[1] |
Allen P A, 2008: From landscapes into geological history[J]. Nature, 451, 274-276.
|
[2] |
Amorosi A, Maselli V, Trincardi F, 2016: Onshore to offshore anatomy of a Late Quaternary source-to-sink system (Po Plain-Adriatic Sea, Italy)[J]. Earth-Science Reviews, 153, 212-237.
|
[3] |
Romans B W, Graham S A, 2013: A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science, 5, 69-94.
|
[4] |
Sømme T O, Helland-Hansen W, Martinsen O J, 2009: Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 21, 361-387.
|
[5] |
林畅松, 夏庆龙, 施和生, 2015: 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 22, 9-20.
|
Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. |
[6] |
刘强虎, 朱筱敏, 李顺利, 2016: 沙垒田凸起前古近系基岩分布及源—汇过程[J]. 地球科学, 41, 1935-1949.
|
Liu Qianghu, Zhu Xiaomin, Li Shunli, et al. Pre-Palaeogene bedrock distribution and source-to-sink system analysis in the Shaleitian uplift[J]. Earth Science, 2016, 41(11): 1935-1949. |
[7] |
Xu J, Snedden J W, Fulthorpe C S, 2022: Quantifying the relative contributions of Miocene rivers to the deep gulf of Mexico using detrital zircon geochronology: Implications for the evolution of Gulf Basin circulation and regional drainage[J]. Basin Research, , -.
|
[8] |
龚承林, 齐昆, 徐杰, 2021: 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报, 39, 231-252.
|
Gong Chenglin, Qi Kun, Xu Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252. |
[9] |
Bhattacharya J P, Copeland P, Lawton T F, 2016: Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential[J]. Earth-Science Reviews, 153, 77-110.
|
[10] |
Sømme T O, Jackson C A L, Vaksdal M, 2013: Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 1-depositional setting and fan evolution[J]. Basin Research, 25, 489-511.
|
[11] |
Walsh J P, Wiberg P L, Aalto R, 2016: Source-to-sink research: Economy of the Earth's surface and its strata[J]. Earth-Science Reviews, 153, 1-6.
|
[12] |
Liu B Q, Shao L Y, Wang X T, 2019: Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the northern Qaidam Basin, NW China[J]. Journal of Palaeogeography, 8, 16-.
|
[13] |
Blum M D, Hattier-Womack J. Climate change, sea-level change, and fluvial sediment supply to deepwater depositional systems[M]//Kneller B, Martinsen O L, McCaffrey B. External controls on deep-water depositional systems. Tulsa: SEPM Society for Sedimentary Geology, 2009: 15-39. |
[14] |
Hovius N. Controls on sediment supply by large rivers[M]//Kocurek G. Relative role of eustacy, climate, and tectonism in continental rocks. Tulsa: SEPM Society for Sedimentary Geology, 1998: 2-16. |
[15] |
Anderson J B, Wallace D J, Simms A R, 2016: Recycling sediments between source and sink during a eustatic cycle: Systems of Late Quaternary northwestern gulf of Mexico Basin[J]. Earth-Science Reviews, 153, 111-138.
|
[16] |
Blum M, Martin J, Milliken K, 2013: Paleovalley systems: Insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 116, 128-169.
|
[17] |
Syvitski J P M, Milliman J D, 2007: Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 115, 1-19.
|
[18] |
Davidson S K, Hartley A J, 2010: Towards a quantitative method for estimating paleohydrology from clast size and comparison with modern rivers[J]. Journal of Sedimentary Research, 80, 688-702.
|
[19] |
Gardner T W, 1983: Paleohydrology and paleomorphology of a Carboniferous, meandering, fluvial sandstone[J]. Journal of Sedimentary Research, 53, 991-1005.
|
[20] |
Khan Z A, Tewari R C, 2011: Paleochannel and paleohydrology of a Middle Siwalik (Pliocene) fluvial system, northern India[J]. Journal of Earth System Science, 120, 531-543.
|
[21] |
Milliken K T, Blum M D, Snedden J W, 2018: Application of fluvial scaling relationships to reconstruct drainage-basin evolution and sediment routing for the Cretaceous and Paleocene of the gulf of Mexico[J]. Geosphere, 14, 749-767.
|
[22] |
Xu J, Snedden J W, Galloway W E, 2017: Channel-belt scaling relationship and application to Early Miocene source-to-sink systems in the gulf of Mexico Basin[J]. Geosphere, 13, 179-200.
|
[23] |
Allen P A, Armitage J J, Carter A, 2013: The QS[J]. Sedimentology, 60, 102-130.
