Advanced Search
Volume 42 Issue 2
Feb.  2024
Turn off MathJax
Article Contents

TANG YanLing, LI Ling, TAN XiuCheng, LI MingLong, LU FeiFan, ZHANG BenJian. Sequence Stratigraphy and Lithofacies Paleogeography of the Lower Permian Qixia Stage in Southwestern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(2): 575-592. doi: 10.14027/j.issn.1000-0550.2022.043
Citation: TANG YanLing, LI Ling, TAN XiuCheng, LI MingLong, LU FeiFan, ZHANG BenJian. Sequence Stratigraphy and Lithofacies Paleogeography of the Lower Permian Qixia Stage in Southwestern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(2): 575-592. doi: 10.14027/j.issn.1000-0550.2022.043

Sequence Stratigraphy and Lithofacies Paleogeography of the Lower Permian Qixia Stage in Southwestern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2022.043
Funds:

National Natural Science Foundation of China 42172166

  • Received Date: 2022-01-27
  • Accepted Date: 2022-05-13
  • Rev Recd Date: 2022-04-14
  • Available Online: 2022-05-13
  • Publish Date: 2024-02-04
  • Objective The Lower Permian Qixia Stage in southwest Sichuan Basin has shown significant exploration potential in recent years, but the views on the sedimentary filling pattern and paleogeographic framework in this area are not unified, which seriously restricts the further oil and gas exploration and well location deployment in the basin. Methods This study of the Lower Permian Liangshan Formation and Qixia Formation in southwestern Sichuan Basin was based on the comprehensive use of field profiles, drilling cores and logging data, and analysis of rock types and sedimentary facies. The application of the principles and methods of marine carbonate stratigraphical sequencing led to the identification of third-order sequence interfaces in the Qixia Stage. Single-factor analysis and multi-factor comprehensive mapping were adopted, taking the three-level sequence as the mapping unit. Combining these with the dominant phase, maps of the SQ0 + SQ1 and SQ2 sequence paleogeographic lithofacies were drawn for the Qixia Stage in the study area. Results Four third-order sequence interfaces were identified in the Qixia Stage, from bottom to top: lower interface of Liangshan Formation (SB I), inner interface of Qixia Formation Group 1 section (SB II), interface of Qixia Formation Groups 1 and 2 (SB II) and interface of the Qixia Formation and Maokou Formation (SB I). These occurred in three tertiary sequences, each consisting of a transgressive domain and a high-order domain. Comparative analysis of the sequential stratigraphic framework suggested that the SQ0 sequence of the lower Qixia Stage corresponds roughly to the Liangshan Formation. In the lower Qixia Formation Group 1 section, SQ0 is evident only in the paleogeomorphic lowland before the deposition of Qixia Stage in the study area, with a filling sequence overlapping a paleogeomorphic highland. Sequence SQ1 in the middle region and SQ2 sequence in the upper region are found throughout the area. The sequence in the southwestern Sichuan Basin consists of a marine carbonate platform bordering the Kang-Dian ancient land in the west, with obvious differentiation of paleogeomorphology and sedimentary facies. From west to east, the Kang-Dian land and its eastern margin consisted of a tidal flat, intraplatform depression, intraplatform mound-shoal, and an open semi-confined platform. In addition, an intraplatform mound-shoal beach developed along the intraplatform slope break zone, tending to surround the intraplatform depression. Conclusions Analysis of the influence of the slope break zone on carbonate reservoir formation highlighted that the SQ2 sequence is the most favorable reservoir facies belt in the study area, with favorable exploration areas around the intraplatform mound-shoal facies belt. A new understanding of the filling pattern and paleogeographic lithofacies characteristics of the Qixia Stage, as determined from the sequence stratigraphy, provides a new framework for future reservoir studies and the prediction of favorable exploration areas in the Qixia Formation.
  • [1] 李荣容,杨迅,张亚,等. 川西北地区双鱼石区块二叠系栖霞组气藏储层特征及高产模式[J]. 天然气勘探与开发,2019,42(4):19-27.

    Li Rongrong, Yang Xun, Zhang Ya, et al. Characteristics and high-yield model of gas reservoirs of Permian Qixia Formation, Shuangyushi area, northwestern Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(4): 19-27.
    [2] 张本健,尹宏,李荣容,等. 四川盆地西南部平探1井中二叠统栖霞组天然气勘探新突破及其意义[J]. 天然气工业,2020,40(7):34-41.

    Zhang Benjian, Yin Hong, Li Rongrong, et al. New breakthrough of natural gas exploration in the Qixia Formation of Middle Permian by well Pingtan 1 in the southwestern Sichuan Basin and its implications[J]. Natural Gas Industry, 2020, 40(7): 34-41.
    [3] Sun S Q. Dolomite reservoirs: Porosity evolution and reservoir characteristics[J]. AAPG Bulletin, 1995, 79(2): 186-204.
    [4] 肖笛. 海相碳酸盐岩早成岩期岩溶及其储层特征研究:以中国西部三大盆地为例[D]. 成都:西南石油大学,2017.

    Xiao Di. Research on eogenetic karst of marine carbonate and its reservoir in the three major basins, western China[D]. Chengdu: Southwest Petroleum University, 2017.
    [5] 芦飞凡,谭秀成,钟原,等. 四川盆地西北部二叠系栖霞组准同生期砂糖状白云岩特征及成因[J]. 石油勘探与开发,2020,47(6):1134-1148,1173.

    Lu Feifan, Tan Xiucheng, Zhong Yuan, et al. Origin of the penecontemporaneous sucrosic dolomite in the Permian Qixia Formation, northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1134-1148, 1173.
    [6] 王运生,金以钟. 四川盆地下二叠统白云岩及古岩溶的形成与峨眉地裂运动的关系[J]. 成都理工学院学报,1997,24(1):8-16.

    Wang Yunsheng, Jin Yizhong. The formation of dolomite and paleokarst of the Lower Permian series in Sichuan Basin and the relation to the Emei Taphrogenesis[J]. Journal of Chengdu University of Technology, 1997, 24(1): 8-16.
    [7] 金振奎,冯增昭. 滇东—川西下二叠统白云岩的形成机理:玄武岩淋滤白云化[J]. 沉积学报,1999,17(3):383-389.

    Jin Zhenkui, Feng Zengzhao. Origin of dolostones of the Lower Permian in east Yunnan-west Sichuan: Dolomitization through leaching of basalts[J]. Acta Sedimentologica Sinica, 1999, 17(3): 383-389.
    [8] 陈轩,赵文智,刘银河,等. 川西南地区中二叠统热液白云岩特征及勘探思路[J]. 石油学报,2013,34(3):460-466.

    Chen Xuan, Zhao Wenzhi, Liu Yinghe, et al. Characteristics and exploration strategy of the Middle Permian hydrothermal dolomite in southwestern Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(3): 460-466.
    [9] 黄思静,兰叶芳,黄可可,等. 四川盆地西部中二叠统栖霞组晶洞充填物特征与热液活动记录[J]. 岩石学报,2014,30(3):687-698.

    Huang Sijing, Lan Yefang, Huang Keke, et al. Vug fillings and records of hydrothermal activity in the Middle Permian Qixia Formation, western Sichuan Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 687-698.
    [10] 田景春,林小兵,张翔,等. 四川盆地中二叠统栖霞组滩相白云岩多重成因机理及叠加效应[J]. 岩石学报,2014,30(3):679-686.

