-ΣREE图解显示(图9b),筇竹寺组样品主要落入沉积岩—钙质泥岩、花岗岩和碱性玄武岩相交的区域,花岗岩的代入可能是沉积物K2O含量较高的原因。在地球表面环境中,Eu异常最有助于追踪稀土元素的来源,从而可能区分碎屑、风成、火山和热液输入[25,4346]。负Eu异常(即δEu<1.0)通常与晚期贫Eu岩浆沉淀的长英质矿物有关[25]。Zhao et al.[30]分析了梅山和大峡口剖面PTB的稀土元素分布,证明其大多数样品的稀土元素组成具有强烈的硅质碎屑特征,并得出结论,火山物质的输入可能是Eu负异常的原因。因此,筇竹寺组沉积岩的物源来自大陆上地壳源,可能也存在与火山相关的长英质矿物的加入。

    元素La、Th常赋存于酸性岩,Zr主要存在于锆石中,而Sc、Cr、Co富集于基性岩中。因此,La/Th、La/Sc、Co/Th的比值能反映沉积源岩区镁铁质与长英质物质的相对比例[17,2324]。La/Th-Hf图解显示(图9c),样品主要落入长英质源区和长英质与基性混合源区,长英质主要是指硅酸盐矿物,说明沉积岩源区含有硅含量较高的沉积岩。Co/Th-La/Sc图解显示(图9d)[47],样品主要落入安山岩、花岗岩与TTG平均成分区,大多数样品都非常靠近TTG成分,TTG由英云闪长岩、花岗闪长岩和奥长花岗岩组成[48],说明样品主要来自酸性岩,并且有基性岩的混入。Co/Th比值变化较大,说明筇竹寺组沉积岩可能存在不同的物源。

    前人研究表明,康滇古陆广泛发育1 500~1 700 Ma中元古代的地层,元古代以上的地层可能由于沉积剥蚀或沉积缺失,现今都已不存在。楚雄地区典型的元古代地层有东川群、会理群以及汤丹群,发育大量的灰黑色板岩、凝灰岩、灰色凝灰质板岩、浊流成因的灰色块状变凝灰质砾岩与含砾凝灰质砂岩、球颗玄武岩以及大量的花岗岩。其中东川群被揭示含有大量的S型花岗岩源区,表明扬子陆块西南缘存在较早的酸性成分的大陆地壳。球颗玄武岩显示为大陆板内低钛拉斑海相玄武岩,形成于伸展构造环境,这可能是沉积岩中显示有深部物质的来源。花岗岩大多来自格林威尔造山期的岩浆活动,因此东川群、会理群以及汤丹群被认为是古元古代末期康滇地区陆内裂谷拉张事件和扬子陆块周缘中元古代末期Rodinia汇聚过程的产物[11,4952]。因此,基于筇竹寺组沉积岩物源示踪以及上述分析来看,康滇古陆石英沉积物源区的(长英质基岩)东川群、会理群以及汤丹群很可能为康滇古陆东侧的武定乌龙村地区筇竹寺组提供滨岸沉积和浅水陆棚沉积的砂泥岩,其中沉积岩K2O含量较高可能来自花岗岩和凝灰岩的代入,基性岩的混入可能来自源区的球颗玄武岩[11]。同时结合野外的岩石学特征,发现滨岸沉积的砂岩粒度较粗,颜色一般为氧化色,且石英含量较高,说明搬运距离短,成分成熟度相对较低;浅水陆棚相沉积的页岩和粉砂质页岩石英含量也较高,搬运距离也相对较短,成分成熟度也相对较低。

    综上,筇竹寺组沉积岩主要来自康滇古陆东川群、会理群和汤丹群中的花岗岩和富含长英质矿物的沉积岩等上地壳长英质岩石,存在基性岩的混入。滨岸相沉积岩主要来自东川群、会理群以及汤丹群颗粒较粗的凝灰质砂岩、凝灰岩、石英含量高的花岗岩以及一些基性岩;浅水陆棚相沉积岩主要来自东川群、会理群以及汤丹群颗粒较细的凝灰质板岩、凝灰岩、石英含量高的花岗岩以及一些基性岩。因此,利用地球化学分析以及岩石学分析,可以反映该区筇竹寺组砂泥岩的物源特征。

  • 根据沉积岩的主量元素,可以对沉积岩形成时的构造背景进行判别。Sugisaki et al.[53]提出MnO/TiO2可以用来判别沉积岩的沉积环境;当MnO/TiO2<0.5时,表明沉积岩形成于大陆坡或边缘海环境;当MnO/TiO2比值介于0.5~3.5时,表明沉积岩形成于大洋底环境。乌龙村剖面筇竹寺组沉积岩样品MnO/TiO2比值介于0.01~0.25,表明沉积岩形成于大陆坡或边缘海环境。

