Advanced Search
Volume 41 Issue 2
Apr.  2023
Turn off MathJax
Article Contents

LUO YuTing, ZHANG Min. Distribution and Main Controlling Factors of High Carbon Tricyclic Terpanes in Crude Oils in the Lishu Fault Depression, Songliao Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(2): 569-583. doi: 10.14027/j.issn.1000-0550.2022.071
Citation: LUO YuTing, ZHANG Min. Distribution and Main Controlling Factors of High Carbon Tricyclic Terpanes in Crude Oils in the Lishu Fault Depression, Songliao Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(2): 569-583. doi: 10.14027/j.issn.1000-0550.2022.071

Distribution and Main Controlling Factors of High Carbon Tricyclic Terpanes in Crude Oils in the Lishu Fault Depression, Songliao Basin, China

doi: 10.14027/j.issn.1000-0550.2022.071
Funds:

National Natural Science Foundation of China 42072165

CNPC Special Research 2019E2601

  • Received Date: 2022-04-29
  • Accepted Date: 2022-07-04
  • Rev Recd Date: 2022-06-21
  • Available Online: 2022-07-04
  • Publish Date: 2023-04-10
  • The Songliao Basin is one of the largest continental oil and gas basins in China; the Lishu Fault Depression is a secondary tectonic unit of the Songliao Basin. In this study, 71 lacustrine Lishu Fault oil samples were analyzed for saturated hydrocarbons and aromatics. The different compositions indicated by the gas chromatography and gas chromatography-mass spectrometry (GC-MS) data indicated three types of crude oil from the Lishu Fault, each with quite different distributions of tricyclic terpanes. The absolute concentration of tricyclic terpanes in type I oil is obviously higher than in type II; however, the Σtricyclic terpanes/17α(H)-hopanes ratio in type I crude oil is significantly higher than in type II, but it is enriched in high carbon-number tricyclic terpane (C28TT-C29TT) compounds, with higher relative percentages than in low carbon tricyclic terpenes (C19TT-C20TT, C21TT, C23TT). The main influences affecting high carbon number C28TT-C29TT in the Lishu Fault crude oil are discussed from three aspects: deposition environment, organic matter source, and maturity of the crude oils. It was found that, in the organic matter sources of the different genetic types of crude oil (mainly bacteria and low-grade aquatic organisms), the (C28TT-C29TT)/17α(H)-hopanes ratio is positively correlated with the gammacerane index, indicating that a more reductant salt water environment is another factor affecting the enrichment of tricyclic terpane with high carbon number. In the study area, the Σtricyclic terpanes/17α(H)-hopanes ratio is positively correlated with thermal maturity, indicating that a high degree of thermal evolution of the crude oil is more conducive to enrichment in high carbon number tricyclic terpanes. It follows that thermal maturity is the main influence on the different relative abundances of high-carbon tricyclic terpenes in the Lishu Fault Depression.
  • [1] Anders D E, Robinson W E. Cycloalkane constituents of the bitumen from Green River Shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(7): 661-678.
    [2] Moldowan J M, Seifert W K, Gallegos E J. Identification of an extended series of tricyclic terpanes in petroleum[J]. Geochimica et Cosmochimica Acta, 1983, 47(8): 1531-1534.
    [3] de Grande S M B, Aquino Neto F R, Mello M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry, 1993, 20(7): 1039-1047.
    [4] Tuo J C, Wang X B, Chen J F. Distribution and evolution of tricyclic terpanes in lacustrine carbonates[J]. Organic Geochemistry, 1999, 30(11): 1429-1435.
    [5] Tao S Z, Wang C Y, Du J G, et al. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 2015, 67: 460-467.
    [6] Atoyebi A O, Adekola S A, Akinlua A. Tricyclic terpane geochemistry of source rocks from northwestern and Central Niger Delta[J]. Petroleum Science and Technology, 2017, 35(22): 2094-2101.
    [7] Peters K E. Petroleum tricyclic terpanes: Predicted physicochemical behavior from molecular mechanics calculations[J]. Organic Geochemistry, 2000, 31(6): 497-507.
    [8] Philp R P, Gilbert T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10(1/2/3): 73-84.
    [9] 曾威,张敏,刘海钰. 梨树断陷秦家屯—七棵树油田原油饱和烃地球化学特征研究[J]. 石油天然气学报,2013,35(5):23-27.

    Zeng Wei, Zhang Min, Liu Haiyu. Geochemical characteristics of saturated hydrocarbon in crude oils from Qinjiatun and Qikeshu oil-fields in Lishu Fault Depression[J]. Journal of Oil and Gas Technology, 2013, 35(5): 23-27.
    [10] 黄薇,国成石. 松辽盆地黑帝庙油层油气藏的形成和分布[J]. 大庆石油地质与开发,2014,33(6):21-25.

    Huang Wei, Guo Chengshi. Accumulation and distribution of the hydrocarbon reservoirs in Heidimiao oil layers of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(6): 21-25.
    [11] 李群,刘殿军,韩晓东. 松辽盆地南部梨树断陷地层划分与对比[J]. 大庆石油地质与开发,1996,15(4):7-11,83.

    Li Qun, Liu Dianjun, Han Xiaodong. Stratigrahic classification and correlation of Lishu Faulted Depression in southern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 1996, 15(4): 7-11, 83.
    [12] 陈贤良,樊太亮,王宏语,等. 松辽盆地梨树断陷层序结构特征及岩性地层圈闭[J]. 地层学杂志,2016,40(3):308-317.

    Chen Xianlang, Fan Tailiang, Wang Hongyu, et al. Sequence structures and lithologic-stratigraphic traps in the Lishu rift, Songliao Basin[J]. Journal of Stratigraphy, 2016, 40(3): 308-317.
    [13] 鄢伟,樊太亮,王宏语,等. 松辽盆地梨树断陷早白垩世微体古生物、沉积环境以及控油意义[J]. 微体古生物学报,2014,31(2):175-189.

    Yan Wei, Fan Tailiang, Wang Hongyu, et al. On the microfossil assemblages, paleoclimate indicator and oil-controlling significance from the Lower Cretaceous strata in the Lishu Depression, Songliao Basin, NE China[J]. Acta Micropalaeontologica Sinica, 2014, 31(2): 175-189.
    [14] 陈小慧. 松辽盆地南部梨树断陷深层油气成因与成藏研究[D]. 荆州:长江大学,2012.

    Chen Xiaohui. Study on the origin and accumulation of deep oil and gas in Lishu Fault Depression in southern Song-Liao Basin[D]. Jingzhou: Yangtze University, 2012.
    [15] 安天下. 松辽盆地梨树断陷白垩系营城组—沙河子组超压特征及其对成岩作用的影响[J]. 东北石油大学学报,2020,44(1):65-76.

    An Tianxia. Characteristics of overpressure in Cretaceous Yingcheng-Shahezi Formation and its effect on diagenesis in Lishu Fault Sag, Songliao Basin[J]. Journal of Northeast Petroleum University, 2020, 44(1): 65-76.
    [16] 杨丽,林荣达,李向宜. 松辽盆地东部构造带白垩系沉积演化特征研究[J]. 科学技术与工程,2011,11(27):6544-6549.

