Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

ZHAO XiaoMing, LIU Fei, GE JiaWang, FENG XiaoFei, Bouchakour Massine, ZHANG Xi, ZHANG WenBiao, YANG BaoQuan, YANG Li. Sedimentary Architecture Unit Classification and Structural Style of Deep-water Channels[J]. Acta Sedimentologica Sinica, 2023, 41(1): 37-51. doi: 10.14027/j.issn.1000-0550.2022.048
Citation: ZHAO XiaoMing, LIU Fei, GE JiaWang, FENG XiaoFei, Bouchakour Massine, ZHANG Xi, ZHANG WenBiao, YANG BaoQuan, YANG Li. Sedimentary Architecture Unit Classification and Structural Style of Deep-water Channels[J]. Acta Sedimentologica Sinica, 2023, 41(1): 37-51. doi: 10.14027/j.issn.1000-0550.2022.048

Sedimentary Architecture Unit Classification and Structural Style of Deep-water Channels

doi: 10.14027/j.issn.1000-0550.2022.048
Funds:

National Natural Science Foundation of China 41872142

National Natural Science Foundation of China 42072183

  • Received Date: 2022-01-17
  • Accepted Date: 2022-05-19
  • Rev Recd Date: 2022-04-08
  • Available Online: 2022-05-19
  • Publish Date: 2023-02-10
  • Architecture configuration classification of deep-water channel sediments is an important technical means and guideline for the efficient development of deep-water oil and gas resources. At present, the lack of a unified architecture classification system may result in ambiguities of scale and origin for the architecture of a particular sedimentary unit, which may in turn restrict the development of deep-water sedimentation theory and the exploration and development processes. In view of the current research use of deep-water channel sedimentary body architecture classification schemes based on sedimentary scale, overlapping relationship, time span and genetic evolution conditions of different architectural units, the proposed system adopts the reverse-order classification principle to establish a relatively systematic description of deep-water channel sedimentary bodies. The proposed grading scheme is analyzed and compared with existing configuration grading schemes. The proposed classification scheme divides channel sediments into 11 structural units: (1) sedimentary grain properties (pore heterogeneity, particle heterogeneity, interstitial heterogeneity); (2) laminar layer (straight, wavy, curved, lenticular, irregular); (3) homogeneous sections within the strata, e.g. a particular section of the Bouma sequence; (4) strata sequence, e.g. the complete Bouma sequence; (5) strata grouping (single-rhythm superposition, sandbody-mudstone interbedding); (6) secondary channel unit, mostly lens type and wedge-shaped; (7) five types of single channel infill (layered, bundle, lateral accumulation, cut-and-stack, block); (8) channel complex; (9) channel complex set (units 8 and 9 are each in three types: discrete, splicing and compact type, depending on how their internal water channels are combined and the relationship between them); (10) three types of channel system (restricted, semi-restricted, non-restricted); and (11) three types of channel system set (sand-rich, mud-rich mixed sand-mud). Units 1-9 are useful for oil and gas development; units 10 and 11 are appropriate for exploration. This study provides a theoretical basis for the analogy between surface/underground and modern/ancient channel deposits, and also contains the geological basis for analyzing heterogeneous deep-water channel oil and gas reservoirs of different scales.
  • [1] Zhao X M, Qi K, Liu L, et al. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: Architecture and controlling factors[J]. Marine and Petroleum Geology, 2018, 95: 30-49
    [2] Ashiru O R, Qin Y, Wu S. Structural controls on submarine channel morphology, evolution, and architecture, offshore western Niger Delta[J]. Marine and Petroleum Geology, 2020, 118: 104413.
    [3] 周伟. 深水单向迁移水道建造模式与成因机制研究进展[J]. 古地理学报,2021,23(6):1082-1093.

    Zhou Wei. Research progress on architectural patterns and formation mechanisms of deep-water unidirectionally migrating channels[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(6): 1082-1093.
    [4] 赵晓明,葛家旺,谭程鹏,等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气,2019,31(5):76-87.

    Zhao Xiaoming, Ge Jiawang, Tan Chengpeng, et al. Research status and prospect of deep sea channel reservoir architecture and its response mechanism to synsedimentary structure[J]. China Offshore Oil and Gas, 2019, 31(5): 76-87.
    [5] Liu L, Zhang T S, Zhao X M, et al. Sedimentary architecture models of deepwater turbidite channel systems in the Niger Delta continental slope, West Africa[J]. Petroleum Science, 2013, 10(2): 139-148.
    [6] 赵晓明,吴胜和,刘丽. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J]. 石油学报,2012,33(6):1049-1058.