    Tian Jingchun, Lin Xiaobing, Zhang Xiang, et al. The genetic mechanism of shoal facies dolomite and its additive effect of Permian Qixia Formation in Sichuan Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 679-686.
    [11] 芦飞凡,谭秀成,王利超,等. 川中地区中二叠统栖霞组滩控岩溶型白云岩储层特征及主控因素[J]. 沉积学报,2021,39(2):456-469.

    Lu Feifan, Tan Xiucheng, Wang Lichao, et al. Characteristics and controlling factors of dolomite reservoirs within shoal-controlled karst in the Middle Permian Qixia Formation, central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 456-469.
    [12] 姜德民,田景春,黄平辉,等. 川西南部地区中二叠统栖霞组岩相古地理特征[J]. 西安石油大学学报(自然科学版),2013,28(1):41-46.

    Jiang Demin, Tian Jingchun, Huang Pinghui, et al. Lithofacies palaeogeography of Qixia Formation in southwest Sichuan Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2013, 28(1): 41-46.
    [13] 杨帅,陈安清,张玺华,等. 四川盆地二叠纪栖霞—茅口期古地理格局转换及勘探启示[J]. 沉积学报,2021,39(6):1466-1477.

    Yang Shuai, Chen Anqing, Zhang Xihua, et al. Paleogeographic transition of the Permian Chihsia-Maokou period in the Sichuan Basin and indications for oil-gas exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477.
    [14] 胡明毅,魏国齐,胡忠贵,等. 四川盆地中二叠统栖霞组层序:岩相古地理[J]. 古地理学报,2010,12(5):515-526.

    Hu Mingyi, Wei Guoqi, Hu Zhonggui, et al. Sequence-lithofacies palaeogeography of the Middle Permian Qixia Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2010, 12(5): 515-526.
    [15] 宋文海. 对四川盆地加里东期古隆起的新认识[J]. 天然气工业,1987,7(3):6-11.

    Song Wenhai. Some new knowledge of Caledonian paleo-uplift in Sichuan Basin[J]. Natural Gas Industry, 1987, 7(3): 6-11.
    [16] 程遥. 川西北地区下二叠统栖霞组白云岩储层特征及储层成因机制[D]. 成都:西南石油大学,2015.

    Cheng Yao. 2015. The reservoir characteristics and reservoir formation mechanism of Qixia Formation's dolostone reservoirs, Lower Permian, northwest of Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2015.
    [17] 王超. 川中南部地区下二叠统地层及沉积相研究[D]. 成都:西南石油大学,2012.

    Wang Chao. The study of stratigraphy and sedimentary facies in the Lower Permian in southern part of central Sichuan[D]. Chengdu: Southwest Petroleum University, 2012.
    [18] 陈宗清. 四川盆地中二叠统茅口组天然气勘探[J]. 中国石油勘探,2007,12(5):1-11.

    Chen Zongqing. Exploration for natural gas in Middle Permian Maokou Formation of Sichuan Basin[J]. China Petroleum Exploration, 2007, 12(5): 1-11.
    [19] 四川省地质矿产局. 四川省区域地质志[M]. 北京:地质出版社,1991:1-732.

    Bureau of Geology and Mineral Resources of Sichuan Province. Regional geology of Sichuan province[M]. Beijing: Geological Publishing House, 1991: 1-732.
    [20] 童崇光. 四川盆地构造演化与油气聚集[M]. 北京:地质出版社,1992:1-128.

    Tong Chongguang. Tectonic evolution and oil-gas accumulation in Sichuan Basin[M]. Beijing: Geological Publishing House, 1992: 1-128.
    [21] 郭正吾,邓康龄,韩永辉. 四川盆地形成与演化[M]. 北京:地质出版社,1996:1-200.

    Guo Zhengwu, Deng Kangling, Han Yonghui. The formation and development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996: 1-200.
    [22] 辜学达,刘啸虎. 全国地层多重划分对比研究(51):四川省岩石地层[M]. 武汉:中国地质大学出版社,1997:1-418.

    Gu Xueda, Liu Xiaohu. Multiple classification and correlation of the stratigraphy of China (51): Stratigraphy (lithostratic) of Sichuan province[M]. Wuhan: China University of Geosciences Press, 1997: 1-418.
    [23] 魏国齐,杨威,万怡平,等. 扬子地块西北缘二叠系—中三叠统层序地层与沉积相展布[J]. 岩石学报,2011,27(3):741-748.

    Wei Guoqi, Yang Wei, Wan Yiping, et al. Stratigraphic sequence and sedimentary facies distribution of the Permian-Middle Triassic in the northwestern margin of the Yangtze block[J]. Acta Petrologica Sinica, 2011, 27(3): 741-748.
    [24] 赵宗举,周慧,陈轩,等. 四川盆地及邻区二叠纪层序岩相古地理及有利勘探区带[J]. 石油学报,2012,33(增刊2):35-51.

    Zhao Zongju, Zhou Hui, Chen Xuan, et al. Sequence lithofacies paleogeography and favorable exploration zones of the Permian in Sichuan Basin and adjacent areas, China[J]. Acta Petrolei Sinica, 2012, 33(Suppl.2): 35-51.
    [25] 黄涵宇,何登发,李英强,等. 四川盆地及邻区二叠纪梁山—栖霞组沉积盆地原型及其演化[J]. 岩石学报,2017,33(4):1317-1337.

    Huang Hanyu, He Dengfa, Li Yingqiang, et al. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permian[J]. Acta Petrologica Sinica, 2017, 33(4): 1317-1337.
    [26] 娄雪. 四川盆地栖霞组白云岩储层成因机制与分布规律研究[D]. 北京:中国石油大学(北京),2017.

    Lou Xue. The origin and distribution of dolomite reservoir in the Qixia Formation of Lower Permain, Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [27] 关新,陈世加,苏旺,等. 四川盆地西北部栖霞组碳酸盐岩储层特征及主控因素[J]. 岩性油气藏,2018,30(2):67-76.

    Guan Xin, Chen Shijia, Su Wang, et al. Carbonate reservoir characteristics and main controlling factors of Middle Permian Qixia Formation in NW Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(2): 67-76.
    [28] 胡安平,潘立银,郝毅,等. 四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布[J]. 海相油气地质,2018,23(2):39-52.

    Hu Anping, Pan Liyin, Hao Yi, et al. Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China[J]. Marine Origin Petroleum Geology, 2018, 23(2): 39-52.
    [29] 白晓亮,郗诚,和源,等. 四川盆地中二叠统栖霞组层序地层特征及沉积演化模式[J]. 东北石油大学学报,2020,44(6):33-42.

    Bai Xiaoliang, Xi Cheng, He Yuan, et al. Sequence stratigraphic characteristics and sedimentary evolution model of the Middle Permian Qixia Formation in the Sichuan Basin[J]. Journal of Northeast Petroleum University, 2020, 44(6): 33-42.
    [30] 王海真,池英柳,赵宗举,等. 四川盆地栖霞组岩溶储层及勘探选区[J]. 石油学报,2013,34(5):833-842.

    Wang Haizhen, Chi Yingliu, Zhao Zongju, et al. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2013, 34(5): 833-842.
    [31] Xiao D, Zhang B J, Tan X C, et al. Discovery of a shoal-controlled karst dolomite reservoir in the Middle Permian Qixia Formation, northwestern Sichuan Basin, southwest China[J]. Energy Exploration & Exploitation, 2018, 36(4): 686-704.
    [32] 苏成鹏. 川东地区茅口组眼球状石灰岩成因机制及地质意义[D]. 成都:西南石油大学,2017.