|
[24] |
Hajek E A, Heller P L, 2012: Flow-depth scaling in alluvial architecture and nonmarine sequence stratigraphy: Example from the castlegate sandstone, Central Utah, U.S.A[J]. Journal of Sedimentary Research, 82, 121-130.
|
[25] |
Holbrook J, Wanas H, 2014: A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the Cretaceous of Egypt[J]. Journal of Sedimentary Research, 84, 349-372.
|
[26] |
Matenco L, Andriessen P, 2013: Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the Danube Basin-Black Sea system[J]. Global and Planetary Change, 103, 1-18.
|
[27] |
Michael N A, Whittaker A C, Allen P A, 2013: The functioning of sediment routing systems using a mass balance approach: Example from the Eocene of the southern Pyrenees[J]. The Journal of Geology, 121, 581-606.
|
[28] |
Paola C, Mohrig D, 1996: Palaeohydraulics revisited: Palaeoslope estimation in coarse-grained braided rivers[J]. Basin Research, 8, 243-254.
|
[29] |
Petter A L, Steel R J, Mohrig D, 2013: Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. GSA Bulletin, 125, 578-593.
|
[30] |
刘炳强. 柴北缘早中侏罗世聚煤古地理与源—汇系统分析[D]. 北京:中国矿业大学(北京),2020. |
Liu Bingqiang. Coal accumulation paleogeography and source-to-sink system analysis of Early-Middle Jurassic in the northern Qaidam Basin[D]. Beijing: China University of Mining & Technology (Beijing), 2020. |
[31] |
吕宝凤, 张越青, 杨书逸, 2011: 柴达木盆地构造体系特征及其成盆动力学意义[J]. 地质论评, 57, 167-174.
|
Baofeng Lü, Zhang Yueqing, Yang Shuyi. Characteristics of structural system and its implication for formation dynamics in Qaidam Basin[J]. Geological Review, 2011, 57(2): 167-174. |
[32] |
李江海,姜洪福. 全球古板块再造、岩相古地理及古环境图集[M]. 北京:地质出版社,2013. |
Li Jianghai, Jiang Hongfu. World atlas of plate tectonic reconstruction, lithofacies paleogeography and plaeoenvironment[M]. Beijing: Geological Publishing House, 2013. |
[33] |
刘天绩,邵龙义,曹代勇,等. 柴达木盆地北缘侏罗系煤炭资源形成条件及资源评价[M]. 北京:地质出版社,2013. |
Liu Tianji, Shao Longyi, Cao Daiyong, et al. Formation conditions and resource evaluation of Jurassic coal in the northern Qaidam Basin[M]. Beijing: Geological Publishing House, 2013. |
[34] |
刘炳强, 祝铠甲, 黄献好, 2019: 柴西缘阿尔金山前下侏罗统层序地层与岩相古地理研究[J]. 沉积学报, 37, 356-370.
|
Liu Bingqiang, Zhu Kaijia, Huang Xianhao, et al. Sequence stratigraphy and lithofacies paleogeography of the Lower Jurassic in southern Altyn Tagh, western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 356-370. |
[35] |
杨平, 杨玉芹, 马立协, 2007: 柴达木盆地北缘侏罗系沉积环境演变及其石油地质意义[J]. 石油勘探与开发, 34, 160-164.
|
Yang Ping, Yang Yuqin, Ma Lixie, et al. Evolution of the Jurassic sedimentary environment in northern margin of Qaidam Basin and its significance in petroleum geology[J]. Petroleum Exploration and Development, 2007, 34(2): 160-164. |
[36] |
李佩娟,何元良,吴向午,等. 青海柴达木盆地东北缘早、中侏罗世地层及植物群[M]. 南京:南京大学出版社,1988. |
Li Peijuan, He Yuanliang, Wu Xiangwu, et al. Early and Middle Jurassic strata and flora in northeastern Qaidam Basin, Qinghai province[M]. Nanjing: Nanjing University Press, 1988. |
[37] |
Ethridge F G, Schumm S A. Reconstructing paleochannel morphologic and flow characteristics: Methodology, limitations, and assessment[M]//Miall A D. Fluvial sedimentology. Calgary: Canadian Society of Petroleum Geologists, 1978: 703-722. |
[38] |
Galloway W E. Depositional architecture of Cenozoic gulf coastal plain fluvial systems[M]//Ethridge F G, Flores R M. Recent and ancient nonmarine depositional environments: Models for exploration. Tulsa: SEPM Society for Sedimentary Geology, 1981: 127-155. |
[39] |
Leclair S F, Bridge J S, 2001: Quantitative interpretation of sedimentary structures formed by river dunes[J]. Journal of Sedimentary Research, 71, 713-716.