    Yang Li, Lin Rongda, Li Xiangyi. Research of the sedimentary evolutionary characteristic in Cretaceous of eastern tectonic zone in Songliao Basin[J]. Science Technology and Engineering, 2011, 11(27): 6544-6549.
    [17] 张俊,张敏. 松辽盆地梨树断陷原油成因类型与分布[J]. 天然气地球科学,2013,24(1):116-122.

    Zhang Jun, Zhang Min. Genetic type and distribution of the oils in Lishu Fault Depression, Songliao Basin[J]. Natural Gas Geoscience, 2013, 24(1): 116-122.
    [18] 刘海钰,张敏. 梨树断陷下白垩统湖相烃源岩异常高丰度17α(H)-重排藿烷的成因探讨[J]. 石油天然气学报(江汉石油学院学报),2013,35(7):29-33.

    Liu HaiYu, Zhang Min. Genesis study of high abundant 17α(H)-diahopanes in Lower Cretaceous lacustrine source rocks of Lishu Fault Depression in Songliao Basin[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2013, 35(7): 29-33.
    [19] 顾忆,秦都,路清华,等. 梨树断陷主力烃源岩与油源对比[J]. 石油实验地质,2013,35(6):662-667.

    Gu Yi, Qin Du, Lu Qinghua, et al. Correlation of major source rocks and oil sources in Lishu Fault Depression[J]. Petroleum Geology & Experiment, 2013, 35(6): 662-667.
    [20] Zhang M, Li H B, Wang X. Geochemical characteristics and grouping of the crude oils in the Lishu Fault Depression, Songliao Basin, NE China[J]. Journal of Petroleum Science and Engineering, 2013, 110: 32-39.
    [21] 李梦茹,唐友军,杨易卓,等. 江陵凹陷古近系新沟嘴组下段原油芳烃馏分地球化学特征及油源对比[J/OL]. 沉积学报, doi:10.14027/j.issn.1000-0550.2022.026 .

    Li Mengru, Tang Youjun, Yang Yizhuo, et al. Geochemical characteristics of aromatic and oil-source correlation in crude oils from the Lower member of the Paleogene Xingouzui Formation in Jiangling Depression[J/OL]. Acta Sedimentologica Sinica, doi:10.14027/j.issn.1000-0550.2022.026 .
    [22] 包建平,王铁冠,周玉琦,等. 甲基菲比值与有机质热演化的关系[J]. 江汉石油学院学报,1992,14(4):8-13,19.

    Bao Jianping, Wang Tieguan, Zhou Yuqi, et al. The relationship between methyl phenanthrene ratios and the evolution of organic matter[J]. Journal of Jianghan Petroleum Institute, 1992, 14(4): 8-13, 19.
    [23] 陈琰,包建平,刘昭茜,等. 甲基菲指数及甲基菲比值与有机质热演化关系:以柴达木盆地北缘地区为例[J]. 石油勘探与开发,2010,37(4):508-512.

    Chen Yan, Bao Jianping, Liu Zhaoqian, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example[J]. Petroleum Exploration and Development, 2010, 37(4): 508-512.
    [24] 金洪蕊. 济阳坳陷车镇凹陷原油类型及其地球化学特征[J]. 四川地质学报,2021,41(3):421-424.

    Jin Hongrui. Types and their geochemical characteristics of crude oil in the Chezhen Sag, Jiyang Depression[J]. Acta Geologica Sichuan, 2021, 41(3): 421-424.
    [25] Chen X Y, Hao F, Guo L X, et al. Origin of petroleum accumulation in the Chaheji-Gaojiapu structural belt of the Baxian Sag, Bohai Bay Basin, China: Insights from biomarker and geological analyses[J]. Marine and Petroleum Geology, 2018, 93: 1-13.
    [26] Connan J, Cassou A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1-23.
    [27] Ten Haven H L, Rohmer M, Rullkötter J, et al. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(11): 3073-3079.
    [28] 张立平,黄第藩,廖志勤. 伽马蜡烷:水体分层的地球化学标志[J]. 沉积学报,1999,17(1):136-140.

    Zhang Liping, Huang Difan, Liao Zhiqin. Gammacerane:geochemical indicator of water column stratification[J]. Acta Sedimentologica Sinica, 1999, 17(1): 136-140.
    [29] Mackenzie A S, Disko U, Rullkötter J. Determination of hydrocarbon distributions in oils and sediment extracts by gas chromatography—high resolution mass spectrometry[J]. Organic Geochemistry, 1983, 5(2): 57-63.
    [30] Moldowan J M, Albrecht P, Philp R P. Biological markers in sediments and petroleum[M]. Englewood Cliffs: Prentice Hall, 1992.
    [31] McCaffrey M A, Dahl J E, Sundararaman P, et al. Source rock quality determination from oil biomarkers II- A case study using Tertiary-reservoired Beaufort Sea oils[J]. AAPG Bulletin, 1994, 78(10): 1527-1540.
    [32] Peters K E, Moldowan J M, Schoell M, et al. Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment[J]. Organic Geochemistry, 1986, 10(1/2/3): 17-27.
    [33] Ten Haven H L, de Leeuw J W, Rullkötter J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149): 641-643.
    [34] Fu J M, Sheng G Y, Xu J Y, et al. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments[J]. Organic Geochemistry, 1990, 16(4/5/6): 769-779.
    [35] 段毅,张胜斌,郑朝阳,等. 鄂尔多斯盆地马岭油田延安组原油成因研究[J]. 地质学报, 2007,81(10):1407-1415.

    Duan Yi, Zhang Shengbin, Zheng Zhaoyang, et al. Study on genesis of crude oil in the Yan’an Formation of the Maling oilfield, Ordos Basin[J]. Acta Geologica Sinica, 2007, 81(10): 1407-1415.
    [36] 席胜利,黄军平,张才利,等. 鄂尔多斯盆地西缘石炭系羊虎沟组油砂的发现与油源分析[J]. 地质学报,2022,96(3):1041-1052.

    Xi Shengli, Huang Junping, Zhang Caili, et al. Discovery of oil sands in the Yanghugou Formation in the western margin of Ordos Basin and its source analysis[J]. Acta Geologica Sinica, 2022, 96(3): 1041-1052.
    [37] 肖洪,李美俊,杨哲,等. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J]. 地球化学,2019,48(2):161-170.

    Xiao Hong, Li Meijun, Yang Zhe, et al. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170.
    [38] 肖洪,李美俊,王铁冠,等. 中元古界沉积物中典型分子标志化合物及其地质意义:以宣隆坳陷下马岭组黑色页岩为例[J]. 沉积学报,2022,40(2):547-556.