    Zhao Xiaoming, Wu Shenghe, Liu Li. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo oilfield, Niger Delta Basin[J]. Acta Petrolei Sinica, 2012, 33(6): 1049-1058.
    [7] Mutti E, Normark W R. Comparing examples of modern and ancient turbidite systems: Problems and concepts[M]//Leggett J K, Zuffa G G. Marine clastic sedimentology: Concepts and case studies. Dordrecht: Springer, 1987: 1-38.
    [8] Ghosh B, Lowe D. The architecture of deep-water channel complexes, Cretaceous Venado Sandstone Member, Sacremento Valley, California [C]// Graham S A, Lowe D R. Advances in the Sedimentary Geology of the Great Valley Group, Sacremento Valley, California. Pacific Section SEPM, SEPM, 1993:51-65.
    [9] Pickering K T, Clark J D, Smith R D A, et al. Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems[M]//Pickering K T, Hiscott R N, Kenyon N H, et al. Atlas of deep water environments: Architectural style in turbidite systems. Dordrecht: Springer, 1995: 1-10.
    [10] Prather B E, Booth J R, Steffens G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5A): 701-728.
    [11] Gardner M H, Borer J M. Submarine channel architecture along a slope to basin profile, Brushy Canyon Formation, West Texas. [C]// Bouma A H, Stone C G.Fine-grained Turbidite Systems.SEPM Special Publication,2000, 68:195-214.
    [12] Gardner M H, Borer J M, Melick J J, et al. Stratigraphic process-response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 757-787.
    [13] Navarre J C, Claude D, Liberelle E, et al. Deepwater turbidite system analysis, West Africa: Sedimentary model and implications for reservoir model construction[J]. The Leading Edge, 2002, 21(11): 1132-1139.
    [14] Sprague A R G, Garfield T R, Goulding F J, et al. Integrated slope channel depositional models: The key to successful prediction of reservoir presence and quality in offshore West Africa[R].: Colegio de Ingenieros Petroleros de México, Veracruz: Cuarto E-Exitep, 2005: 1-13.
    [15] Mayall M, Jones E, Casey M. Turbidite channel reservoirs—Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
    [16] Pickering K T, Cantalejo B. Deep-marine environments of the Middle Eocene Upper Hecho Group, Spanish Pyrenees: Introduction[J]. Earth-Science Reviews, 2015, 144: 1-9.
    [17] Cullis S, Colombera L, Patacci M, et al. Hierarchical classifications of the sedimentary architecture of deep-marine depositional systems[J]. Earth-Science Reviews, 2018, 179: 38-71.
    [18] Ogbe O B. Sequence stratigraphic controls on reservoir characterization and architectural analysis: A case study of Tovo field, coastal swamp depobelt, Niger Delta Basin, Nigeria[J]. Marine and Petroleum Geology, 2020, 121: 104579.
    [19] Liu L, Wen H G, Chen H D, et al. Depositional architectures and evolutional processes of channel systems in lacustrine rift basins: The Eocene Shahejie Formation, Zhanhua Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2021, 131: 105155.
    [20] Zhao X M, Qi K, Liu L, et al. Quantitative characterization and controlling factor analysis of the morphology of Bukuma-minor channel on southern Niger Delta slope[J]. Interpretation, 2018, 6(2): SD57-SD69.
    [21] Li L, Gong C L, Steel R J. Bankfull discharge as a key control on submarine channel morphology and architecture: Case study from the Rio Muni Basin, West Africa[J]. Marine Geology, 2018, 401: 66-80.
    [22] 冯潇飞,赵晓明,谭程鹏,等. 深海弯曲水道内部一种特殊的沉积单元:凹岸坝[J]. 沉积学报,2020,38(2):440-450.

    Feng Xiaofei, Zhao Xiaoming, Tan Chengpeng, et al. A distinctive sedimentary element within the sinuous submarine channel: Outer bank bar[J]. Acta Sedimentologica Sinica, 2020, 38(2): 440-450.
    [23] Vail P R, Mitchum Jr R M, Thompson III S. Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level[M]//Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977, 26: 83-98.
    [24] Cross T A. Controls on coal distribution in transgressive e regressive cycles, Upper Cretaceous, Western Interior, U S A. [C]// Wilgaus C K, et al. Sea-level changes: An integrated approach. SEPM Special Publication, 1988, 42:371-380.
    [25] Milankovitch M. Kanon der erdbestrahlung und seine anwendung auf das eiszeitenproblem[M]. Acade´mie Royale Serbe Editions Speciales Section des Sciences Mathe´matiques et Naturelles, Tome CXXXIII. Stamparija Mihaila Curcica, Beograd, 1941.
    [26] 吴胜和,纪友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22.

    Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22.
    [27] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amstedam: Elsevier, 1962.
    [28] Lowe D R. Sediment gravity flows; Ⅱ, depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
    [29] Stow D A V, Piper D J W. Deep-water fine-grained sediments: Facies models[J]. Geological Society, London, Special Publications, 1984, 15(1): 611-646.
    [30] 黄文奥,赵晓明,谭程鹏,等. 西秦岭直合隆地区三叠系深水水道沉积模式分析[J]. 沉积学报,2020,38(5):1061-1075.

    Huang Wenao, Zhao Xiaoming, Tan Chengpeng, et al. Sedimentary model analysis of Triassic deep-water channels in Zhihelong, West Qinling Mountains[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1061-1075.
    [31] Li P, Kneller B C, Hansen L, et al. The classical turbidite outcrop at San Clemente, California revisited: An example of sandy submarine channels with asymmetric facies architecture[J]. Sedimentary Geology, 2016, 346: 1-16.
    [32] Arnott R W C. Stratal architecture and origin of lateral accretion deposits (LADs) and conterminuous inner-bank levee deposits in a base-of-slope sinuous channel, Lower Isaac Formation (Neoproterozoic), East-Central British Columbia, Canada[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 515-528.
    [33] Walker R G. Nested submarine-fan channels in the Capistrano Formation, San Clemente, California[J]. GSA Bulletin, 1975, 86(7): 915-924.
    [34] Abreu V, Sullivan M, Pirmez C, et al. Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 631-648.
    [35] Nilsen T H, Shew R D, Steffens G S, et al. Atlas of deep-water outcrops[M]. Tulsa: American Association of Petroleum Geologists, 2008
    [36] 刘飞,赵晓明,冯潇飞,等. 基于重力流相的深水水道分类方案研究[J]. 古地理学报,2021,23(5):951-965.