|
[40] |
Bridge J S, Mackey S D. A revised alluvial stratigraphy model[M]//Marzo M, Puigdefábregas C. Alluvial sedimentation. Boston: Blackwell Scientific Publications, 1993: 317-336. |
[41] |
Dade W B, Friend P F, 1998: Grain-size, sediment-transport regime, and channel slope in alluvial rivers[J]. The Journal of Geology, 106, 661-676.
|
[42] |
Parker G, 1978: Self-formed straight rivers with equilibrium banks and mobile bed. Part 1. The sand-silt rive[J]. Journal of Fluid Mechanics, 89, 109-125.
|
[43] |
Parker G, Paola C, Whipple K X, 1998: Alluvial fans formed by channelized fluvial and sheet flow. I: Theory[J]. Journal of Hydraulic Engineering, 124, 985-995.
|
[44] |
Rubin D M, McCulloch D S, 1980: Single and superimposed bedforms: A synthesis of San Francisco Bay and flume observations[J]. Sedimentary Geology, 26, 207-231.
|
[45] |
van Rijn L C, 1984: Sediment transport, part II: Suspended load transport[J]. Journal of Hydraulic Engineering, 110, 1613-1641.
|
[46] |
党玉琪,胡勇,余辉龙,等. 柴达木盆地北缘石油地质[M]. 北京:地质出版社,2003. |
Dang Yuqi, Hu Yong, Yu Huilong, et al. Petroleum geology in the northern Qaidam Basin[M]. Beijing: Geological Publishing House, 2003. |
[47] |
黄迪颖, 2019: 中国侏罗纪综合地层和时间框架[J]. 中国科学(D辑):地球科学, 49, 227-256.
|
Huang Diying. Jurassic integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 227-256. |
[48] |
黄嫔, 席萍, 乔子真, 2003: 青海柴达木盆地鄂博梁2号井早侏罗世孢粉植物群及其地层意义[J]. 微体古生物学报, 20, 253-265.
|
Huang Pin, Xi Ping, Qiao Zizhen. Early Jurassic sporopollen assemblage from well Eboliang 2 of the Chaidamu Basin, Qinghai and their stratigraphical significance[J]. Acta Micropalaeontologica Sinica, 2003, 20(3): 253-265. |
[49] |
阎存凤, 袁剑英, 田光荣, 2014: Kuqaia孢型体在柴达木盆地的发现及对冷科1井地层时代再认识[J]. 地层学杂志, 38, 439-448.
|
Yan Cunfeng, Yuan Jianying, Tian Guangrong, et al. The discovery of Kuqaia palynomorph and the recognition on stratigraphic age of well Lengke 1 in Qaidam Basin[J]. Journal of Stratigraphy, 2014, 38(4): 439-448. |
[50] |
杨平, 谢宗奎, 袁秀君, 2006: 柴达木盆地北缘侏罗纪古生态特征及其古地理意义[J]. 古地理学报, 8, 165-173.
|
Yang Ping, Xie Zongkui, Yuan Xiujun, et al. Palaeoecological characteristics and its palaeogeographic significance of the Jurassic in northern margin of Qaidam Basin[J]. Journal of Palaeogeography, 2006, 8(2): 165-173. |
[51] |
张泓. 中国西北侏罗纪含煤地层与聚煤规律[M]. 北京:地质出版社,1998. |
Zhang Hong. Jurassic coal-bearing strata and coal accumulation in northwest China[M]. Beijing: Geological Publishing House, 1998. |
[52] |
Wright S, Parker G, 2004: Flow resistance and suspended load in sand-bed rivers: Simplified stratification model[J]. Journal of Hydraulic Engineering, 130, 796-805.
|
[53] |
Engelund F, Hansen E. A monograph on sediment transport in alluvial streams[M]. Copenhagen: Teknisk Forlag, 1967. |
[54] |
Kettner A J, Syvitski J P M, 2008: HydroTrend[J]. Computers & Geosciences, 34, 1170-1183.
|
[55] |
Meybeck M, Laroche L, Dürr H H, 2003: Global variability of daily total suspended solids and their fluxes in rivers[J]. Global and Planetary Change, 39, 65-93.
|
[56] |
Cramer B D, Vandenbroucke T R A, Ludvigson G A, 2015: High-Resolution Event Stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: Silurian examples of the quest for precision in stratigraphy[J]. Earth-Science Reviews, 141, 136-153.
|
[57] |
Dott R H, 1996: Episodic event deposits versus stratigraphic sequences-shall the twain never meet?[J]. Sedimentary Geology, 104, 243-247.