    Xiao Hong, Li Meijun, Wang Tieguan, et al. Typical molecular marker assemblage of the Mesoproterozoic sediments: A case study of the Xiamaling Formation black shales in the Xuanlong Depression[J]. Acta Sedimentologica Sinica, 2022, 40(2): 547-556.
    [39] Wang Q, Hao F, Xu C G, et al. Geochemical characterization of QHD29 oils on the eastern margin of Shijiutuo uplift, Bohai Sea, China: Insights from biomarker and stable carbon isotope analysis[J]. Marine and Petroleum Geology, 2015, 64: 266-275.
    [40] Neto F R A, Restle A, Connan J, et al. Novel tricyclic terpanes (C19, C20) in sediments and petroleums[J]. Tetrahedron Letters, 1982, 23(19): 2027-2030.
    [41] Revill A T, Volkman J K, O’leary T, et al. Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia[J]. Geochimica et Cosmochimica Acta, 1994, 58(18): 3803-3822.
    [42] 包建平,朱翠山,倪春华. 北部湾盆地不同凹陷原油生物标志物分布与组成特征[J]. 沉积学报,2007,25(4):646-652.

    Bao Jianping, Zhu Cuishan, Ni Chunhua. Distribution and composition of biomarkers in crude oils from different sags of Beibuwan Basin[J]. Acta Sedimentologica Sinica, 2007, 25(4): 646-652.
    [43] Peters K E, Moldowan J M. The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments[M]. Englewood Cliffs: Prentice Hall, 1993.
    [44] 姜连,张敏. 梨树断陷八屋油田原油重排藿烷类化合物及其地质意义[J]. 大庆石油地质与开发,2015,34(6):39-47.

    Jiang Lian, Zhang Min. Diahopanoid compounds and their significances for the crude oils in Bawu oilfield of Lishu Fault Depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(6): 39-47.
    [45] 卢晓林,石宁,李美俊,等. 珠江口盆地白云凹陷原油双杜松烷分布特征及地球化学意义[J]. 石油实验地质,2019,41(4):560-568.

    Lu Xiaolin, Shi Ning, Li Meijun, et al. Distribution patterns and geochemical implication of bicadinanes in crude oils from Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 560-568.
    [46] Moldowan J M, Seifert W K, Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 1985, 69(8): 1255-1268.
    [47] 张水昌,张宝民,边立曾,等. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学(D辑):地球科学,2007,37(5):636-643.

    Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. The Lower Maling oil shale, formed by the accumulation of red algae more than 100 million years ago[J]. Science China (Seri. D): Earth Sciences, 2007, 37(5): 636-643.
    [48] 敖添,王作栋,张婷,等. 塔河油田原油三环萜烷异常分布特征及成因探讨[J/OL]. 沉积学报,doi:10.14027/j.issn.1000-0550.2021.153 .

    Ao Tian, Wang Zuodong, Zhang Ting, et al. Abnormal distribution of tricyclic terpanes and its genesis in crude oils from Tahe oilfield[J/OL]. Acta Sedimentologica Sinica, doi:10.14027/j.issn.1000-0550.2021.153 .
    [49] Aquino Neto F R, Trendel J M. Restle A,et al. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleum[M]//Bjorøy M. Advances in organic geochemistry 1981. Chichester: Wiley Heyden, 1983.
    [50] Seifert W K, Moldowan J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986, 24: 261-290.
    [51] 陈哲龙,柳广弟,卫延召,等. 准噶尔盆地玛湖凹陷二叠系烃源岩三环萜烷分布样式及影响因素[J]. 石油与天然气地质,2017,38(2):311-322.

    Chen Zhelong, Liu Guangdi, Wei Yanzhao, et al. Distribution pattern of tricyclic terpanes and its influencing factors in the Permian source rocks from Mahu Depression in the Junggar Basin[J]. Oil & Gas Geology, 2017, 38(2): 311-322.
    [52] 陈治军,张佳琪,牛凌燕,等. 芳烃参数在湖相烃源岩成熟度评价中的适用性:以银根—额济纳旗盆地中生界烃源岩为例[J]. 石油学报,2020,41(8):928-939.

    Chen Zhijun, Zhang Jiaqi, Niu Lingyan, et al. Applicability of aromatic parameters in maturity evaluation of lacustrine source rocks: A case study of Mesozoic source rocks in Yingen-Ejinaqi Basin[J]. Acta Petrolei Sinica, 2020, 41(8): 928-939.
    [53] Radke M. Application of aromatic compounds as maturity indicators in source rocks and crude oils[J]. Marine and Petroleum Geology, 1988, 5(3): 224-236.
    [54] Milner C W D, Rogers M A, Evans C R. Petroleum transformations in reservoirs[J]. Journal of Geochemical Exploration, 1977, 7: 101-153.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(4)

Article Metrics

Article views(144) PDF downloads(39) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-04-29
  • Revised:  2022-06-21
  • Accepted:  2022-07-04
  • Published:  2023-04-10

Distribution and Main Controlling Factors of High Carbon Tricyclic Terpanes in Crude Oils in the Lishu Fault Depression, Songliao Basin, China

doi: 10.14027/j.issn.1000-0550.2022.071
Funds:

National Natural Science Foundation of China 42072165

CNPC Special Research 2019E2601

Abstract: The Songliao Basin is one of the largest continental oil and gas basins in China; the Lishu Fault Depression is a secondary tectonic unit of the Songliao Basin. In this study, 71 lacustrine Lishu Fault oil samples were analyzed for saturated hydrocarbons and aromatics. The different compositions indicated by the gas chromatography and gas chromatography-mass spectrometry (GC-MS) data indicated three types of crude oil from the Lishu Fault, each with quite different distributions of tricyclic terpanes. The absolute concentration of tricyclic terpanes in type I oil is obviously higher than in type II; however, the Σtricyclic terpanes/17α(H)-hopanes ratio in type I crude oil is significantly higher than in type II, but it is enriched in high carbon-number tricyclic terpane (C28TT-C29TT) compounds, with higher relative percentages than in low carbon tricyclic terpenes (C19TT-C20TT, C21TT, C23TT). The main influences affecting high carbon number C28TT-C29TT in the Lishu Fault crude oil are discussed from three aspects: deposition environment, organic matter source, and maturity of the crude oils. It was found that, in the organic matter sources of the different genetic types of crude oil (mainly bacteria and low-grade aquatic organisms), the (C28TT-C29TT)/17α(H)-hopanes ratio is positively correlated with the gammacerane index, indicating that a more reductant salt water environment is another factor affecting the enrichment of tricyclic terpane with high carbon number. In the study area, the Σtricyclic terpanes/17α(H)-hopanes ratio is positively correlated with thermal maturity, indicating that a high degree of thermal evolution of the crude oil is more conducive to enrichment in high carbon number tricyclic terpanes. It follows that thermal maturity is the main influence on the different relative abundances of high-carbon tricyclic terpenes in the Lishu Fault Depression.