    Su Chengpeng. Genetic mechanism and geological significance of eye-shaped limestone in Maokou Formation in eastern Sichuan[D]. Chengdu: Southwest Petroleum University, 2017.
    [33] 罗进雄,何幼斌,何明薇,等. 华南中二叠统眼球状石灰岩特征及成因的思考[J]. 古地理学报,2019,21(4):613-626.

    Luo Jinxiong, He Youbin, He Mingwei, et al. Thoughts on characteristics and origin of the Middle Permian eyeball-shaped limestone in South China[J]. Journal of Palaeogeography, 2019, 21(4): 613-626.
    [34] Su C P, Li F, Tan X C, et al. Recognition of diagenetic contribution to the formation of limestone-marl alternations: A case study from Permian of South China[J]. Marine and Petroleum Geology, 2020, 111: 765-785.
    [35] 全子婷,谭秀成,张本健,等. 川西北下二叠统栖霞组微生物丘的发现及地质意义[J]. 古地理学报,2021,23(6):1110-1124.

    Quan Ziting, Tan Xiucheng, Zhang Benjian, et al. Discovery of microbial mounds of the Lower Permian Qixia Formation in northwestern Sichuan Basin and its geological significance[J]. Journal of Palaeogeography, 2021, 23(6): 1110-1124.
    [36] 黄荟文. 川西地区中二叠统储层研究[D]. 成都:西南石油大学,2019.

    Huang Huiwen. Study on Middle Permian reservoir in western Sichuan[D]. Chengdu: Southwest Petroleum University, 2019.
    [37] 白晓亮,杨跃明,杨雨,等. 川西北栖霞组优质白云岩储层特征及主控因素[J]. 西南石油大学学报(自然科学版),2019,41(1):47-56.

    Bai Xiaoliang, Yang Yueming, Yang Yu, et al. Characteristics and controlling factors of high-quality dolomite reservoirs in the Permian Qixia Formation, northwestern Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(1): 47-56.
    [38] 胡笙,谭秀成,罗冰,等. 四川盆地西北部二叠系栖霞阶层序地层特征及地质意义[J]. 古地理学报,2020,22(6):1109-1126.

    Hu Sheng, Tan Xiucheng, Luo Bing, et al. Sequence stratigraphic characteristics and geological significance of the Permian Qixia stage in northwestern Sichuan Basin[J]. Journal of Palaeogeography, 2020, 22(6): 1109-1126.
    [39] 王成善,陈洪德,寿建峰,等. 中国南方二叠纪层序地层划分与对比[J]. 沉积学报,1999,17(4):499-509.

    Wang Chengshan, Chen Hongde, Shou Jianfeng, et al. Characteristics and correlation of Permian depositional sequences in South China[J]. Acta Sedimentologica Sinica, 1999, 17(4): 499-509.
    [40] Zhong Y, Yang Y M, Wen L, et al. Sedimentary environments controlled by tectonics and induced differential subsidence: A perspective in the Permian Liangshan and Qixia Formations, northwestern Sichuan Basin, China[J]. Journal of Central South University, 2020, 27(11): 3398-3416.
    [41] 黎荣,胡明毅,杨威,等. 四川盆地中二叠统沉积相模式及有利储集体分布[J]. 石油与天然气地质,2019,40(2):369-379.

    Li Rong, Hu Mingyi, Yang Wei, et al. 2019. Sedimentary facies model and favorable reservoir distribution of the Middle Permian in Sichuan Basin[J]. Oil & Gas Geology, 2019, 40(2): 369-379.
    [42] Vail P R, Mitchum R M, Thompson III S. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes of sea level from coastal onlap[M]//Payton C E. Seismic stratigraphy: Applications to hydrocarbon exploration. AAPG Memoir, 1977: 63-81.
    [43] 吴联钱,胡明毅,胡忠贵,等. 四川盆地中二叠统层序地层学研究[J]. 石油地质与工程,2010,24(6):10-13.

    Wu Lianqian, Hu Mingyi, Hu Guizhong, et al. Study on the Middle Permian sequence stratigraphy of Sichuan Basin[J]. Petroleum Geology and Engineering, 2010, 24(6): 10-13.
    [44] 冯增昭. 单因素分析多因素综合作图法:定量岩相古地理重建[J]. 古地理学报,2004,6(1):3-19.

    Feng Zengzhao. Single factor analysis and multifactor comprehensive mapping method: Reconstruction of quantitative lithofacies palaeogeography[J]. Journal of Palaeogeography, 2004, 6(1): 3-19.
    [45] Wang Y, Jin Y G. Permian palaeogeographic evolution of the Jiangnan Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(1/2): 35-44.
    [46] Feng M Y, Wu P C, Qiang Z T, et al. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2017, 82: 206-219.
    [47] 李明隆,谭秀成,苏成鹏,等. 四川盆地西北部中二叠统栖霞组砂糖状白云岩特征及成因机制:以广元上寺剖面为例[J]. 地质论评,2020,66(3):591-610.

    Li Minglong, Tan Xiucheng, Su Chengpeng, et al. Characteristics and genesis of sucrosic dolomite in Middle Permian Chihsia Formation, northwest Sichuan Basin: A case study from Shangsi section[J]. Geological Review, 2020, 66(3): 591-610.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(2)

Article Metrics

Article views(208) PDF downloads(55) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-01-27
  • Revised:  2022-04-14
  • Accepted:  2022-05-13
  • Published:  2024-02-04

Sequence Stratigraphy and Lithofacies Paleogeography of the Lower Permian Qixia Stage in Southwestern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2022.043
Funds:

National Natural Science Foundation of China 42172166

Abstract: Objective The Lower Permian Qixia Stage in southwest Sichuan Basin has shown significant exploration potential in recent years, but the views on the sedimentary filling pattern and paleogeographic framework in this area are not unified, which seriously restricts the further oil and gas exploration and well location deployment in the basin. Methods This study of the Lower Permian Liangshan Formation and Qixia Formation in southwestern Sichuan Basin was based on the comprehensive use of field profiles, drilling cores and logging data, and analysis of rock types and sedimentary facies. The application of the principles and methods of marine carbonate stratigraphical sequencing led to the identification of third-order sequence interfaces in the Qixia Stage. Single-factor analysis and multi-factor comprehensive mapping were adopted, taking the three-level sequence as the mapping unit. Combining these with the dominant phase, maps of the SQ0 + SQ1 and SQ2 sequence paleogeographic lithofacies were drawn for the Qixia Stage in the study area. Results Four third-order sequence interfaces were identified in the Qixia Stage, from bottom to top: lower interface of Liangshan Formation (SB I), inner interface of Qixia Formation Group 1 section (SB II), interface of Qixia Formation Groups 1 and 2 (SB II) and interface of the Qixia Formation and Maokou Formation (SB I). These occurred in three tertiary sequences, each consisting of a transgressive domain and a high-order domain. Comparative analysis of the sequential stratigraphic framework suggested that the SQ0 sequence of the lower Qixia Stage corresponds roughly to the Liangshan Formation. In the lower Qixia Formation Group 1 section, SQ0 is evident only in the paleogeomorphic lowland before the deposition of Qixia Stage in the study area, with a filling sequence overlapping a paleogeomorphic highland. Sequence SQ1 in the middle region and SQ2 sequence in the upper region are found throughout the area. The sequence in the southwestern Sichuan Basin consists of a marine carbonate platform bordering the Kang-Dian ancient land in the west, with obvious differentiation of paleogeomorphology and sedimentary facies. From west to east, the Kang-Dian land and its eastern margin consisted of a tidal flat, intraplatform depression, intraplatform mound-shoal, and an open semi-confined platform. In addition, an intraplatform mound-shoal beach developed along the intraplatform slope break zone, tending to surround the intraplatform depression. Conclusions Analysis of the influence of the slope break zone on carbonate reservoir formation highlighted that the SQ2 sequence is the most favorable reservoir facies belt in the study area, with favorable exploration areas around the intraplatform mound-shoal facies belt. A new understanding of the filling pattern and paleogeographic lithofacies characteristics of the Qixia Stage, as determined from the sequence stratigraphy, provides a new framework for future reservoir studies and the prediction of favorable exploration areas in the Qixia Formation.