    Liu Fei, Zhao Xiaoming, Feng Xiaofei, et al. Research on classification of deep-water channels based on gravity flow facies[J]. Journal of Palaeogeography, 2021, 23(5): 951-965.
    [37] 赵晓明,吴胜和,刘丽. 西非陆坡区深水复合水道沉积构型模式[J]. 中国石油大学学报(自然科学版),2012,36(6):1-5, 12.

    Zhao Xiaoming, Wu Shenghe, Liu Li. Sedimentary architecture model of deep-water channel complexes in slope area of West Africa[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(6): 1-5, 12.
    [38] Zhao X M, Li M H, Qi K, et al. Development of a distinct submarine depositional system on a topographically complex Niger Delta slope[J]. Geological Journal, 2020, 55(5): 3732-3747.
    [39] 赵晓明,刘丽,谭程鹏,等. 海底水道体系沉积构型样式及控制因素:以尼日尔三角洲盆地陆坡区为例[J]. 古地理学报,2018,20(5):825-840.

    Zhao Xiaoming, Liu Li, Tan Chengpeng, et al. Styles of submarine-channel architecture and its controlling factors: A case study from the Niger Delta Basin slope[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(5): 825-840.
    [40] 段瑞凯,胡光义,宋来明,等. 深海水道沉积体系精细刻画及表征方法:以西非尼日尔三角洲盆地M油田A油组为例[J]. 中国海上油气,2019,31(5):113-123.

    Duan Ruikai, Hu Guangyi, Song Laiming, et al. Fine description and characterization of deep sea channel sedimentation system: Taking the A oil group of M oilfield in the Niger Delta Basin of West Africa as an example[J]. China Offshore Oil and Gas, 2019, 31(5): 113-123.
    [41] 杨希濮,陈筱,冯潇飞,等. 尼日尔盆地油藏水道沉积构型识别及演化规律[J]. 海洋地质前沿,2021,37(10):49-57.

    Yang Xipu, Chen Xiao, Feng Xiaofei, et al. The study of channel sediment architecture and evolution pattern of reservoir in Niger Basin[J]. Marine Geology Frontiers, 2021, 37(10): 49-57.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(2)

Article Metrics

Article views(933) PDF downloads(330) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-01-17
  • Revised:  2022-04-08
  • Accepted:  2022-05-19
  • Published:  2023-02-10

Sedimentary Architecture Unit Classification and Structural Style of Deep-water Channels

doi: 10.14027/j.issn.1000-0550.2022.048
Funds:

National Natural Science Foundation of China 41872142

National Natural Science Foundation of China 42072183

Abstract: Architecture configuration classification of deep-water channel sediments is an important technical means and guideline for the efficient development of deep-water oil and gas resources. At present, the lack of a unified architecture classification system may result in ambiguities of scale and origin for the architecture of a particular sedimentary unit, which may in turn restrict the development of deep-water sedimentation theory and the exploration and development processes. In view of the current research use of deep-water channel sedimentary body architecture classification schemes based on sedimentary scale, overlapping relationship, time span and genetic evolution conditions of different architectural units, the proposed system adopts the reverse-order classification principle to establish a relatively systematic description of deep-water channel sedimentary bodies. The proposed grading scheme is analyzed and compared with existing configuration grading schemes. The proposed classification scheme divides channel sediments into 11 structural units: (1) sedimentary grain properties (pore heterogeneity, particle heterogeneity, interstitial heterogeneity); (2) laminar layer (straight, wavy, curved, lenticular, irregular); (3) homogeneous sections within the strata, e.g. a particular section of the Bouma sequence; (4) strata sequence, e.g. the complete Bouma sequence; (5) strata grouping (single-rhythm superposition, sandbody-mudstone interbedding); (6) secondary channel unit, mostly lens type and wedge-shaped; (7) five types of single channel infill (layered, bundle, lateral accumulation, cut-and-stack, block); (8) channel complex; (9) channel complex set (units 8 and 9 are each in three types: discrete, splicing and compact type, depending on how their internal water channels are combined and the relationship between them); (10) three types of channel system (restricted, semi-restricted, non-restricted); and (11) three types of channel system set (sand-rich, mud-rich mixed sand-mud). Units 1-9 are useful for oil and gas development; units 10 and 11 are appropriate for exploration. This study provides a theoretical basis for the analogy between surface/underground and modern/ancient channel deposits, and also contains the geological basis for analyzing heterogeneous deep-water channel oil and gas reservoirs of different scales.