LUO YuTing, ZHANG Min. Distribution and Main Controlling Factors of High Carbon Tricyclic Terpanes in Crude Oils in the Lishu Fault Depression, Songliao Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(2): 569-583. doi: 10.14027/j.issn.1000-0550.2022.071
Citation: LUO YuTing, ZHANG Min. Distribution and Main Controlling Factors of High Carbon Tricyclic Terpanes in Crude Oils in the Lishu Fault Depression, Songliao Basin, China[J]. Acta Sedimentologica Sinica, 2023, 41(2): 569-583. doi: 10.14027/j.issn.1000-0550.2022.071
  • 三环萜烷是饱和烃重要组成部分之一,Anders et al.[1]在1971年首次于绿河页岩的抽提物中发现了三环萜烷;1983年,Moldowan et al. [2]研究发现加利福尼亚原油中的三环萜烷系列可以延伸到C45;十年后,de Grande et al.[3]在分析不同原油和烃源岩时发现三环萜烷的碳数至少可以延伸到C54,且分布范围在C19-C54的三环萜烷中,湖泊咸水和海相碳酸盐环境中三环萜烷的相对丰度较高,表明其前身物受到沉积水体盐度的控制;与此同时,国内学者开始将三环萜烷化合物应用于原油的生源输入及油源对比等研究。1999年,在泌阳坳陷第三系湖相碳酸盐岩中检测到丰富的C20TT-C25TT,并提出利用三环萜烷参数(TCT)来确定未成熟和低成熟碳酸盐岩烃源岩的热成熟度[4]。进入21世纪以来,国内外学者对三环萜烷的研究更加深入,认为三环萜烷参数可用来划分原油类型,表征原油的成因,且大多数研究认为沉积相类型的差异可能造成三环萜烷分布模式的不同,因此三环萜烷可用于判断不同的沉积环境。现有的研究表明,海相和咸水湖相沉积物中的三环萜烷峰型以C23TT为主,淡水湖相沉积物中的三环萜烷峰型以C21TT为主,而煤系地层或以高等植物输入为主的陆相沉积物中三环萜烷的峰型则以C19TT-C20TT的短链三环萜烷为主[5]

    前人的研究表明,三环萜烷类化合物在地质体中蕴藏着丰富的地质—地球化学意义,通过对三环萜烷类化合物与特定生物标志物的对比研究,可以进行油源对比、烃源岩成因类型、沉积环境、生物降解和热成熟度的判断与评价[67],但目前还没有对原油中丰富三环萜烷的来源和沉积环境进行明确的定义,Philp et al.[8]在1986年提出三环萜烷是海洋藻类或细菌的指示物,浓度较高的不是来自咸水沉积环境的原油,而是来自淡水—微咸水沉积环境的原油。并且全球范围内高碳数三环萜烷(C28TT-C29TT)较C19TT-C20TT、C21TT、C23TT相对百分含量高的情况比较少见,但在松辽盆地梨树断陷的湖相原油中却普遍存在。本文以松辽盆地梨树断陷的湖相原油样品为例,研究高含量高碳数三环萜烷相对丰度的变化,系统剖析了梨树断陷原油中三环萜烷的分布特征,并对高碳数三环萜烷的主控因素进行了探讨,为沉积环境、有机质来源、热演化程度等研究提供了新思路,对该区湖相原油的精细划分及对主力烃源岩的厘定和油气勘探具有重要的意义。

  • 松辽盆地是中国东部大型中、新生代沉积盆地,是我国最大的陆相含油气盆地之一(图1[912]。梨树断陷是松辽盆地的一个次级构造单元,下有四个次级构造单元:北部斜坡带、中央构造带、东部斜坡带和桑树台洼陷[13]。该断陷地理位置上位于吉林省公主岭市秦家屯镇和八屋镇之间,构造上位于松辽盆地东南隆起区,是晚侏罗世—早白垩世地层发育最全、有机质演化程度最高的断陷盆地之一[14]

    Figure 1.  Territorial tectonic location and division of internal tectonic units in Lishu Fault Depression, Songliao Basin (modified from Chen et al.[12])

    梨树断陷为断坳叠置的复合型含油气盆地,经历了5个构造演化阶段:断陷期、断坳转换期、坳陷期、构造反转期和萎缩期[1516]。该断陷沉降幅度大,沉积发育,其中断陷构造层发育上侏罗统火石岭组(T3h),下白垩统沙河子组(K1sh)、营城组(K1yc)和登娄库组(K1d);坳陷构造层发育下白垩统泉头组(k1q),上白垩统青山口组(k2qn)、姚家组(K2y)和嫩江组(K2n[12,17]。其中沙河子组和营城组为区内主力烃源岩,发育深湖相—半深湖相碎屑沉积;登娄库组为断陷萎缩阶段沉积,发育浅湖相—三角洲相碎屑沉积,烃源岩不发育[1819]。从沙河子组到营城组再到登娄库组,古气候与古植被均经历一系列变化,表现为气候逐渐变干,气温逐渐变高,湖水在登娄库组中后期呈旋回式变化,由原来的淡—微咸水变成半咸水[13]

  • 在松辽盆地梨树断陷采集了71个原油样品,主要取样点在秦家屯、太平庄、八屋、四五家子和七棵树,主要分布层位为K1h、K1sh、K1yc、K1d及K1q

    原油样品气相色谱和色谱—质谱(GC-MS)分析实验条件如下。

    色谱分析:HP6890N气相色谱仪,HP-PONA毛细柱,0.20 mm×50 m,膜厚0.5 μm,初始温度50 ℃,恒温3 min,以5 ℃/min速率升温至300 ℃后恒温25 min,氮气流速为1.0 mL/min,分流比为20∶1,进样温度300 ℃,FID检测器温度为300 ℃。

    饱和烃定量色谱—质谱分析:色谱—质谱仪型号为HP GC 6890/5973MSD。色谱柱为HP-5MS弹性石英毛细柱(30 m×0.25 mm×0.25 μm),以脉冲不分流方式进样,脉冲压力为15 psi,进样器温度300 ℃,He为载气,流速1 mL/min。升温程序如下:初始温度50 ℃,恒温2 min后,以3 ℃/min的速率升温至310 ℃,并维持恒温18 min,EI电离方式,电离能量70 eV。

    芳烃定量色谱—质谱分析:色谱—质谱仪型号为HP GC6890/5973MSD。色谱柱为HP-5MS 60 m×0.25 mm×0.25 μm,汽化室温度为290 ℃,进样方式是脉冲不分流进样且采用恒流模式,载气流速为1 mL/ min。柱炉温的升温程序为:以20 ℃/min 升至100 ℃,然后再以3 ℃/ min升至310 ℃,恒温18 min。质谱采用EI 电离方式,电子能量为70 eV,接口温度为280 ℃,采集方式为全扫描模式,扫描质量范围为50~450 amu。

  • 针对松辽盆地梨树断陷原油成因类型的划分,已有不同的学者根据其生标组合特征做出详细研究,本文采用Zhang et al.[20]对梨树断陷原油成因类型划分的标准,筛选出4个代表性参数:Ts/Tm、C29Ts/C29H、G(伽马蜡烷)/C30H、C30*(重排藿烷)/C30H,并根据其组成特征的差异性,将研究区原油划分为3种类型,具体的原油判识指标见表1。其中Ⅰ类原油主要分布在梨树断陷东部的秦家屯、四五家子地区,主要分布层位为K1d和K1q;Ⅱ类原油主要分布在梨树断陷中西部的皮家、八屋地区,主要分布层位为K1yc和K1sh;Ⅲ类原油主要为Ⅰ类和Ⅱ类原油的混源油,主要分布在梨树断陷中部和北东部的八屋、太平庄、七棵树等地区,主要分布层位为K1yc