TANG YanLing, LI Ling, TAN XiuCheng, LI MingLong, LU FeiFan, ZHANG BenJian. Sequence Stratigraphy and Lithofacies Paleogeography of the Lower Permian Qixia Stage in Southwestern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(2): 575-592. doi: 10.14027/j.issn.1000-0550.2022.043
Citation: TANG YanLing, LI Ling, TAN XiuCheng, LI MingLong, LU FeiFan, ZHANG BenJian. Sequence Stratigraphy and Lithofacies Paleogeography of the Lower Permian Qixia Stage in Southwestern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(2): 575-592. doi: 10.14027/j.issn.1000-0550.2022.043
  • 四川盆地二叠系栖霞阶近年来取得了良好的勘探成果,川西北双鱼石地区、九龙山地区栖霞组喜获高产油气[1],而就四川盆地西南地区(简称川西南)而言,总体勘探程度较低,近年来随着平探1井试获高产工业气流66.86×104 m3/d[2],说明川西南地区下二叠统栖霞组具有一定勘探潜力,其研究价值也逐渐被重视。就现有优质储层类型而言,叠加早期岩溶改造的白云岩可作为栖霞组一类优质储集体[35]。目前,尽管关于优质储层形成的白云岩化作用类型和成因还存在诸多争议[69],但二叠系扬子西缘坡折带位置浅滩的分布情况主导了优质白云岩储层的发育分布,已经成为共识[1011]。由此,探求台内丘滩体的时空展布规律及其形成的古地理环境,则成为寻找这类相控白云岩储层的首要任务。

    截至目前,已有大量关于中上扬子地区下二叠统地层充填特征和古地理的相关研究,就川西南地区,各学者对其古地貌及古地理格局的观点也并不统一。姜德民等[12]将川西南栖霞阶划分为两个三级旋回,并认为研究区栖霞期主要发育碳酸盐岩台地的开阔台地沉积,滩体多呈点状分布;杨帅等[13]同样将栖霞阶分为两个三级层序,认为研究区栖霞组地层具有隆坳分异,整体为局限台地—半开阔台地沉积,川西南发育规模较大的台缘条带状浅滩;胡明毅等[14]将栖霞组划分为两个三级层序,认为栖霞组主要为台地沉积,在研究区雅安一带发育台缘滩,台内滩多在第二个三级旋回的高位体系域发育。尽管如此,前人研究多针对全盆地及大尺度地层系统进行研究,目前专门针对川西南地区下二叠统地层充填规律及古地理环境的恢复工作,相关报道还较少,同时前人研究成果无法解释研究区的储层在汉王场—乐山一带呈东西向带状发育的特征,这无疑限制了下一步盆内精细的油气勘探和井位部署。由此,本文以四川盆地西南部下二叠统栖霞阶为研究对象,综合利用野外露头、钻井岩心(屑)、测井等资料,从层序地层学角度对其进行剖析和精细解译,以探索栖霞阶地层充填规律及古地理特征,为川西南部下二叠统栖霞阶的下一步储层预测及勘探开发提供全新的理论支撑。

  • 研究区位于四川盆地西南缘,东北始于绵阳地区,西南止于天全一带,包括雅安市、乐山市、眉山市、成都市等地(图1b)。构造位置位于四川盆地西南部龙门山断褶带、川西凹陷带以及川南低陡褶皱带的过渡区(图1a)。

    Figure 1.  Regional geological overview map

    泥盆纪末期的柳江运动和石炭纪末期的云南运动导致研究区沉积基底持续抬升暴露并遭受差异剥蚀,二叠系沉积前地貌转变为局部地貌隆坳起伏的准平原化格局[1517]。二叠纪早期,伴随全球范围内的冰期结束和普遍的冰川消融,扬子区域经历了晚古生界最普遍的一次海侵作用,在石炭系、泥盆系、志留系等不同时代地层的不整合面之上依次发育梁山组、栖霞组和茅口组[18],其中的梁山组和栖霞组归属下二叠统栖霞阶(图1c)。梁山组(厚2~20 m)为一套海侵初期滨岸—沼泽相砂泥岩夹煤层沉积[1925],受后期持续海侵的影响,栖霞组(厚70~185 m)演变为一套海相碳酸盐岩台地沉积体系,下部主要发育含泥质的泥晶灰岩及生屑泥晶灰岩,上部以泥晶生屑灰岩、亮晶生屑灰岩等相对高能的沉积物为主,局部见白云岩及斑状云质灰岩。已有的研究结果表明,栖霞组中上部为下二叠统最重要的成滩期,以泥晶生屑灰岩、亮晶生屑灰岩等相对高能沉积物为特征[10,2629]。栖霞中晚期的各旋回末期,伴随着相对海平面下降,颗粒滩往往暴露遭受大气淡水淋滤溶蚀[3031],形成的溶蚀孔洞被海水白云石化后得以保留,构成了栖霞组最主要的储集空间[5]。在茅口沉积初期,伴随着海平面持续上升,低能的灰岩和泥灰岩开始沉积,覆盖在栖霞组之上[3234]

  • 以研究区野外露头以及钻井取心资料为基础,在川西南栖霞阶内识别出多种岩石类型,其中梁山组多发育泥页岩,偶见粉砂岩,栖霞组主要发育灰岩类、云岩类两大类岩石。下面对栖霞组主要岩石学特征进行描述,并对其可能的沉积环境进行分析。

  • 该类岩石宏观上多为灰色—浅灰色,呈中层—块状,整体较致密,镜下可见成分主要为碳酸盐岩颗粒以及颗粒之间的亮晶胶结物,颗粒含量大于50%,颗粒类型基本为生物碎屑,包含棘皮类、底栖有孔虫等,生屑内部结构多被破坏,粒径多为0.1~2 mm,分选较差,磨圆变化较大,偶见微生物黏结特征(图2a,b)。此类岩石主要出现在栖霞组顶部,反映较高水动力条件下的沉积环境,而较差的分选和磨圆说明其并非一个稳定环境的产物,其形成环境可能为台内相对高地附近的高能丘滩体。

    Figure 2.  Petrological characteristics of Qixia Stage in southwestern Sichuan Basin

  • 该类岩石宏观上颜色多为灰色—深灰色,呈中—厚层状,镜下可见成分主要为碳酸盐岩颗粒及颗粒之间的灰泥基质,颗粒含量大于50%,颗粒类型基本为生物碎屑,包含底栖有孔虫、藻类等,粒径范围多为0.1~2 mm,分选较差,磨圆变化大,灰泥的富集程度存在差异,亦常可见灰泥裹覆、黏结生屑或颗粒(图2c,d)。该岩类多见于栖二段及栖一段上部,该类岩石生物碎屑含量高,分选较差,且生屑颗粒具有磨蚀特征,反映了一种中—低能环境,其形成环境可能为浪基面附近的相对低能的丘滩体。