ZHAO XiaoMing, LIU Fei, GE JiaWang, FENG XiaoFei, Bouchakour Massine, ZHANG Xi, ZHANG WenBiao, YANG BaoQuan, YANG Li. Sedimentary Architecture Unit Classification and Structural Style of Deep-water Channels[J]. Acta Sedimentologica Sinica, 2023, 41(1): 37-51. doi: 10.14027/j.issn.1000-0550.2022.048
Citation: ZHAO XiaoMing, LIU Fei, GE JiaWang, FENG XiaoFei, Bouchakour Massine, ZHANG Xi, ZHANG WenBiao, YANG BaoQuan, YANG Li. Sedimentary Architecture Unit Classification and Structural Style of Deep-water Channels[J]. Acta Sedimentologica Sinica, 2023, 41(1): 37-51. doi: 10.14027/j.issn.1000-0550.2022.048
  • 深水(深海、深湖)水道是深水沉积体系最主要的沉积物(含有机质、污染物、塑料等)运移通道,也是粗粒碎屑沉积场所,为全球重要深水油气储集层[13]。纵观已发现深水水道油气藏,即便其有较高的孔隙度和渗透率,但受沉积结构复杂多变的影响,其储层连通性在侧向较短的几千米距离内也会有较大变化,这极大限制了该类油气藏的高效开发和采收率的提高[46]。“沉积构型”是研究储层非均质性的先进理论和技术手段,也是当今油气田开发地质学的研究热点和难点。

    深水沉积构型的概念最早由Mutti和Normark于1987年提出[7],之后国内外学者先后基于野外露头、现代沉积和地球物理数据等不同研究资料提出了相应的深水水道级次划分方案[716],笔者对全球主要深海水道沉积构型分级方案进行了梳理和级次对应(表1)。虽然人们对深水水道构型系统的理解不断深入,但不同构型级次划分方案存在较大差异,各构型单元级次亦存在不对应性。如Pickering et al.[9]基于现代和古代沉积,提出了7级级次划分方案,并指出不是所有的构型级次都会出现在深海沉积体系中;Prather et al.[10]基于地震资料将深海水道划分为7级,包括4个地震可识别级次和3个亚地震级次(低于传统地震分辨率的级次);Mayall et al.[15]以限制性水道为研究对象,开展3~5级沉积构型要素研究,与其他学者不同,他强调每条水道及其内部充填物的独特性;Pickering et al.[16]根据内部相组合、构型几何形态及其束缚界面,提出了由纹层到水道体系的8级构型单元划分方案,尺度涵盖了地震到岩心或露头。

    Mutti et al.[7]Ghosh et al.[8]Pickering et al.[9]Gardner et al.[11]Gardner et al.[12]Navarre et al.[13]Sprauge et al.[14]Pickering et al.[16]
    1级:颗粒、 构造变化段0级:层系界面1级:纹层
    5级:浊积岩层2级:流体事件界面1级:层系组界面1级:岩层2级:岩层
    2级:岩层组3级:岩层组
    4级:岩层组2级:岩层组1级:单一水道1级:单一水道7级:相组合3级:岩层系列4级:岩层系列
    3级:水道沉积单元3级:大型侵蚀面2级:水道复合体2级:复合水道6级:水道充填4级:水道充填和朵叶5级:水道充填或 块状搬运单元
    3级:水道 复合体5级:单一水道5级:水道/朵叶复合体6级:水道复合体
    3级:扇体亚阶段4级:水道复合体4级:盆地范围 侵蚀接触面3级:海底扇通道4级:海底水道通道4级:水道复合体6级:水道复合体系列
    2级:单一扇体5级:扇体沉积5级:单个扇体系 界面4级:海底扇通道 复合体3级:水道体系7级:水道复合体体系7级:砂岩沉积体
    1级:扇复合体6级:扇复合体6级:盆地充填 层序界面2级:巨层序沉积8级:水道复合体 体系系列8级:水道体系

    上述深水水道沉积构型单元级次划分方案存在争议的原因可归纳为:一方面与研究所用数据有关,这种数据资料的分辨率差异性和解释多解性,势必导致研究尺度、研究结果迥异[17]。另一方面取决于深水沉积体系的复杂性,不同海底扇沉积体系,受海平面升降、沉积物供给和构造运动等大尺度因素影响,水道构型样式可存在一定差异[1819];同时,受地形地貌、重力流流体性质等小尺度因素影响,同一水道体系不同平面位置,其沉积构型样式也会存在差异[2,2022]。此外,当前人们对深水沉积体结构的认识仍不全面、不深入。这些因素均可导致不同学者对深水水道构型级次的划分存在差异。

    现有构型级次划分方案的差异性,使得深水水道难以实现露头与地下数据、现代沉积与古代沉积的类比。为此,笔者综合利用野外露头、浅层高频地震、深层油气藏井震联合资料、薄片等多维度、多时间域、多尺度信息,基于沉积体形态、规模及叠置样式分析,系统提出了一种深水水道沉积体构型单元分级方案,详细揭示了不同水道级次沉积单元的成因及其储层内部非均质性。

  • 针对当前深水水道构型级次研究存在的问题,结合深水沉积环境特点,综合利用地质、地球物理等多种信息,提出了11级深水水道沉积构型分级新方案(表2)。方案充分厘定了构型单元的级次、类型、成因、形成时间跨度、结构样式、非均质性、界面规模及其地下识别资料分辨性等,并将其与Vail et al.[23]、Cross[24]和米兰科维奇旋回[25]进行了统一和对比。