|
[58] |
Fatorić S, Chelleri L, 2012: Vulnerability to the effects of climate change and adaptation: The case of the Spanish Ebro Delta[J]. Ocean & Coastal Management, 60, 1-10.
|
[59] |
Sadler P M, 1981: Sediment accumulation rates and the completeness of stratigraphic sections[J]. The Journal of Geology, 89, 569-584.
|
[60] |
Vandenberghe J, 2003: Climate forcing of fluvial system development: An evolution of ideas[J]. Quaternary Science Reviews, 22, 2053-2060.
|
[61] |
Wolman M G, Miller J P, 1960: Magnitude and frequency of forces in geomorphic processes[J]. The Journal of Geology, 68, 54-74.
|
[62] |
Powell G E, Mecklenburg D, Ward A, 2006: Evaluating channel-forming discharges: A study of large rivers in Ohio[J]. Transactions of the ASABE, 49, 35-46.
|
[63] |
Li M, Shao L Y, Lu J, 2014: Sequence stratigraphy and paleogeography of the Middle Jurassic coal measures in the Yuqia coalfield, northern Qaidam Basin, northwestern China[J]. AAPG Bulletin, 98, 2531-2550.
|
[64] |
鲁静, 邵龙义, 鞠奇, 2009: 柴北缘大煤沟矿区侏罗纪煤系层序地层及其煤岩变化特征[J]. 煤田地质与勘探, 37, 9-14.
|
Lu Jing, Shao Longyi, Ju Qi, et al. Coal petrography variation in the sequence stratigraphic frame of the Jurassic coal measures of Dameigou mine area in northern Qaidam Basin[J]. Coal Geology & Exploration, 2009, 37(4): 9-14. |
[65] |
夏文臣, 张宁, 袁晓萍, 1998: 柴达木侏罗系的构造层序及前陆盆地演化[J]. 石油与天然气地质, 19, 173-180.
|
Xia Wenchen, Zhang Ning, Yuan Xiaoping, et al. Jurassic tectonic sequences of Qaidam and foreland basin evolution[J]. Oil & Gas Geology, 1998, 19(3): 173-180, 195. |
[66] |
杨明慧, 夏文臣, 1998: 非海相前陆盆地含煤沉积层序地层分析:以柴达木盆地大煤沟侏罗系剖面为例[J]. 煤田地质与勘探, 26, 1-4.
|
Yang Minghui, Xia Wenchen. The sequence stratigraphic analysis of coal-bearing strata in non-marine foreland basin: In case of Jurassic section of Dameigou, Qaidam Basin[J]. Coal Geology & Exploration, 1998, 26(3): 1-4. |
[67] |
Ritter D F, Kochel R C, Miller J R. Process geomorphology[M]. 3rd ed. Dubuque, Iowa: Wm. C. Brown Publishers, 1995. |
[68] |
Owen G, 1996: Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples[J]. Sedimentology, 43, 279-293.
|
[69] |
Suter F, Martínez J I, Vélez M I, 2011: Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?[J]. Sedimentary Geology, 235, 188-199.
|
[70] |
杜远生, ShiG, 龚一鸣, 2007: 东澳大利亚南悉尼盆地二叠系与地震沉积有关的软沉积变形构造[J]. 地质学报, 81, 511-518.
|
Du Yuansheng, Shi G, Gong Yiming, et al. Permian soft-sediment deformation structures related to earthquake in the southern Sydney Basin, eastern Australia[J]. Acta Geologica Sinica, 2007, 81(4): 511-518. |
[71] |
乔秀夫, 姜枚, 李海兵, 2016: 龙门山中、新生界软沉积物变形及构造演化[J]. 地学前缘, 23, 80-106.
|
Qiao Xiufu, Jiang Mei, Li Haibing, et al. Soft-sediment deformation structures and their implications for tectonic evolution from Mesozoic to Cenozoic in the Longmen Shan[J]. Earth Science Frontiers, 2016, 23(6): 80-106. |
[72] |
周瑶琪, 张振凯, 许红, 2015: 灵山岛沉积物软变形构造特征[J]. 海洋地质前沿, 31, 42-54.
|
Zhou Yaoqi, Zhang Zhenkai, Xu Hong, et al. Soft-sediment deformation structures in the sediments at Lingshan island[J]. Marine Geology Frontiers, 2015, 31(4): 42-54. |
[73] |
Owen G, Moretti M, Alfaro P, 2011: Recognising triggers for soft-sediment deformation: Current understanding and future directions[J]. Sedimentary Geology, 235, 133-140.
|
[74] |
Simms M J, 2007: Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: Evidence for earthquake or impact?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 407-423.