  • 该类岩石宏观上颜色较浅,为灰色—浅灰色,呈厚层—块状,镜下可见成分主要为灰泥基质,其含量大于50%,其次为碳酸盐岩颗粒,颗粒含量多为25%~50%,颗粒类型基本为生物碎屑,主要为底栖有孔虫、藻类、棘皮类等,粒径多为0.1~1 mm(图2e)。该岩类在整个栖霞组均可见,发育频率高。该类岩石生物碎屑含量较少,生物碎屑见沉积大量的灰泥,总体反映了一种中—低能的沉积环境,其形成环境可能为开阔—半局限海或者丘滩体之间的低能滩间海环境。

  • 该类岩石较为致密,多呈薄层状产出,碳酸盐岩颗粒极少,总体由灰泥组成,粒级小于0.01 mm,含量超过了90%,生屑极为少见,其含量低于10%(图2f)。该岩类在整个栖霞组沉积时期均有发育,但栖一段发育频率远高于栖二段沉积时期。总体反映一种较低能的深水环境,结合前人对川西南栖霞组的研究成果,栖霞组应为碳酸盐岩台地沉积,因此排除盆地环境的可能性,其形成环境可能为开阔—半局限海或台内洼地深水沉积。

  • 该类岩石宏观上多为灰色,均质,镜下可见白云石主要呈他形—半自形,粒径一般为50~150 μm,晶粒多具溶蚀边,可见鸟眼构造(图2g)。该类白云岩可能的沉积环境为潮坪或台地蒸发坪环境,与潮坪—潟湖体系中局限环境导致的蒸发浓缩—回流渗透白云石化作用有关[5,35]

  • 该类岩石宏观呈灰白色—浅灰色,针状孔发育,镜下可见白云石主要呈他形—半自形,常见原始颗粒轮廓或颗粒幻影(图2h)。该类白云岩晶间孔隙发育,是川西南地区栖霞组主要的储集岩类型[36],通过丰富的残余颗粒组构推测,其原岩为亮晶生屑灰岩及泥晶生屑灰岩。关于白云岩的成因已有大量学者做过研究,虽然目前尚存在一些争议,但总体认为层状细—中、粗晶白云岩的形成往往受高能滩相控制,其形成环境可能为台缘或台内丘滩体[10,31,37]

  • 根据识别出的岩石类型及其可能对应的沉积环境,并结合前人研究成果,认为研究区栖霞阶沉积格局整体为无镶边的碳酸盐台地相,发育潮坪、开阔—半局限台地、潟湖、台内洼地、台内丘滩体等亚相,具体细分如表1所示。

    沉积相亚相微相主要岩石类型
    碳酸盐台地潮坪云坪,藻坪,潮缘滩粉晶白云岩,细晶白云岩,泥晶生屑灰岩
    开阔—半局限海灰质开阔—半局限海,滩间海泥晶灰岩,生屑泥晶灰岩
    台内洼地灰质台内洼地,泥灰质台内洼地泥晶灰岩,含泥灰岩
    台内丘滩体生屑滩,灰泥丘亮晶生屑灰岩,泥晶生屑灰岩,细—中晶白云岩
    潟湖灰质潟湖粉晶白云岩,泥晶灰岩,生屑泥晶灰岩

    Table 1.  Classification of sedimentary facies of Lower Permian Qixia Stage in southwestern Sichuan Basin

  • 基于测录井、岩心、野外剖面等地质资料,以及层序间的嵌套关系,将川西南栖霞阶梁山组+栖霞组作为一个整体进行解剖,识别出梁山组底部(Ⅰ型)、栖一段内部(II型)、栖一段\栖二段(Ⅱ型)、栖霞组\茅口组(Ⅰ型)4个三级层序界面。

    至于梁山组与栖霞组分界面,此次研究认为其并非一个等时的层序界面,而仅仅是一个岩性岩相的转换界面。从研究区梁山组物源输送角度来看,梁山组除四川盆地局部地区外,在整个四川盆地均有沉积,厚度分布较薄且范围广,而根据前人研究[1517],梁山组沉积前,研究区整体古地貌是趋于平缓的,风化剥蚀能力弱,地表径流规模小,物源注入能力和强度也小,这种条件下整个区域梁山组不可能同时沉积;从可观察到的沉积特征来看,区内梁山组底界面是进入早二叠世一次新的“海侵—海退”旋回的开始,梁山组为栖霞组为连续过渡沉积,在新基姑、张村剖面的栖霞阶底部可观察到混积碳酸盐岩,其自下而上整体表现为海陆过渡相陆源碎屑岩—混积碳酸盐岩—海相碳酸盐岩的沉积过程,梁山组与栖霞组下部为“同期异相”的关系,梁山组与栖霞组分界面为岩性岩相转换面[2425,3840]。故此次研究认为梁山组并非等时沉积,而是一个穿时的岩性地层单元,它与栖霞组分界面并非等时的三级层序界面。

  • 二叠纪早期的广泛海侵,导致了在早期古风化壳产物之上形成了具有海陆过渡特征的、以含煤碎屑岩为主的梁山组地层。梁山组与下伏地层界面为加里东—海西构造运动形成的不整合界面,是典型的I型层序界面[41]。区内该界面之下地层岩性以寒武系—石炭系泥页岩和粉砂岩为主(局部也含少量碳酸盐岩),界面之上突变为梁山组的一套滨岸沼泽—潟湖沉积的泥页岩、粉砂岩夹煤层,较纯的砂岩偶有发育,推测为滨岸砂坝沉积(图3a~c)。在常规测井曲线上,由于上下岩性的突变而表现为GR(自然伽马)由中高值转变为锯齿状高值(图4a),在汉深1井成像测井上资料上也可明显观察到此不整合面,界面之下的粉砂岩电阻率较高,显示为亮色薄层,界面之上的泥页岩电阻率较低,显示为暗色薄层条带状(图4a)。在地震剖面可明显观察到这一界面,该界面表现为强波谷的特征,连续性好(图5)。

    Figure 3.  Characteristics of sequence interface of Qixia Stage

    Figure 4.  Imaging logging responses of sequence interfaces in the Lower Permian Qixia Stage in southwestern Sichuan Basin

    Figure 5.  Seismic response of Lower Permian Qixia Stage I sequence interface, southwestern Sichuan Basin (profile location in Fig.1)

  • 该界面为一范围较小的短暂暴露面,同时也为典型的岩性—岩相转换面,仅在部分位于较深水相区的剖面中可见。界面之下沉积一套白云岩,此套白云岩宏观上为灰色,在三级旋回高位晚期沉积,旋回末期海平面下降,后期遭受暴露风化,镜下多为粉晶白云岩及细晶白云岩,界面之上过渡为一套较低能的泥晶灰岩及生屑泥晶灰岩,整体表现为高位体系域末期形成的相对高能岩类过渡为海侵体系域初期形成的低能岩类(图3d~f)。