    构型级次构型单元时间跨度/a厚度/m宽度/m识别资料Vail旋回Cross旋回米兰科维奇旋回
    1级沉积颗粒段10-6~10-5显微镜下
    2级纹层10-5~10-310-3~10-2101~102岩心
    3级岩层内均质段10-3~10-210-2~100101~102岩心、测井
    4级岩层10-2~100100101~102测井
    5级岩层组101~102100~101101~102测井
    6级次级水道单元102~103100~5×1011×102~5×102测井、地震超短周期旋回
    7级单一水道103~1042×101~8×1015×102~1×103地震短期旋回
    8级复合水道104~1054×101~1×1021×103~5×103地震5级中期旋回岁差周期
    9级复合水道系列105~1061×102~3×102103地震4级长期旋回黄赤交角周期
    10级水道体系106~107102~103103~104地震3级超长期旋回偏心率周期
    11级水道体系系列108103~104104~105地震2级巨旋回
  • 构型级次划分是开展沉积(储层)构型研究的关键。国际上构型级次划分方式通常为正序或倒序两种,此次采用正序方案,即数字越大,构型单元级别越大[26]。方案将深水水道储层构型单元级次划分为11级,按照规模由小到大依次为:微观开发尺度(1~3级)、宏观开发尺度(4~9级)和勘探尺度(10~11级)。因此,该构型单元级次划分能够做到宏观构型与微观构型的融合,实现地面露头与地下沉积体之间的类比,确保构型单元级次的完整性。

    构型单元类型是开展沉积(储层)构型研究的基础。受沉积机制类型多变性的影响,深水水道储层结构复杂多变,加上目前深水水道储层构型研究缺乏系统性,导致同一构型单元类型存在多种术语,不同构型单元类型可能用同一术语表述,个别术语用词存在无法反映其构型内涵的问题。根据国内外经典沉积学教材和通用行业标准,明确深水水道各级次储层结构所对应的构型单元类型(图1),确保构型单元术语的规范性和统一性。所述构型单元类型具体如下。

    Figure 1.  Classification model of sedimentary body configurations in deep⁃water channels

    (1) 微观开发尺度

    1级单元为纹层内部颗粒、填隙物、孔隙及喉道等相似的微米级区域;2级单元为纹层,为沉积物粒级、成分和颜色相似的毫米级层;3级单元为岩层中均质段,为沉积物颗粒大小或沉积构造变化段,对应鲍马序列某一段(如鲍马序列Ta,Tb或Tc段[27]),或高密度浊流段(如Lowe序列S1,S2或R1段[28]),其往往难以在块状沉积单元(如砾岩和碎屑流)内识别,其内部储层均质性相对较好。

    (2) 宏观开发尺度

    4级单元为岩层,是由多个组分、结构和沉积构造相似的均质层段组成,内部沉积物粒度大小可为均质的,也可为非均质的;5级单元为岩层组,由多个组分、结构和沉积构造相似的粗粒岩层垂向叠置而成,其间可夹有细粒泥岩层;6级单元为次级水道单元,由多套垂向上叠置、成因相连的岩层序列构成,流动路径相同,本身呈水道形态;7级单元为单一水道,由多个垂向叠置的次级水道单元组成,是短期海平面变化或构造活动的响应结果,记录了侵蚀、过路、充填和废弃(或溢出)的沉积过程;8级单元为复合水道,由多个单一水道组成,主要记录了局部地形地貌对水道沉积过程的控制,复合水道边界可发育大型侵蚀面;9级单元为复合水道系列,由多个复合水道组成,主要记录了局部构造运动(如底辟引发的断层活动或褶皱形成)等小规模异旋回作用对水道沉积过程的控制。

    (3) 宏观勘探尺度

    10级单元为水道体系,由多个复合水道系列组成,主要记录了相对海平面长期变化、区域构造运动等大规模异旋回作用对水道沉积过程的控制;11级单元为水道体系系列,由多个水道体系组成,记录了2级海平面变化、区域构造运动等大规模异旋回作用对水道沉积过程的控制。

  • (1) 构型单元成因

    理清各级次构型单元成因是确保级次划分科学性的关键。基于深水水道沉积动力学和层序地层学原理,揭示了各级次构型单元的成因,具体如下。

    1级单元为相同水动力条件下沉积物颗粒均匀堆积的产物;2级单元是单一重力流流体类型中相同水动力条件流态产物;3级单元是单次沉积事件中单一重力流流体类型的产物;4级单元是单次沉积事件的产物;5级单元是流体能量总体相似的一系列沉积事件的产物[8];6级单元是流体能量规律性变化(增强或减弱)的一系列沉积事件的产物;7级单元是流体能量渐进式变化(一般先增强后减弱)的一系列沉积事件的产物;8级单元以自旋回事件成因为主;9级单元以异旋回事件成因为主[13];10级单元是异旋回事件成因[15];11级单元是区域性构造—地层旋回成因[7]