    生标参数指标Ⅰ类原油(44个)Ⅱ类原油(9个)Ⅲ类混源油(18个)
    Ts/Tm<1.8>4.01.8~4.0
    C29Ts/C29H<0.6>1.00.6~1.0
    C30*/C30H<0.2>0.50.2~0.5
    G/C30H<0.4>0.50.4~0.5

    根据研究区原油生物标志化合物的参数(表2),Ⅰ类原油的C30*/C30H<0.2(平均值为0.11,n=44);Ⅱ类原油C30*/C30H>0.5(平均值为0.88,n=9);Ⅲ类混源油的C30*/C30H在Ⅰ类原油和Ⅱ类原油之间(平均值为0.32,n=18)。整体上,Ⅰ类原油具有较低的ΣTT/H(藿烷)、G/C30H、C29Ts/C29H、Ts/Tm、C30*/C30H和C29甾烷-αββ/(αββ+ααα)比值,但具有相对较高的C24TeT(四环萜烷)/C26TT;Ⅱ类原油则与之不同,ΣTT/H、G/C30H、C29Ts/C29H、Ts/Tm、C30*/C30H和C29甾烷-αββ/(αββ+ααα)的比值较高,而C24TeT/C26TT值偏低,Ⅲ类混源油的各项参数则在Ⅰ类原油与Ⅱ类原油之间。

    原油类型井号地区深度/m层位生物标志化合物参数
    1234567891011121314
    Ⅰ类原油W5四五家子481.0~598.0K1q20.400.450.820.310.060.030.330.700.440.790.510.340.503.10
    SN119太平庄1 268.5~1 272.5K1yc50.650.490.950.340.070.040.371.000.161.170.380.240.252.48
    QK1-2秦家屯1 127.0~1 168.8K1q10.500.470.890.460.100.050.381.080.280.980.470.210.202.19
    SN66四五家子1 497.7~1 522.5K1yc20.330.641.750.450.110.050.430.800.330.780.500.180.233.09
    QK122-20秦家屯1 011.0~1 023.0K1q20.420.581.380.520.120.060.361.100.230.860.450.230.212.55
    BK20-6八屋2 128.0~2 171.0K1yc50.330.661.910.540.120.070.450.810.420.780.500.190.243.47
    QK142-20秦家屯1 016.2~1 033.0K1q10.410.601.470.520.130.060.391.110.241.010.440.220.203.02
    QK121-6秦家屯1 069.0~1 088.0K1q20.400.591.460.520.140.070.381.140.260.870.470.210.193.10
    SW12七棵树1 332.1~1 337.2K1h0.730.480.910.350.080.040.361.030.251.050.360.270.202.05
    Ⅱ类原油SW9七棵树2 282.2~2 295.1K1sh0.140.773.331.561.220.740.540.900.690.750.730.240.275.09
    HS2七棵树2 180.8~2 198.6K1sh0.420.763.251.400.600.310.531.220.311.280.430.150.123.53
    SW1八屋1 689.7~1 855.5K1yc30.250.919.951.400.870.350.521.110.502.000.500.140.139.00
    SW103-12-2八屋1 867.0~1 870.0K1yc50.290.9110.191.801.000.410.551.240.422.970.410.140.126.12
    SW103八屋1 907.8~1 915.6K1yc50.280.9110.441.791.210.600.561.250.522.550.420.140.126.57
    BK60-2八屋2 117.4~2 141.3K1yc30.130.866.211.650.620.270.600.770.710.970.660.160.219.27
    BK61-2八屋2 141.5~2 173.2K1yc30.110.866.031.720.700.370.550.770.990.960.680.140.1815.24
    BK60八屋2 137.0~2 163.5K1yc30.110.866.151.450.710.310.620.740.870.900.690.140.1910.34
    BK62-3八屋2 178.0~2 181.6K1yc30.100.876.642.100.970.490.600.741.101.050.700.140.1912.46
    Ⅲ类混源油WK17-4四五家子2 013.3~2 022.0K1yc50.200.722.560.760.280.110.570.740.601.020.600.160.226.04
    SN203八屋1 874.5~1 882.1K1yc50.220.793.800.750.300.130.530.860.551.210.560.130.156.58
    SW8七棵树1 927.6~1 942.7K1sh0.240.621.620.780.300.140.530.940.490.790.650.210.225.37
    BK203-9八屋1 859.5~1 864.1K1yc50.220.793.690.760.330.140.520.870.521.140.570.130.156.34
    TG1七棵树1 903.9~1 906.9K1yc50.230.641.790.820.350.150.520.930.531.000.610.200.225.81
    BK20-5八屋2 116.2~2 121.1K1yc50.150.763.231.100.460.240.540.810.801.330.660.160.207.36
    SW6八屋2 018.3~2 029.2K1yc50.150.855.711.460.460.250.580.810.681.060.620.150.1910.98
    注:1.C24TeT/C26TT; 2.Ts/(Ts+Tm); 3.Ts/Tm; 4.C29Ts/C29H; 5.C30*/C30H; 6.C29*/C30H; 7.C29⁃αββ/(αββ+ααα); 8.Pr/Ph; 9.G/C30H; 10.(C19TT+C20TT)/C23TT; 11.ETR; 12.Pr/nC17; 13.Ph/nC18; 14.MDR;其中ETR=(C28TT+C29TT)/(C28TT+C29TT+Ts);MDR=(4-MDBT)/(1-MDBT)。

    对比m/z191质量色谱图(图2),根据三环萜烷和藿烷的分布特征可以明显看出,I类原油三环萜烷的含量明显低于藿烷,总三环萜烷(ΣTT)/17α(H)-藿烷(C30H)的比值范围为0.20~0.99(平均值为0.40,n=44),Ⅱ类原油三环萜烷的含量相对藿烷则明显增大,ΣTT/C30H比值范围为1.88~8.91(平均值为5.14,n=9);Ⅲ类混源油三环萜烷相对藿烷的含量在I类原油和Ⅱ类原油之间,ΣTT/C30H比值范围为0.96~4.57(平均值为2.06,n=18)。从I类原油到Ⅱ类原油,ΣTT/C30H的比值逐渐增大,三环萜烷相对藿烷的含量逐渐增加,高碳数三环萜烷的相对丰度((C28-C29)TT/C30H)也在逐渐增大(表3)。

    Figure 2.  Mass chromatograms (m/z 191) of terpenoids from typical of types I and II crude oils in Lishu Fault Depression