  • 区内栖一段顶部普遍存在短暂暴露,张村剖面栖一段顶部可见暴露面形成的风化层,该界面之下地层岩性主要为灰色中—厚层生屑灰岩夹纹层状泥质灰岩,顶部见白云岩,界面之上水体能量降低,岩性主要为泥灰岩与灰岩互层(图3g~i),为典型的岩性—岩相转换面。常规测井曲线表现为GR由下降转换为上升趋势,界面之下GR达到栖一段最低值,主要呈箱状或者钟形,代表了栖一段高位体系域顶部,三级海平面下降至最低点,栖一\栖二界面之上GR数值明显升高,说明栖二期初始海泛期海平面迅速上升,在短时间内即达到栖二期最大海泛面,随后缓慢下降,至栖顶均呈现较低GR值(图4b)。在汉深1井成像测井资料上,可以明显识别这一暴露面,界面之上中—厚层状生屑灰岩电阻率较高,呈浅—亮色厚层状,往下为栖二段顶部的白云岩,其中存在的溶沟往往充填一些电阻率较低的物质,因而显示为暗色垂向沟状(图4b)。

  • 研究区栖霞阶沉积末期经历了一次相对时间较长、影响范围较广的暴露[31],栖霞组\茅口组分界面为一平行不整合面,为I型层序界面[38]。区内该界面之下岩性主要为浅色中—厚层泥晶生屑灰岩,其次为生屑泥晶灰岩及泥晶灰岩,顶部发育云质灰岩,同时可见一套明显的风化壳,界面之上为茅口组沉积初期快速海侵形成的、较为低能的泥晶灰岩及生屑泥晶灰岩,偶夹杂泥灰岩,一般称这种岩性组合为眼皮眼球灰岩(图3j~l)。界面之下的栖霞组相对高能岩类在GR曲线上通常表现为锯齿状或箱状低值,与界面之上的茅口组相对低能岩类呈现出的锯齿状高值形成明显对比(图4c)。大深001-X3井成像测井资料上可明显观察到该界面为一不整合界面,界面之下的生屑灰岩电阻率较高,表现为亮色中—厚层状,顶部的云质灰岩发育垂直溶沟,溶沟内充填物电阻率较低,呈现出暗色条纹,界面之上的眼球眼皮状灰岩由于其中的“眼球”为泥晶灰岩,电阻率较高,表现为亮斑状,而其中的“眼皮”则含泥质,电阻率较低,表现为暗色带状(图4c)。在地震剖面上,该界面表现为一个强波峰的特征,在地层厚度较大时表现为复波的特征(图5)。

  • 经典的层序地层学认为,全球海平面升降控制了地层层序的发育和演化,也影响着地层岩性和地层叠置关系[42]。此次研究利用以Vail为代表的经典层序地层学理论和方法,充分利用露头、岩心、自然伽马测井和成像测井等资料,在前述识别三级层序界面的基础上,根据GR曲线旋回特征,结合地震资料及前人研究成果,对梁山组—栖霞组所有露头和钻井剖面进行层序地层划分、对比及追踪并建立了川西南下二叠统栖霞阶层序地层格架。

  • 川西南下二叠统栖霞阶可划分为3个三级层序,自下而上分别标示为SQ0、SQ1和SQ2(图1c),层序之间均为SB II型层序界面,每个层序均由下部的海侵域和上部的高位域组成。其中,SQ0、SQ1大致对应于原来划分的梁山组—栖一段岩性地层单元,SQ2对应于栖二段(图6,7)。

    Figure 6.  Comprehensive histogram of stratigraphical sequence of Qixia Stage, Zhangcun section, southwestern Sichuan Basin

    Figure 7.  Comprehensive histogram of stratigraphical sequence of Qixia Stage in well Pingtan 1, southwestern Sichuan Basin

    值得指出的是,由于四川盆地二叠系沉积前古地貌虽然已准平原化,但局部地形仍然差异较大,造成川西南地区栖霞阶开始接受沉积的时间不同[38,40],导致一些地貌高地地区栖霞阶层序发育不全,以缺失SQ0层序为特征,而在相对地貌高地SQ1仅发育高位体系域。例如,在研究区西部和南部张村等地区的栖霞阶中,可以识别完整的3个三级层序(图6),而在台内广阔区域内,在栖霞阶中仅能区分出SQ1和SQ2两个三级层序,缺失下部的SQ0层序,并且可见“梁山组”海陆过渡相碎屑岩分布于SQ1层序的底部(图7)。这显然与古地貌差异、栖霞早期海侵的不断扩大和相对海平面的逐步上升密切相关,也进一步证实了“梁山组”为一个穿时的岩石地层单元。

    SQ0层序由早二叠世早期海侵形成的海陆过渡相碎屑岩和海相碳酸盐岩构成,主要沉积相对低能的泥晶灰岩、生屑泥晶灰岩,顶部偶见相对高能的泥晶生屑灰岩及海退末期暴露风化形成的白云岩,整体为浅水沉积;SQ1层序中下部多沉积海侵域较低能的泥灰岩、泥晶灰岩及生屑泥晶灰岩,中上部及顶部为高位域沉积的、相对高能的泥晶生屑灰岩及白云岩;SQ2层序中下部沉积相对高能的泥晶生屑灰岩及生屑泥晶灰岩,偶见白云岩及较低能的泥晶灰岩,上部及顶部沉积高能的泥晶生屑灰岩及亮晶生屑灰岩,偶见白云岩。

  • 前人研究显示,梁山—栖一期的各个中长期旋回(SQ0,SQ1)以海侵和填平补齐沉积为主,栖二期(SQ2)则以海退为主[14,43],因而可以将SQ1层序顶面作为一个可全区对比的填平补齐界面。为更好地研究川西南地区栖霞阶层序充填规律及古地貌特征,将栖一段\栖二段(即SQ1/SQ2)分界面拉平,从而揭示川西南层序格架内栖霞阶的沉积充填过程(图8,9)。

    Figure 8.  Cross⁃sectional comparison of Qixia Stage stratigraphical sequence and sedimentary facies in Xinjigu⁃Tianping⁃Zhangcun⁃Hanshen 1⁃Pingtan 1⁃Yangkai⁃Dafeishui⁃Longxi profile

    Figure 9.  Cross⁃sectional comparison of Qixia Stage stratigraphical sequence and sedimentary facies in Yudongzi⁃Pingtan 1⁃Dashen 001⁃X3⁃Leshan 1⁃You 1⁃Zitan⁃1 profile

    北东—南西向的层序地层横向对比剖面,由新基姑、田坪、张村、汉深1井、平探1井、杨开、大飞水、龙溪8个单剖面构成。在图8所示的横向对比剖面中,SQ0层序仅见于田坪、张村和龙溪剖面,其他剖面缺失。SQ0层序主要由栖一段下部的泥晶灰岩、生屑泥晶灰岩、泥灰岩及底部梁山组的泥岩和页岩组成,反映SQ0主要发育潟湖亚相和开阔—半局限海亚相,几乎不发育台内丘滩体亚相,底部为梁山组的碎屑滨岸相。SQ1层序主要沉积栖一段上部的泥晶生屑灰岩、生屑泥晶灰岩、泥晶灰岩,偶见白云岩,较高能的泥晶生屑灰岩多发育在层序顶部。SQ1局部开始发育一些丘滩体,多见于层序中上部及顶部,丘滩体之间为开阔—半局限海及滩间海沉积。SQ2层序在北东—南西方向上发育相对完整,主要由栖二段亮晶生屑灰岩、泥晶生屑灰岩、生屑泥晶灰岩、白云岩等构成,横向展布稳定,是栖霞组主要的成滩期,在张村—大飞水一带发育厚度较大的、连片分布的台内丘滩体,丘滩体之间为滩间海沉积,而在西侧靠近康滇古陆的新基姑和田坪剖面,则发育潮坪及潮缘滩沉积。值得注意的是,在田坪—张村一带及龙溪附近,SQ0层序具有明显的向两侧尖灭的特征。SQ1层序厚度在该横向对比剖面中表现出厚薄相间的分布特点,张村和龙溪剖面较厚,大飞水一带较薄,推测在研究区西南侧的田坪—张村一带及东北侧的龙溪附近为坳陷区。而SQ2层序横向展布较稳定,水体能量较高,是滩体发育的主要时期,在张村—大飞水一带,丘滩体沉积厚度较大。