    (2) 构型单元形成时间跨度

    受成因差异性的影响,各级别构型单元的形成时间跨度也会存在差异。基于深水水道构型单元成因约束,明确了各级次构型单元的形成时间跨度,具体如下。

    1级单元形成于数秒—数分钟内;2级单元时间跨度为数分钟到数十分钟;3级单元为数分钟到数小时;4级单元常在数天内形成;5级单元时间跨度可达数天到数年[8];6级单元形成时间区间为十年到一百年;7级单元时间跨度为一百年到一千年;8级单元多在一万年内形成;9级单元则为一万年到十万年[13];10级单元形成时间基本在十万年到一百万年内[15];11级单元时间跨度则可以达到数百万年[7]

    依据上述深水水道构型单元成因分类和形成时间跨度标准,可反推各级次构型单元的沉积演变过程以及所经历的各级地质事件,此外还可根据地下地层实际测定时间推测构型单元级次,以及反推各级沉积体形成时间跨度,实现现代沉积与古代沉积之间的类比,从而确保构型单元级次划分的科学性。

  • 构型单元结构样式决定了各级沉积体的渗流屏障和渗流差异空间分布,其对油气成藏条件、油气藏高效开发和提高采收率具有重要实际意义。基于前述的多维度、多时间域和多尺度综合信息,厘定了1~11级深水水道分级次构型单元结构样式。

    1级单元根据岩石结构和矿物特征差异引起的孔隙规模非均质性,可分为孔隙非均质性、颗粒非均质性和填隙物非均质性,表现为岩石矿物颗粒大小、分选及磨圆特征、胶结物和填隙物类型以及生物化石碎屑差异等(图2)。

    Figure 2.  Microscopic characteristics of turbidite mineral particles in channel from Gannan

    2级单元根据纹层形态特征,可分为平直状、波状、弯曲状、透镜状、不规则状等(图3b,c),其内部宏观非均质性相对极弱,但微观非均质性强。

    Figure 3.  Sedimentary characteristics of 1⁃3⁃order configuration of deep⁃water outcrop in Gannan

    3级单元根据流体能量变化情况,可将其对应为鲍马序列[27](中粒浊积岩)、Low序列[28](粗粒浊积岩)、Stow序列[29](细粒浊积岩)的某一段,如Ta,Tb或Tc(图3a,b),其内部宏观非均质性较弱。

    4级单元依据沉积事件及重力流成因类型,可分为滑塌相、砂质碎屑流相、超高密度流相、高密度浊流相、低密度浊流相和深水半远洋—远洋沉积等(图4),对应鲍马序列[27](中粒浊积岩)、Lowe序列[28](粗粒浊积岩)、Stow序列[29](细粒浊积岩)的完整或部分沉积序列,其内部储层非均质性弱。

    Figure 4.  Sedimentary characteristics of deep⁃water outcrop strata in Gannan (after Huang et al.[30])

    5级单元依据成因类型,可分为两类(图5):1)多个单一韵律或(和)块状砂体(以厚层、中层为主)垂向叠置,其间可夹有薄层泥岩,主要位于水道主体部位。2)多个单一韵律或块状砂体(以中层、薄层为主)与泥岩互层,多发育在水道边缘;其内部储层非均质性相对弱。该级次单元可由单个或多个沉积序列组成,不同沉积序列之间存在较为明显的沉积颗粒突变界面,冲刷面等明显沉积界面少见。

    Figure 5.  Sedimentary model of strata fabric structure hierarchy

    6级单元依据成因类型,可分为两类(图6):1)透镜体型,由流体通过垂向加积作用形成的水平层状岩层系列叠置而成,水道边缘砂体以超覆或收敛状尖灭。2)楔形体型,由流体通过侧向加积或垂向加积作用形成的岩层系列叠置而成,下部一般为渗透性的砂体,上覆泥质细粒沉积或泥砾岩等非渗透岩层。不同沉积环境下,非渗透岩层厚度不一,可被后续流体侵蚀殆尽;内部岩相由水道轴部向边缘、由水道底部向顶部可呈规律性渐变,储层平面非均质性强。

    Figure 6.  Secondary channel unit architecture, grade sedimentation model

    7级单元根据充填形态特征,可分为五类:1)层状充填型(图7a1),水道内部由垂向上相互平行的次级水道单元叠置而成,水道整体表现出一定的正韵律特征。内部沉积的次级水道单元多以厚层或块状砂岩为主(图7a2),不同次级单元之间的接触面常充填细粒沉积物。2)束状充填型(图7b1),整体沉积特征与层状充填型水道相似,水道主体为相互平行的块状或厚层砂岩,边缘则呈束状收束(图7b2)。3)侧积型,主要为水道内部次级单元侧向加积沉积形成,根据侧积体间的细粒沉积物充填特征,可分为连通型(图7c1)、半连通型(图7c3)与非连通型(图7c5)。4)切叠型(图7d1)。5)块状充填型(图7e1)。7级构型单元内部岩相由水道轴部向边缘、由水道底部向顶部可呈规律性渐变,储层垂向非均质性较强,岩层层间渗流差异大。

    Figure 7.  Sedimentary model of single channel configuration

    8级单元根据内部单一水道的叠置样式,可分为离散型、拼接型和紧凑型三大类(图8)。离散型水道内部单一水道之间常充填以深海泥岩或小规模天然堤细粒沉积物,在地震剖面上表现为明显的弱振幅,水道整体形态特征较易识别。拼接型水道单一水道间可能发育规模较小的侵蚀面,指示单一水道形成时间以及迁移方向。紧凑型水道内部单一水道间相互切叠,边界处发育大型侵蚀面,在地震剖面上为明显弱振幅条带。单元内部单一水道拼接处发育的侵蚀面,可存在渗流屏障或渗流差异,储层垂向非均质性强。