    原油类型井号地区井深/m层位C19TT/C30HC20TT/C30HC21TT/C30HC22TT/C30HC23TT/C30HC24TT/C30HC25TT/C30HC26TT/C30HC28TT/C30HC29TT/C30H(C28-C29)TT/C30HΣTT/C30H
    Ⅰ类原油W5四五家子481.0~598.0K1q20.010.020.040.010.040.030.020.030.030.040.070.28
    SN119太平庄1 268.5~1 272.5K1yc50.020.020.030.000.030.020.020.020.020.040.060.22
    QK1-2秦家屯1 127.0~1 168.8K1q10.020.040.050.010.050.040.030.040.040.070.100.37
    SN66四五家子1 497.7~1 522.5K1yc20.020.040.060.010.080.050.040.060.060.080.130.50
    QK122-20秦家屯1 011.0~1 023.0K1q20.010.030.040.010.050.030.030.040.040.070.100.34
    BK20-6八屋2 128.0~2 171.0K1yc50.020.050.080.010.090.070.050.080.070.100.170.63
    QK142-20秦家屯1 016.2~1 033.0K1q10.020.040.050.010.060.040.030.050.040.070.110.39
    QK121-6秦家屯1 069.0~1 088.0K1q20.020.040.050.010.060.040.030.050.050.080.120.42
    SW12十屋1 332.1~1 337.2K1h0.010.020.020.010.030.020.020.020.020.040.060.20
    Ⅱ类原油SW9七棵树2 282.2~2 295.1K1sh0.260.771.170.221.360.980.731.171.021.222.248.91
    HS2十屋2 180.8~2 198.6K1sh0.120.200.220.050.250.200.140.210.180.300.491.88
    SW1八屋1 689.7~1 855.5K1yc30.530.370.390.070.450.410.250.380.360.480.833.67
    SW103-12-2八屋1 867.0~1 870.0K1yc50.660.390.300.060.350.300.160.300.250.380.633.14
    SW103八屋1 907.8~1 915.6K1yc50.530.460.310.040.390.310.170.280.320.450.773.25
    BK60-2八屋2 117.4~2 141.3K1yc30.280.460.690.090.770.560.420.650.700.741.445.35
    BK61-2八屋2 141.5~2 173.2K1yc30.340.390.620.090.760.590.430.710.790.861.665.59
    BK60八屋2 137.0~2 163.5K1yc30.360.370.670.090.820.670.480.760.810.861.675.89
    BK62-3八屋2 178.0~2 181.6K1yc30.600.681.000.141.230.930.681.101.081.092.178.54
    Ⅲ类混源油WK17-4四五家子2 013.3~2 022.0K1yc50.110.130.190.030.240.190.140.210.210.250.471.72
    SN203八屋1 874.5~1 882.1K1yc50.100.120.160.030.190.160.110.190.170.240.411.48
    SW8七棵树1 927.6~1 942.7K1sh0.050.150.220.050.240.180.130.200.170.260.431.64
    BK203-9八屋1 859.5~1 864.1K1yc50.100.120.160.030.190.160.110.190.170.250.431.48
    TG1七棵树1 903.9~1 906.9K1yc50.100.140.230.030.240.170.130.200.190.240.431.67
    BK20-5八屋2 116.2~2 121.1K1yc50.370.440.490.080.600.450.320.510.470.591.054.31
    SW6八屋2 018.3~2 029.2K1yc50.260.320.450.060.550.410.310.480.460.510.973.80

    除此之外,Ⅰ类原油与Ⅱ类原油成熟度也表现出一定的差异。芳烃参数F1、F2常用于判断原油成熟度,该参数对各个成熟度阶段的样品均具有较好的指示作用[2123]。从图3可以看出,梨树断陷原油总体处于低熟—成熟阶段,I类原油处于低熟—成熟阶段,Ⅱ类原油处于成熟阶段,且I类原油与Ⅱ类原油成熟度变化连续性较好,表明整体上研究区I类原油和II类原油的成熟度存在一定的差异,但差异较小。

    Figure 3.  Relationship between F1 and F2 in crude oils from Lishu Fault Depression

  • 梨树断陷不同类型原油中三环萜烷的分布模式主要表现出以C28-29TT的优势分布(C19TT<C23TT<C28-29TT),仅有个别八屋区块中的Ⅱ类原油样品表现出以C19TT的优势分布(C19TT>C23TT<C28-29TT),这些不同的萜烷分布模式可能反映了沉积时母源的差异和成熟度的影响。此外,不同类型原油中三环萜烷浓度也存在一定的差异,总体而言,Ⅰ类原油三环萜烷的浓度明显高于Ⅱ类原油,具体表现为Ⅰ类原油高碳数三环萜烷(C28TT-C29TT)、低碳数三环萜烷(C19TT-C20TT、C21TT、C23TT)的浓度均分别高于Ⅱ类原油(图4)。

    Figure 4.  Relationship between tricyclic terpane concentration in different types of crude oil from Lishu Fault Depression

    尽管不同类型原油中三环萜烷浓度差别很大,但不同类型原油三环萜烷相对百分含量的数值差别不大,且高碳数三环萜烷的相对百分含量均很高,就其百分含量而言(表4),不同类型原油高碳数三环萜烷相对百分含量占整体三环萜烷的27%以上。整体上,研究区内不同类型原油样品中高碳数三环萜烷(C28TT-C29TT)相对含量均高于低碳数三环萜烷(C19TT-C20TT、C21TT、C23TT)。

    三环萜烷系列化合物Ⅰ类原油Ⅱ类原油Ⅲ类混源油
    C19TT4.325.004.98
    C20TT8.498.278.47
    C21TT12.8211.9712.23
    C23TT14.7714.1714.41
    C28TT10.7112.4811.65
    C29TT17.0014.4315.46
    C28TT-C29TT27.8527.0027.10
  • 从沉积学的角度来看,梨树断陷主要发育湖相的沉积环境,沉积水体表现为微咸水—咸水性质。类异戊二烯烷烃中的姥鲛烷(Pr)和植烷(Ph)、伽马蜡烷指数及三环萜烷生物标志化合物参数都可以用来反映烃源岩的沉积环境[24]

    姥植比(Pr/Ph)是反映氧化—还原性较为有效的参数,通常将Pr/Ph≤1表示为还原环境,1<Pr/Ph≤2.5表示为弱氧化—弱还原环境,Pr/Ph>2.5表示为氧化环境[25]。松辽盆地梨树断陷不同类型原油的Pr/Ph值范围为0.67~1.25,平均值为0.94,由姥植比范围可见,梨树断陷的沉积环境较为相似,不同类型原油均表现为弱氧化—弱还原环境。Ⅱ类原油和Ⅲ类原油大多数样品其高碳数(C28TT-C29TT)三环萜烷的相对丰度((C28TT-C29TT)/C30H)与姥植比有一定的负相关性(图5a),整体上,从I类原油到Ⅱ类原油,研究区原油样品表现出偏还原的环境更利于高碳数三环萜烷富集的现象,但其相关性可能与其分布范围较窄无关。除姥植比外,Pr/nC17与Ph/nC18比值不仅可以用于氧化还原环境的判识,还可以评价有机质的热演化阶段[26]。Pr/nC17与Ph/nC1关系图亦显示该研究区原油均形成于弱氧化—弱还原沉积环境(图5b),说明有机质沉积时水体的氧化还原性并不是影响梨树断陷原油三环萜烷相对丰度的主要因素。