    图9所示,北西—南东向的层序地层横向对比剖面,由鱼洞子、平探1井、大深001-X3井、乐山1井、油1井、资探1井6个单剖面组成。该对比剖面完全缺失SQ0层序,SQ1层序主要沉积中低能的泥晶生屑灰岩、生屑泥晶灰岩及泥晶灰岩,多发育开阔—半局限海亚相,顶部多发育较高能的台内丘滩体亚相,底部为梁山组的碎屑滨岸相。SQ2层序横向展布稳定,整体沉积栖二段相对高能的台内丘滩体亚相的亮晶生屑灰岩、泥晶生屑灰岩、云质灰岩及云岩,偶见泥晶灰岩,为栖霞组主要的成滩期,台内丘滩体发育规模较大,横向连续性较好,丘滩体之间为滩间海亚相或开阔—半局限海亚相沉积。该剖面由北西朝南东方向,SQ1和SQ2层序厚度总体变化不大,以继承性发育厚度较大、横向连续的台内丘滩体为特征。

    综上所述,受古地貌差异和栖霞早期相对海平面逐步上升的影响,研究区栖霞阶总体具有下部超覆沉积的特征,底部的梁山组并非等时沉积。在田坪、张村和龙溪剖面,栖霞阶完整发育3个三级层序,其余广大地区普遍缺失下部的SQ0层序。SQ1层序厚度在西部表现出厚薄相间的分布特点,在台地内则总体变化不大。SQ2层序横向展布较稳定,厚度分异不明显,为栖霞阶的主要成滩层位。

  • 在明确层序划分方案的基础上,统计研究区露头及钻井SQ0+SQ1(梁山—栖一段)和SQ2(栖二段)地层厚度,分别绘制了SQ0+SQ1和SQ2地层厚度等值线图(图10)。从图中可以看出,SQ0+SQ1时期,都江堰—成都一带及雅安—乐山一带地层厚且SQ0+SQ1地层发育完全,并逐渐向两侧超覆,都江堰—成都周缘地区地层明显减薄,自都江堰—成都—遂宁向东,地势呈阶梯式逐渐抬升(图10a)。SQ2时期,盆地内部发育“棋盘式”的地层增厚带,而都江堰—成都一带及雅安—乐山一带厚度极薄(图10b)。

    Figure 10.  Sequence thickness isoline map of Qixia Stage in southwestern Sichuan Basin

  • 依据研究区大量探井和露头剖面的沉积相精细分析结果,着重优选和统计层序厚度、颗粒岩厚度、颗粒岩/地层厚度比值(颗地比)、丘滩体厚度、白云岩厚度等定量因素,运用冯增昭[44]倡导的单因素分析多因素综合作图法,以三级层序为编图单位,采用优势相原则并综合古地理背景[45],分别绘制研究区栖霞阶SQ0+SQ1和SQ2层序岩相古地理图。下面简要论述这两个层序的岩相古地理特征。

  • 鉴于SQ0层序分布局限,且SQ0与SQ1层序皆具有超覆和继承沉积的特征,可以将SQ0+SQ1层序(主要为栖一段)作为一个整体进行岩相古地理分析。SQ0+SQ1层序的古地理格局总体上表现为邻接康滇古陆的连陆碳酸盐岩台地(图11a),西侧康滇古陆东缘发育近南北向展布的潮坪,向东相变为海相碳酸盐岩台地。在这个辽阔的台地上,层序厚度一般为20~80 m(图10a),反映古地貌虽然总体比较平坦,但明显存在局部分异,既有发育于水下高地上的、星罗棋布的台内丘滩体,也有表现为古地貌低地的潟湖。

    Figure 11.  Paleogeographic lithofacies map of Qixia Stage in southwestern Sichuan Basin

    台内丘滩体亚相主要由灰色—深灰色中—厚层状泥晶生屑灰岩夹生屑泥晶灰岩组成,常具有微生物黏结组构,受白云化影响,有的可转变为具有残余结构的白云岩,属于中低能丘滩体环境的沉积产物。单个丘滩体的厚度通常为0.5~3 m,伴随丘滩体的侧向迁移叠置,累计厚度1~18 m,颗地比值一般大于0.22(图12a)。该层序的台内丘滩体常呈星散状孤立分布,也有集中连片成断续条带状分布的丘滩体相带,例如在西部的大飞水—林盘—LS1井一带,南部的资阳—乐山一带,丘滩体累计厚度可达18 m。

    Figure 12.  Scatter plot of sequence grain⁃ground ratio and sequence stratigraphic thickness of Qixia Stage, southwestern Sichuan Basin

    开阔—半局限海亚相或滩间海亚相为该层序分布范围最广的古地理单元,主要由灰色—浅灰色厚层—块状生屑泥晶灰岩、含生屑泥晶灰岩和泥晶灰岩组成,罕见白云岩,生屑颗粒包括有孔虫、藻类、棘皮类、腹足类、双壳类、介形类等,反映比较安静的低能正常海环境,厚度一般为40~70 m,颗地比值小于0.22(图12a)。它们通常分布于台内丘滩体亚相之间(滩间海),或者连片分布,尤其是在研究区东部。

    潟湖亚相主要由暗色薄层状泥晶灰岩、含泥灰岩、泥质灰岩、泥灰岩等组成,几乎不含生屑颗粒,偶夹薄层状含生屑泥晶灰岩,不发育白云岩,表明环境安静、低能、水较深,厚度往往大于80 m,最厚可达110 m,颗地比值很小,接近于零。台内洼地亚相主要分布于研究区北中部的什邡—都江堰—双流地区,以及西南部的荥经—张村—峨边地区。

  • SQ2层序(相当于栖二段)的古地理格局,基本上继承了SQ0+SQ1层序连陆碳酸盐岩台地的格局,但相带东西向分异更加显著,自西向东依次为:近南北向展布的康滇古陆及其东缘的潮坪、台内洼地、台内丘滩体,以及开阔—半局限海台地(图11b)。层序厚度一般为55~90 m,总体上呈现出西薄东厚的变化趋势(图10b)。这个海相碳酸盐岩台地上的古地貌虽然总体比较平坦,但依然存在古地貌分异现象。发育于水下高地上的、成排成带的台内丘滩体成为这个台地上最醒目的景观,表现为古地貌低地的台内洼地则纵贯南北展布。

    台内丘滩体亚相主要由灰色—浅灰色中层状—块状亮晶生屑灰岩和泥晶生屑灰岩组成,有的具有微生物黏结组构,属于中高能丘滩体环境的沉积产物,受白云化影响,时常转化为具有残余结构的白云岩。单个丘滩体的厚度通常为0.5~6 m,伴随丘滩体的侧向迁移叠置,累计厚度为1~30 m,颗地比值一般大于0.41(图12b)。白云岩分布较广,多出现在层序中上部,累计厚度通常为2~45 m。该层序的台内丘滩体最突出的特征之一是常集中连片分布,尤其是在成都—雅安—乐山一带,该相带大致呈向西凸出的弓形宽带状连绵数百千米,并且具有环凹规模分布的趋势,厚度普遍超过70 m。东部台地上也有规模较大的台内丘滩体发育,例如资探1、永探1、资6井区附近。