    Figure 8.  Architecture and deposition models of complex channel types

    9级单元根据内部复合水道的叠置样式,也可分为离散型、拼接型和紧凑型三类(图9)。沉积构型特征与复合水道类似,但在沉积规模上差异明显,表现为地震剖面上明显的强弱振幅分布及水道边界的包络面特征。在单元内部单一复合水道拼接处,可存在渗流屏障或渗流差异,储层非均质性强。

    Figure 9.  Architecture and deposition model of complex channel set types

    10级单元根据限制程度,可细分为如图10所示限制性、半限制性和非限制性三类[5]。内部储层非均质性强,即便在数百米范围内,孔隙度和渗透率亦可发生较大变化。

    Figure 10.  Architecture and deposition model of channel system(after Liu et al.[5])

    11级单元可根据构造活动及物源供给能力等,分为富砂型、富泥型和砂泥混杂型水道体系系列,水道体系之间被厚层泥岩隔挡。

  • 构型单元规模是确定地下油气藏勘探开发各阶段研究目标的重要依据。基于全球范围内有文献记载且出露较好的26处深水水道野外露头沉积规模[36],以及地下油藏的实际构型解剖结果[3738],明晰了深水水道各级构型单元的厚度及宽度,具体如下。

    1级单元为微观构型,属微米级尺度(图2)。2级单元厚度大小不一,常介于数毫米到数厘米,侧向宽度一般介于数厘米到数米(图3c)。3级单元厚度介于数厘米到数十厘米,侧向宽度一般介于数十米到数百米(图3a,b)。4级单元顶底被小型侵蚀面或加积面约束,厚度变化区间较大,可为小于十厘米薄层,也可为大于一百厘米的厚层,侧向宽度介于数十米到数百米(图4)。5级单元顶底被小型侵蚀面或加积面约束,厚度数米级,侧向宽度介于数十米到数百米(图5)。6级单元顶底通常被侵蚀面或加积面约束,其厚度数米到数十米,侧向宽度介于数十米到数百米(图6)。7级单元底部通常被大型侵蚀面约束,顶部在未被侵蚀的情况下多发育泥质细粒沉积,对应Cross的超短期旋回[24](岁差周期),其厚度数米到数十米,一般以10~50 m居多,侧向宽度介于数十米到数百米,一般以100~500 m居多(图7)。8级单元底部可发育大型侵蚀面,对应Vail的5级层序[23]和Cross的短期旋回[24](偏心率短周期),厚度数十米,以20~80 m为主,侧向宽度介于数百米到数千米,一般以500~1 000 m居多(图8)。9级单元底部通常发育大型侵蚀面,顶部为厚层深水细粒沉积物,表明水道体系活动性暂时停止,该级单元可直接与一个沉积层序的低位体系域相比较,对应Vail的4级层序[23]和Cross的中期旋回[24](偏心率长周期);厚度数十米到百余米,以40~100 m为主,侧向宽度介于数百米到数千米,一般为1 000~5 000 m(图9)。10级单元底部通常发育巨型侵蚀面(不整合面),顶部发育厚层深水细粒沉积物,为海侵或高位体系域产物,对应Vail的3级层序[23]和Cross的长期旋回[24];其厚度数十米到数百米,以100~300 m为主,侧向宽度一般为数千米,可在盆地范围内进行追踪对比(图10)。11级单元顶/底部通常发育大面积的不整合面(削截),对应Vail的2级层序[23]和Cross的超长期旋回[24],其厚度数百米,侧向宽度数千米到数万米,可在盆地范围内进行追踪对比。

    据上述深水水道沉积结构样式、构型界面特征和规模,一方面可为判定构型单元级次归属提供了标准(包括地面露头和地下油气藏研究),另一方面也为深水水道各级储层非均质性研究提供参考。这有助于厘清油气藏各勘探开发阶段的研究目标体,以及实现地面露头与地下油气藏、现代沉积与古代沉积之间的类比,确保了构型单元级次的实用性。

  • 纵观现有深水水道沉积构型划分方案,由于不同学者的研究方法及划分依据差异,致使不同沉积构型单元在规模尺度、勘探开发及实现方法等方面难以统一和对比。鉴于此,可综合不同构型单元识别资料以及地下深水油藏实际应用,对新划分方案的适用性展开分析。

  • 不同级别的构型单元在沉积规模上存在较大尺度差异,故新构型分级方案在实际应用过程中往往需要不同的研究数据对其进行识别;同时在进行野外露头、地下数据分析时,受资料分辨率的限制,其识别不同级别构型单元能力存在差异。为此,新的构型方案基于构型单元规模约束,结合不同数据资料探测能力和分辨率,厘清了地下油气藏范围内不同级次深水水道储层结构识别资料依据,包括岩心、测井、三维地震等,同时,实现了本构型单元级次化分系统在地上和地下、古代和现代沉积体之间的类比。不同级次沉积单元所适用研究资料具体如下。