    Murray et al.[5455]认为(Al2O3N/(Al2O3+Fe2O3N比值可以作为构造环境的判别指标。当(Al2O3N/(Al2O3+Fe2O3N的比值介于0.6~0.9时,表明沉积岩形成于大陆边缘环境;当(Al2O3N/(Al2O3+Fe2O3N的比值介于0.4~0.7时,表明沉积岩形成于远洋深海环境;当(Al2O3N/(Al2O3+Fe2O3N的比值介于0.1~0.4时,表明沉积岩形成于洋脊海岭环境。乌龙村剖面筇竹寺组沉积岩样品(Al2O3N/(Al2O3+Fe2O3N的比值介于0.79~0.85,说明沉积岩形成于大陆边缘环境。Al2O3/(Al2O3+Fe2O3)-Fe2O3/TiO2图解显示(图10),样品基本都落在大陆边缘环境,部分样品落在与远洋沉积环境的过渡区域[56],表明沉积水体加深,海平面上升。

  • Roser et al.[57]提出了K2O+Na2O-SiO2构造背景判别图(图11a),在该图中可以看出沉积岩源区构造背景为被动大陆边缘环境。McLennan et al.[42]通过对不同构造背景下沉积岩的研究,提出了SiO2/Al2O3-K2O/Na2O构造背景判别图[42]图11b),投点后发现样品点均落在被动大陆边缘区域。Bhatia[58]提出了TiO2-TFe2O3+MgO判别图(图11c),投点后发现样品点大部分都落在被动大陆边缘范围内,个别样品也落在被动大陆边缘附近,说明沉积岩主要来源于被动大陆边缘构造环境。以上三个判别图均表明滇东地区筇竹寺组沉积岩源区构造背景为被动大陆边缘环境。

    稀土元素在不同构造环境的沉积岩中具有不同的特征。若沉积岩表现为轻稀土元素富集且Eu元素呈负异常,说明沉积岩源岩来源于被动大陆边缘;若沉积岩表现为重稀土元素富集且无Eu元素亏损,则说明沉积岩源岩来源于活动大陆边缘[23]。筇竹寺组沉积岩样品稀土元素特征表现为轻稀土元素相对富集,重稀土元素相对亏损,且Eu元素呈明显的负异常,因此可以推断滇东地区下寒武统筇竹寺组沉积岩物源区构造背景为被动大陆边缘环境。

    微量元素的含量也可以用来指示构造环境,例如La、Ce、Nd、Th、Zr、Hf、Nb、Ti等元素比主量元素具有更强的稳定性,在水体中不活泼,并且滞留时间较短,在经历了初次风化便可进入沉积物中。因此笔者利用Bhatia et al.[59]提出的La-Th-Sc、Th-Sc-Zr/10图解判别源区构造背景[59]。La-Th-Sc和Th-Sc-Zr/10图解显示,样品均落在大陆岛弧的区域内(图12),说明筇竹寺组沉积岩的成因与大陆岛弧构造背景有关。由于源区含有大量的凝灰质岩石,筇竹寺组沉积岩中可能含有这些凝灰质岩石的成分,因此微量元素投点落在大陆岛弧范围内是合理的[24]。源区构造背景不同,沉积岩稀土元素的特征也有所不同。Bhatia[58]通过研究认为稀土元素的特征值可以用来鉴别不同沉积盆地构造背景的杂砂岩[58],该方法被前人广泛应用[6063]。由于乌龙村剖面筇竹寺组沉积岩样品包括泥页岩,考虑在相同构造背景下,泥页岩中稀土元素的质量分数要比同时期沉积的杂砂岩高20%左右[58],所以将样品泥页岩中的稀土元素含量除以1.2,计算了新的相关参数,再与不同构造背景的杂砂岩稀土元素特征值进行对比(表5),结果显示,沉积岩物源区具有与大陆岛弧构造背景几乎完全一致的属性,也说明筇竹寺组沉积岩的成因与大陆岛弧构造背景有关。

    久凯等[5]研究认为,上扬子地区在早寒武世,盆地类型以克拉通盆地、克拉通边缘盆地和被动大陆边缘盆地为主,整体表现出古斜坡背景[5]。许效松等[64]研究认为,扬子西部的康滇古陆为克拉通边缘古隆起,在寒武纪沉积时其东缘均有边缘相沉积物。在主量元素分析的基础上,确定康滇古陆东缘筇竹寺组沉积岩主要形成于被动大陆边缘环境。被动大陆边缘又称稳定大陆边缘,是由于大洋岩石圈的扩张造成的由拉伸断裂所控制的宽阔大陆边缘,其邻接的大陆和洋盆属同一板块,由大陆架大陆坡和陆隆所构成,无海沟发育[65]。扬子地区自新元古代青白口纪以来,一直处于Rodinia大陆的西北边缘位置,受Rodinia大陆裂解影响,扬子地区广泛发育以北东向—近东西向为主的裂谷。进入震旦纪后,扬子地区盆地原型由裂谷盆地向被动陆源坳陷或克拉通内裂陷型盆地演变。直到早古生代晚期Gondwana大陆聚合之前,扬子地块一直处于被动大陆边缘的板块构造背景[66],这与本文得出的滇东地区位于被动大陆边缘的构造背景是一致的。另外在筇竹寺组沉积期,上扬子地区发生的构造运动是兴凯运动Ⅱ幕,这一幕相当于刘树根等[67]所称兴凯裂陷槽的壮年期,构造运动性质以拉张裂陷为主要特征[68],强烈拉张的背景在华南陆块与东冈瓦纳的碰撞中逐渐结束[69],这也与被动大陆边缘的特点相符合。因此在滇东地区筇竹寺组沉积期,沉积构造背景为Rodinia大陆裂解形成的被动大陆边缘环境。受兴凯运动的影响,上扬子地台进一步区域性裂解,并沉降而导致海水侵入[68],这与乌龙村剖面筇竹寺组地层从滨岸沉积到浅水陆棚沉积的转变具有良好的对应关系。