    开阔—半局限海亚相或滩间海亚相主要分布于研究区东部,岩相特征与SQ0+SQ1层序相似,主要由灰色—浅灰色厚层—块状生屑泥晶灰岩、含生屑泥晶灰岩和泥晶灰岩组成,白云岩少见,厚度一般小于75 m,颗地比值小于0.41(图12b)。它们通常分布于台内丘滩体之间(滩间海),或者连片分布,尤其是在研究区东部。

    台内洼地亚相的岩石类型主要为暗色薄层状泥晶灰岩、含泥灰岩、泥质灰岩、泥灰岩等,生屑颗粒很少,偶夹薄层状含生屑泥晶灰岩,白云岩不发育,表明环境安静、低能、水较深,厚度一般小于60 m,颗地比值很低,接近于零。台内洼地亚相主要分布于研究区西部的都江堰—大石包—荥经—峨边一带,西邻康滇古陆东缘的潮坪相带,东接成都—雅安—乐山一带的台内丘滩体相带,成为一个纵贯南北的、地势低洼的古地理单元。

  • 综合上述两节有关岩相古地理的论述,建立了如图13所示的川西南下二叠统栖霞阶沉积模式。

    Figure 13.  Sequence sedimentary filling pattern of Lower Permian Qixia Stage, southwestern Sichuan Basin

    SQ0+SQ1层序沉积环境主要受控于云南运动所形成的侵蚀古地貌和早二叠世海平面相对升降变化。随着早二叠世早期海侵,SQ0+SQ1层序具有向古地貌高地逐层超覆的特征,并据此形成了梁山组与栖霞组下部地层“同期异相”的现象。整个SQ0+SQ1沉积期水体较为局限,能量较低,不发育亮晶颗粒岩类。SQ0+SQ1沉积历程整体属于一个“填平补齐”过程,最终形成“古地貌高地及坡折带附近发育中低能丘滩体,古地貌低地多为台内洼地”的古地理格局。SQ2沉积期环境能量较高,以发育亮晶颗粒岩类为特征,丘滩体规模进一步扩大,同时在古地貌高部位可见丘滩体叠置迁移的特征,形成环洼规模分布的古地理格局(图13)。

    图13所示,在SQ0沉积初期,在如田坪—新开寺一带的相对古地貌低地最先开始接受沉积,并且具有向两侧相对古地貌高地超覆沉积的现象,主要沉积较为低能的泥灰岩、泥晶灰岩及少量的生屑泥晶灰岩,同时SQ0层序的发育具有一定的局限性,仅见于什邡—都江堰—双流地区和荥经—峨边一带。SQ1层序具有和SQ0类似的沉积特征,由地貌低地向两侧高地超覆沉积,主要沉积泥晶灰岩、生屑泥晶灰岩及少量的泥晶生屑灰岩和白云岩。SQ0+SQ1丘滩体发育较少,主要分布于古地貌低地两侧的坡折带。这是由于坡折带处于高能浪基面附近,且可容空间充足。SQ2沉积期,水体较开阔,主要沉积亮晶生屑灰岩、泥晶生屑灰岩、生屑泥晶灰岩及少量泥晶灰岩和白云岩,此时是整个栖霞阶丘滩体发育的主要时期,它们多发育在微地貌高地,当丘滩体沉积至平均海平面附近时,由于可容空间有限,丘滩体多发生侧向叠置迁移,导致丘滩体规模扩大。

  • 对比研究区栖霞组储集岩类物性数据发现(表2),云岩类储层的物性明显优于灰岩类储层,而在云岩类储层中,细—中晶白云岩具有更好的物性特征,是研究区最主要的储集岩。据前人研究,二叠系优质白云岩储层的发育和分布受丘滩体相带控制[1011,31,37]。因此,厘清台内丘滩体形成的古地理环境及其展布规律,是寻找相控白云岩储层的前提。

    储集岩类孔隙度/%样品数渗透率/×10-3 μm2样品数
    平均值最大值最小值平均值最大值最小值
    云岩类细—中晶白云岩3.0110.661.25620.98.460.0129
    粉晶白云岩1.455.970.68620.656.230.002 723
    灰岩类0.862.650.36300.280.530.077

    Table 2.  Porosity and permeability of different lithologies in Qixia Stage, southwestern Sichuan Basin

    研究区层序格架内地层厚薄相间的分布趋势,是古地貌低地两侧坡折带形成的关键。同时栖霞阶成排成带分布于坡折带附近的台内丘滩体亚相,是储层发育的有利相带,其中坡折带对碳酸盐岩储层形成起着关键作用,主要体现在以下三个方面。首先,就碳酸盐岩沉积规律而言,在总体平坦的克拉通盆地内,坡折带多处于古地貌相对洼地与高地的衔接处,也是水体能量的转换带,不仅控制着栖霞阶沉积相带的发育与分布,而且有利于发育台内丘滩体亚相,为储层发育奠定物质基础[5,10,31];其次,就坡折带对云化作用的控制而言,坡折带附近在高位晚期由于可容空间有限,丘滩体常常发生侧向迁移叠置,导致环境受限,水体咸化,有助于台内丘滩体发生云化作用,所形成的白云岩具有成为良好储集层的潜力[11,35,4647];最后,坡折带附近的丘滩体在高位晚期和层序顶部界面形成期,更容易遭受准同生期岩溶作用的叠加改造,形成有利于油气储集的孔洞体系。

    基于前述层序地层及其岩相古地理格局的分析,认为SQ2层序(栖二段)是研究区栖霞阶最有利于台内丘滩体这一潜力储集相带发育的层位,SQ2和SQ0+SQ1高位晚期的荥经—乐山凹陷北缘、都江堰—成都凹陷东南缘附近台内坡折带附近发育的台内丘滩体亚相,在可能接受后期建设性成岩作用改造的基础上,形成优质白云岩储层或岩溶型灰岩储层。因此,认为环台洼坡折带发育的台内丘滩体相带附近是有利的勘探区。

  • (1) 在川西南下二叠统栖霞阶中识别出4个三级层序界面,从下到上分别为梁山组底界面(I型)、栖一段内部(II型)、栖一段\栖二段界面(II型)和栖霞组\茅口组界面(I型),并将其划分为3个三级层序,每个层序均由海侵域和高位域组成。

    (2) 栖霞阶下部的SQ0层序大致对应于传统划分的梁山组+栖一段下部地层,仅发育于研究区内的古地貌低地,并且具有向古地貌高地超覆的层序充填特征,中部的SQ1层序和上部的SQ2层序则遍布全区。

    (3) 川西南栖霞阶层序岩相古地理格局,总体上表现为西接康滇古陆的海相碳酸盐岩台地,古地貌和沉积相带分异比较明显,自西向东依次为:康滇古陆及其东缘的潮坪、台内洼地、台内丘滩体、以及开阔—半局限海台地,而且沿台内坡折带发育的台内丘滩体往往具有环洼规模分布的趋势。

    (4) SQ2层序(栖二段)是研究区栖霞阶最有利于台内丘滩体这一潜力储集相带发育的层位,环台洼坡折带发育的台内丘滩体相带附近是有利的勘探区。

Reference (47)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return