    1级单元为微观尺度,主要针对矿物、基质类型、孔隙和微裂缝等,仅能在显微镜镜下(光学、电子、偏光)研究;2~3级单元尺度相对较小,可借助放大镜或者肉眼进行识别,其研究对象主要为岩心以及野外露头;4级单元一般通过岩心及野外露头进行识别,或当厚度大于0.5 m时,在测井曲线上有一定的响应特征,可用测井资料识别;5~6级单元在地震尺度上相对较小,常规地震资料(主频小于30 Hz)往往难以识别,一般通过测井资料、钻井取心以及一些野外露头进行识别;7级单元为地震资料可分辨的最小构型单元,一般可用高频地震资料(主频大于30 Hz)识别;8级单元可用常规地震资料开展表征,但地震资料需进行预处理前分辨该级次单元;9~11级单元一般可用深层油藏范围常规地震资料开展表征。

  • 为进一步展示本方案在地下油气藏中的实际应用,特以西非尼日尔三角洲盆地陆坡区X油藏水道储层为例,阐述新的构型划分方案在油气勘探开发方面的适用性。

    X油藏位于西非尼日尔三角洲盆地陆坡区,构造上位于拉张带与挤压带过渡区域,水深1 300~1 500 m,目的层为中新统阿格巴达组,整体沉积环境为海退下的三角洲前缘,沉积相以深海水道及朵叶沉积体为主[3940]。基于新的构型分级方案指导,综合三维地震、测井信息、钻井取心及镜下薄片资料,对研究区进行如图11所示的沉积构型单元级次划分[41]

    Figure 11.  Sedimentary architecture grading styles of deep⁃water channels of X reservoir in the continental slope area of the deep⁃water basin, Niger Delta, West Africa

    根据沉积层序框架约束以及水道体系在外部形态、内部结构和地震响应特征差异,可确定水道沉积体顶底面和包络面范围,根据其沉积特征及形态规模可确定X油田最大规模为水道体系级次(10级单元);根据水道体系形成演化阶段和地震响应特征,在水道体系内部识别出2期复合水道系列(9级单元);根据井震标定的复合水道砂体垂向叠置关系,可将复合水道系列垂向上细分出若干期复合水道(8级单元);利用井震模式拟合方法[6],通过平剖互动构型解剖,识别出地震可分辨的最小沉积单元——单一水道(7级单元);以此为基础,通过岩心观察与描述,对单一水道内部充填的沉积物分析,将相同或相似的沉积韵律组合划分为一个次级水道单元(6级单元),其底部可存在小型侵蚀面,在测井和岩心上表现出一定的正韵律变化趋势;次级单元内部沉积的单个沉积物韵律组为一个岩层组(5级单元),在测井和岩心上表现出明显的正韵律特征;根据岩层组内部沉积物岩性差异及其对应的测井曲线突变界面,划分出不同的岩层(4级单元),其为测井资料可识别的最小沉积单元;进而,将岩层中具有相同沉积构造特征的段称为均质段(3级单元),如层理发育段及块状沉积段等;层理发育段内的单个层理为一个纹层段(2级单元),在块状沉积岩层段,对应的纹层段为毫米级沉积层段;通过镜下薄片观察,可识别出纹层段沉积物矿物、孔隙及胶结物类型,对应纹层内部颗粒(1级单元)。

    相对于深水水道沉积构型现有划分方案,新方案充分结合三维地震、测井、钻井取心、野外露头及镜下薄片等资料,实现了深水水道更为完整且系统的从宏观到微观逐级划分,并厘定了不同级次单元水道沉积体的沉积特征及相互空间叠置样式,丰富完善了深水水道沉积构型理论系统;同时基于不同构型级次单元沉积特征及深水油藏开发模式,方案划分出宏观勘探、宏观开发与微观开发三个尺度构型单元组合,赋予方案一定的勘探开发意义,并在深水水道型油藏开发中得到良好应用,有效指导了该类型油藏的高效开发。

  • (1) 基于沉积体规模、成因及时间跨度等,提出了深水水道沉积体11级构型分级方案,从小到大依次为微观开发尺度:1级沉积颗粒段、2级纹层段、3级岩层内均质段;宏观开发尺度:4级岩层、5级岩层组、6级次级水道单元、7级单一水道、8级复合水道、9级复合水道系列;勘探尺度:10级水道体系、11级水道体系系列。

    (2) 不同构型级次单元在成因及时间跨度上存在差异,1级单元为数分钟下沉积颗粒快速沉积产物,2~3级单元为数小时内单一重力流事件产物,4~7级单元为数百年内不同规模沉积事件产物,8级单元为数千年内自旋回事件产物,9~10级单元为单个百万年内不同规模异旋回事件产物,11级单元为数百万年内构造—地层旋回事件产物。

    (3) 根据沉积规模及特征差异,不同构型单元所适用研究资料不同:1级单元为镜下薄片资料,2~3级单元为岩心资料,4~6级单元为测井资料,7~11级单元为地震资料,确保不同构型单元适用性的同时,实现了露头与地下数据、现代沉积与古代沉积的类比。

    (4) 此次深水水道沉积体构型划分方案基本概括了现阶段所关注的所有构型级次单元,但受深水水道沉积构型样式复杂性及沉积环境限制程度影响,实际发育的水道沉积体中可能不会出现所有的构型单元级次。

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return