    Figure 5.  Relationships between crude oils in Lishu Fault Depression

    伽马蜡烷是一种非藿烷类的三萜烷,通常认为是通过四膜虫醇的脱水和加氢作用而形成的[2728],高含量的伽马蜡烷通常与高盐沉积环境以及某种嗜盐菌的发育有关[29],其丰度可以指示沉积环境的盐度[3033],且伽马蜡烷指数(G/C30H)越高,反映古盐度也越高[3436]。梨树断陷的G/C30H比值范围在0.31~1.10,平均值为0.41,整体上研究区介于微咸水—咸水湖相环境。I类原油G/C30H比值介于0.16~0.46,平均值为0.3;Ⅱ类原油的G/C30H介于0.31~1.10,平均值为0.68;Ⅲ类原油的G/C30H介于0.38~0.84,平均值为0.54。梨树断陷原油高碳数三环萜烷的相对丰度与水体的咸化程度呈较好的正相关性(图6a),整体上,高碳数三环萜烷相对丰度越高的原油其沉积水体的盐度越大,这与de Grande et al.[3]偏还原性的咸水环境可能更利于长链三环萜烷形成的研究结论一致,表明有机质沉积时水体的咸化程度对梨树断陷原油三环萜烷的相对丰度有一定的影响。

    Figure 6.  Relationships between crude oils in Lishu Fault Depression

    三环萜烷的参数也可以用来判断不同的沉积环境,目前研究表明海相和咸水湖相沉积物呈现C23TT优势,淡水湖相沉积物呈现C21TT优势,煤系地层或以高等植物输入为主的陆相沉积物则表现为C19TT-C20TT的短链三环萜烷优势,并且在湖泊咸水和海相碳酸盐环境中三环萜烷的相对丰度较高[5,3738]。在本次分析下的梨树断陷原油样品中,C19TT-C23TT的分布特征是以C23TT为主的典型咸湖相原油三环萜烷分布模式。长链三环萜烷指数ETR[ETR=(C28TT+C29TT)/(C28TT+C29TT+Ts)]常用于反映沉积物沉积时期的水体盐度[39]。梨树断陷原油样品的ETR指数与G/C30H呈正相关性(图6b),说明ETR指数是反映盐度和碱度的有效指标,ETR高值代表沉积环境盐碱度高。其中Ⅱ类原油的ETR值>Ⅲ类混源油>I类原油(图6b),表明咸水条件在一定程度上可以促进高碳数三环萜烷前身物的形成。Philp et al.[8]曾提出三环萜烷受盐度控制,并猜测淡—微咸型环境具有与海洋型环境相似的盐度,从而促进这些生物的生长,与本文咸水环境更利于高碳数三环萜烷富集的结论一致。

    综上所述,结合姥鲛烷与植烷、伽马蜡烷和三环萜烷等生物标志化合物参数,对松辽盆地梨树断陷原油样品的烃源岩沉积环境进行探讨,表明高碳数三环萜烷的形成可能受水体盐度的影响,且一定的盐度对高碳数三环萜烷的生成具有明显的促进作用。

  • 目前对于三环萜烷类化合物的来源仍存在争议,Philp et al.[8]认为高丰度的三环萜烷可能是某种藻类富集的结果,Neto et al.[40]通过对热解产物的研究分析,认为Tasmanite藻和Leiosphaerdias藻可能是形成高丰度三环萜烷的前身物。Revill et al.[41]在对塔斯玛尼亚油页岩抽提物稳定碳同位素资料分析基础上,进一步发现高丰度三环萜烷的来源还有除Tasmanite藻外其他的藻类或细菌。一般来说,C19TT-C21TT三环萜烷化合物来源于高等植物,高丰度的C23TT往往与藻类有关,C26TT三环萜烷则与低等水生藻类有关[42],而更高碳数(C28TT-C29TT)三环萜烷的生源研究较为模糊,暂无具体的论断。此外,也有研究表明三环萜烷类化合物可能是由藿烷类化合物随成熟度增加而逐渐转变生成的[43]

    C24四环萜烷(TeT)通常被认为来源于陆源高等植物,C24TeT/C26TT常用作生源指标判断有机质的母质来源[4243],C24TeT/C26TT比值越高反映其有机质来源越偏陆相来源。从图7中可以看出,梨树断陷原油总三环萜烷(C19TT-C29TT)和高碳数三环萜烷(C28TT-C29TT)的相对丰度均与C24TeT/C26TT呈良好的负相关性,Ⅰ类原油的C24TeT/C26TT值高于Ⅱ类原油,表明Ⅰ类原油陆源有机质的输入较Ⅱ类原油多,但整体上负相关说明该研究区高碳数三环萜烷的母质来源可能与陆源高等植物无关,主要源于低等水生藻类或细菌。其中绿色区域中的点为Ⅱ类原油八屋区块的三个原油样品点,姜连等[44]研究表明该区块原油样品中原始生烃母质的陆源有机质贡献较其他井位大,C19TT-C20TT表现出相对较高的丰度。整体上八屋区块3个原油样品点的分布趋势与其他原油样品点无异,这表明异常的3个原油样品点初始生烃母质与其他类型原油一致,只因后期受到陆源高等植物输入的影响,使其在沉积生烃的过程中表现出较为明显的C19TT-C20TT以及C24TeT优势。

    Figure 7.  Relationships between crude oils in Lishu Fault Depression

    三环萜烷参数(C19TT+C20TT)/C23TT的比值也常用于判断有机质来源[45],除了Ⅱ类原油八屋区块的3个陆源输入较丰富的样品点外,梨树断陷原油的(C19TT+C20TT)/C23TT范围相似,其中I类原油(C19TT+C20TT)/C23TT比值为0.67~1.17,平均值为0.87;Ⅱ类原油的(C19TT+C20TT)/C23TT比值为0.75~1.28,平均值为0.66;Ⅲ类原油的(C19TT+C20TT)/C23TT为0.68~1.33,平均值为0.94。整体上原油(C19TT+C20TT)/C23TT介于0.67~1.33,平均值为0.82,表明梨树断陷原油三环萜烷的母质来源均以水生藻类以及菌类的贡献为主。

    此外,研究发现梨树断陷不同类型原油样品中的三环萜烷参数与重排藿烷参数之间呈良好的相关性。(C28TT-C29TT)/C30H与C30*、C29Ts呈明显的正相关性(图8),且(C28TT-C29TT)/C30H与C29Ts的相关性较C30*更好,表明高碳数三环萜烷可能与重排藿烷具有相同的母质来源。当前关于重排藿烷的生源,有学者认为所有重排藿烷和17α(H)-藿烷均来源于细菌藿烷的前身物[46],而一些学者则认为C30*的相对丰度可能与陆源生物或红藻等生物有关[7,18,47]。现有研究表明母质来源中细菌比例的增加会导致三环萜烷相对丰度的增加[48],结合图8中C28TT-C29TT与C30*、C29Ts之间的正相关性,认为梨树断陷原油样品的烃源岩在偏咸水的沉积环境条件下,低等水生藻类或某种特定的细菌(如嗜盐菌细胞膜的类脂物)是高碳数C28TT-C29TT三环萜烷前身物的主要输入来源。而Ⅰ类原油与Ⅱ类原油高碳数三环萜烷相对丰度产生差异的原因可能与水体咸化程度所导致的沉积时母源贡献的差异有一定关系,Ⅱ类原油生烃母质沉积环境水体较深且咸度较高,相较于Ⅰ类原油,Ⅱ类原油的沉积环境更有利于嗜盐菌的生成。