    然而,微量元素分析所得出的结论是物源区位于大陆岛弧构造背景,这与主量元素得出的被动大陆边缘存在较大的差异。刘建清等[11]通过对康滇古陆东缘锌厂沟剖面沉积岩地球化学特征的分析,确定了康滇古陆东缘筇竹寺组沉积岩主要形成于大陆边缘环境,这与本文主量元素分析得出的结论是一致的;另外,刘建清等[11]还认为筇竹寺组沉积岩与海底喷发的海相玄武岩、镁铁质岩有关(球颗玄武岩),热液作用参与了筇竹寺组沉积岩的沉积过程,带来了大量的微量元素。于炳松等[70]对塔里木盆地布拉克剖面下寒武统底部硅质岩的微量元素和稀土元素进行了研究,认为大洋盆地背景中的物质被上升洋流带到了大陆边缘陆棚环境中发生沉积,造成了处于陆棚环境中的沉积岩保留了大洋盆地背景的地球化学特征。另外被动大陆边缘由于物源的复杂性,且样品没有经历强烈的沉积再循环作用,沉积岩继承了源岩形成时的大陆岛弧型或活动大陆边缘的微量元素信息[47]

    构造背景源区类型样品个数w(La)/(μg/g)w(Ce)/(μg/g)w(∑REE)(μg/g)w(∑LREE)/w(∑HREE)(w(La)/w(Yb))NδEu
    大洋岛弧未切割的岩浆弧98.00±1.7019.00±3.7058.00±10.003.80±0.902.80±0.901.04±0.11
    大陆岛弧切割的岩浆弧927.00±4.5059.00±8.80146.00±20.007.70±1.707.50±2.500.79±0.13
    活动大陆边缘基底隆升237.0078.00186.009.108.500.60
    被动边缘克拉通内构造高地239.0085.00210.008.5010.800.56
    校正之后的样品平均值1037.4169.19175.248.068.820.65
    注:不同大地构造背景杂砂岩的REE数值来自文献[58]。

    因此,认为滇东地区筇竹寺组沉积岩在寒武世早期筇竹寺组沉积时,沉积岩主要形成于被动大陆边缘环境,沉积岩保留了其源岩形成时的大陆岛弧地球化学特征,另外热液作用的参与带来了微量元素(图13[71],并通过上升洋流将这些微量元素带到了大陆边缘陆棚环境中进行沉积。因此利用微量元素进行构造背景判别时,沉积岩样品落入大陆岛弧范围内,并导致与主量元素得出的结论不同。

  • (1) 校正后的CIA值表明乌龙村剖面筇竹寺组沉积岩经历了强烈的化学风化作用,沉积岩源区处于温暖湿润的气候条件;Th/Sc-Zr/Sc图解表明沉积岩成分主要受源岩成分控制,而不是沉积物质的循环改造。沉积岩的地球化学特征能够较好地指示源岩组分。

    (2) 通过样品在Y-La图解、Y/Ho-ΣREE图解、Th/Sc-Zr/Sc图解、La/Yb-ΣREE图解、La/Th-Hf图解和Co/Th-La/Sc图解中的投点,分析出筇竹寺组沉积岩源岩主要是康滇古陆东川群、会理群和汤丹群中的凝灰质岩石、花岗岩以及富含长英质矿物的沉积岩等上地壳长英质岩石,存在基性岩的混入。K2O含量较高的岩石主要来自格林威尔造山期的岩浆活动带来的花岗岩以及康滇古陆东川群、会理群和汤丹群中的凝灰岩。

    (3) 筇竹寺组沉积岩主要形成于大陆边缘环境,主量元素特征表明筇竹寺组沉积岩物源区属于被动大陆边缘构造背景,微量元素特征显示其为大陆岛弧构造背景,这种异常情况主要与沉积岩未经历沉积再循环有关。沉积岩保留了源岩形成时的地球化学元素特征,使在大陆边缘陆棚环境中的沉积岩保留了岛弧环境形成的物质的地球化学性质。

Reference (71)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return