|
[75] |
Dott R H, 1963: Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 47, 104-128.
|
[76] |
邵龙义, 刘炳强, 吉丛伟, 2017: 湖南邵阳地区茅口期晚期重力流沉积的发现及意义[J]. 古地理学报, 19, 583-594.
|
Shao Longyi, Liu Bingqiang, Ji Congwei, et al. Discovery and significance of gravity flow deposits of the late Maokouan in Shaoyang area of Hunan province[J]. Journal of Palaeogeography, 2017, 19(4): 583-594. |
[77] |
邵龙义, 张鹏飞, 1999: 广西来宾—合山一带晚二叠世海底扇浊积岩相[J]. 古地理学报, 1, 20-31.
|
Shao Longyi, Zhang Pengfei. Late Permian submarine fan turbidite facies in the Laibin-Heshan area of Guangxi[J]. Journal of Palaeogeography, 1999, 1(1): 20-31. |
[78] |
Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962. |
[79] |
Lowe D R, 1982: Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 52, 279-297.
|
[80] |
Shanmugam G, 1997: The Bouma Sequence and the turbidite mind set[J]. Earth-Science Reviews, 42, 201-229.
|
[81] |
Talling P J, Wynn R B, Masson D G, 2007: Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 450, 541-544.
|
[82] |
刘炳强, 邵龙义, 王伟超, 2020: 重力流主导的深水沉积特征及其模式:以共和盆地下三叠统为例[J]. 地质学报, 94, 1106-1127.
|
Liu Bingqiang, Shao Longyi, Wang Weichao, et al. Sedimentary characteristics and depositional model of deep-water deposits dominated by gravity flow: A case study from the Lower Triassic in the Gonghe Basin[J]. Acta Geologica Sinica, 2020, 94(4): 1106-1127. |
[83] |
Plint A G, Tyagi A, Hay M J, 2009: Clinoforms, paleobathymetry, and mud dispersal across the western Canada Cretaceous foreland basin: Evidence from the Cenomanian Dunvegan Formation and Contiguous Strata[J]. Journal of Sedimentary Research, 79, 144-161.
|
[84] |
Holbrook J M, Bhattacharya J P, 2012: Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity[J]. Earth-Science Reviews, 113, 271-302.
|
[85] |
Romans B W, Castelltort S, Covault J A, 2016: Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 153, 7-29.
|
[86] |
Walling D E, Collins A L, 2008: The catchment sediment budget as a management tool[J]. Environmental Science & Policy, 11, 136-143.
|
[87] |
Hajek E A, Wolinsky M A, 2012: Simplified process modeling of river avulsion and alluvial architecture: Connecting models and field data[J]. Sedimentary Geology, 257-260, 1-30.
|
[88] |
Wang Y N, Straub K M, Hajek E A, 2011: Scale-dependent compensational stacking: An estimate of autogenic time scales in channelized sedimentary deposits[J]. Geology, 39, 811-814.
|
[89] |
Sweet W V, Geratz J W, 2003: Bankfull hydraulic geometry relationships and recurrence intervals for North Carolina’s Coastal Plain[J]. Journal of the American Water Resources Association, 39, 861-871.
|
[90] |
Davide V, Pardos M, Diserens J, 2003: Characterisation of bed sediments and suspension of the river Po (Italy) during normal and high flow conditions[J]. Water Research, 37, 2847-2864.
|
[91] |
Moog D B, Whiting P J, 1998: Annual hysteresis in bed load rating curves[J]. Water Resources Research, 34, 2393-2399.
|
[92] |
Sichingabula H M, 1999: Magnitude-frequency characteristics of effective discharge for suspended sediment transport, Fraser River, British Columbia, Canada[J]. Hydrological Processes, 13, 1361-1380.
|
[93] |
Sharma S, Bhattacharya J P, Richards B, 2017: Source-to-sink sediment budget analysis of the Cretaceous Ferron Sandstone, Utah, U.S.A., using the fulcrum approach[J]. Journal of Sedimentary Research, 87, 594-608.
|
[94] |
Lorenz J C, Heinze D M, Clark J A, 1985: Determination of widths of meander-belt sandstone reservoirs from vertical downhole data, Mesaverde Group, Piceance Creek Basin, Colorado[J]. AAPG Bulletin, 69, 710-721.
|
[95] |
Origin Holbrook J., interrelationships genetic, 2001: An illustration from Middle Cretaceous strata, southeastern Colorado[J]. Sedimentary Geology, 144, 179-222.
|
[96] |
Paola C, Heller P L, Angevine C L, 1992: The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory[J]. Basin Research, 4, 73-90.
|