    Figure 8.  Relationships between crude oils in Lishu Fault Depression

    根据上文的讨论结果,Ⅰ类原油的咸化程度低于Ⅱ类原油,G/C30H(咸化程度)与(C28TT-C29TT)/(C19TT+C20TT)之间无明显相关性(图9a),而C29Ts/C30H与(C28TT-C29TT)/C30H关系图显示随着咸化程度的增大,C30*的相对丰度明显增大(图9b)。结合已有的研究结论,水体沉积环境的氧化还原性并不完全控制着C30*的形成[18]。因此,梨树断陷原油C30*相对丰度随咸化程度良好的线性关系表明其可能是受水体盐度的影响。并且根据前文研究结果,重排藿烷与三环萜烷具有很好的相关性,再次证明三环萜烷的相对丰度受到水体盐度的影响,低等水生藻类及细菌输入是梨树断陷原油中三环萜烷前身物的主要母质来源。

    Figure 9.  Relationships between crude oils in Lishu Fault Depression

    整体上,结合三环萜烷参数C24TeT/C26TT和C23TT/(C19TT+C20TT)的分析,认为研究区原油样品的母质来源主要为湖相低等水生生物及细菌,而高碳数三环萜烷C28TT-C29TT的富集或受益于嗜盐菌细胞膜的类脂物贡献。

  • 梨树断陷烃源岩热演化程度有一定的差异[19],且成熟度可能是导致三环萜烷相对丰度高于藿烷的一种原因,一般随着成熟度的提高,三环萜烷会优先从干酪根或者沥青中释放出来[4,49]。此外,一些生物标志化合物会受到成熟度的影响,藿烷类化合物的热稳定性弱于三环萜烷,随着热演化程度的加深,藿烷类化合物逐渐被分解,导致三环萜烷的相对丰度高于藿烷。因此,在选择反映原油成熟度的生物标志化合物参数时,应考虑其适用性范围。根据梨树断陷原油的特性,选择C27-三降藿烷(Ts、Tm)、C29-αββ/(αββ+ααα)、芳烃参数MDR反映不同类型原油的成熟度,探讨成熟度对梨树断陷原油中三环萜烷相对丰度的影响。

    在评价有机质来源相同的原油成熟度时,常用Ts/(Ts+Tm)这一指标来判断。梨树断陷原油三环萜烷的母质来源均是以低等水生生物和细菌为主要输入,因此可以使用Ts/(Ts+Tm)来评价研究区的成熟度。其中Ⅰ类原油Ts/(Ts+Tm)比值介于0.40~0.79,平均值为0.56;Ⅱ类原油Ts/(Ts+Tm)比值介于0.76~0.91,平均值为0.86;Ⅲ类混源油Ts/(Ts+Tm)比值在Ⅰ类原油与Ⅱ类原油之间,平均值为0.72,整体表现出三环萜烷相对丰度更高的原油分布在成熟度更高的范围内(图10a,c)。

    Figure 10.  Relationships between crude oils in Lishu Fault Depression

    同时,在描述原油成熟度时还常用到C29-αββ/(αββ+ααα)这一生物标志化合物参数,且该参数对未熟至成熟范围内的原油具有高专属性[50]。其中Ⅰ类原油C29-αββ/(αββ+ααα)比值介于0.31~0.53,平均值为0.39;Ⅱ类原油C29-αββ/(αββ+ααα)比值介于0.52~0.62,平均值为0.57;Ⅲ类混源油C29-αββ/(αββ+ααα)比值介于0.49~0.58,平均值为0.53。同样表明三环萜烷相对丰度更高的原油分布在成熟度更大的范围内(图10b,d)。

    Ⅰ类原油三环萜烷相对丰度与成熟度的正相关性强于Ⅱ类原油(图10),表明Ⅰ类原油三环萜烷丰度受成熟度的影响更大,且高碳数三环萜烷(C28TT-C29TT)的相对丰度同样受到成熟度的影响,其相对丰度随着成熟度的增大而增加。但整体上三环萜烷内部组成随成熟度的变化具有一致性,表明成熟度并不会影响三环萜烷的分布模式,这与陈哲龙等[51]的研究结论一致。此外,利用Ts/(Ts+Tm)比值和C29-αββ/(αββ+ααα)比值,分析不同类型原油成熟度的分布,结合图11可以看出这两个成熟度参数具有良好的正相关性,说明成熟度对梨树断陷原油三环萜烷丰度变化影响较大,表现为原油的成熟度越高,三环萜烷的相对丰度就越高。

    Figure 11.  Relationship between crude oils Ts/(Ts+Tm) vs. C29⁃αββ/(αββ+ααα) in Lishu Fault Depression

    除此之外,二苯并噻吩系列化合物随热成熟度增高而变化的规律性较强[21,52],芳烃参数甲基二苯并噻吩比值MDR[MDR=(4-MDBT)/(1-MDBT)]通常会随着热演化程度的增加而增加,具体表现为随着成熟度增加,4-甲基二苯并噻吩(4-MDBT)相对丰度增大,1-甲基二苯并噻吩(1-MDBT)相对丰度减小,使得甲基二苯并噻吩比值增大[5354]。(C19TT-C29TT)/C30H和(C28TT-C29TT)/C30H与MDR均为正相关关系(图12),表明三环萜烷相对丰度更高的原油分布在成熟度更高的范围内,且高成熟度有利于高碳数三环萜烷的相对富集。

    Figure 12.  Relationships between crude oils in Lishu Fault Depression

  • 通过分析松辽盆地梨树断陷湖相原油中生物标志化合物的组合特征,发现不同成因类型的原油样品中三环萜烷的分布特征差异明显。从I类原油到Ⅱ类原油,ΣTT/C30H的比值逐渐增大,三环萜烷的浓度逐渐减小,且不同成因类型的原油中均存在较高含量的高碳数三环萜烷(C28TT-C29TT),其相对百分含量均高于低碳数三环萜烷(C19TT-C20TT、C21TT 、C23TT)。梨树断陷不同类型原油三环萜烷分布特征的差异性表明,沉积时母源贡献的差异对高碳数三环萜烷的生成具有一定的影响。高碳数三环萜烷C28TT-C29TT的富集或与嗜盐菌细胞膜的类脂物贡献有关,且偏还原性的咸水环境更利于高碳数三环萜烷的富集。但沉积环境以及由此引起的沉积有机质生源的差别并不是该研究区高碳数三环萜烷相对丰度产生差异的主要影响因素。

    就研究区而言,梨树断陷不同类型原油高碳数三环萜烷相对丰度产生差异的主控因素为成熟度,ΣTT/C30H比值与成熟度参数Ts/(Ts+Tm)、C29-αββ/(αββ+ααα)、MDR有良好的正相关性,表明三环萜烷相对丰度更高的原油分布在成熟度更大的范围内,且高碳数C28TT-C29TT的相对丰度随热演化程度的增高而增大。

Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return