HTML
-
碳、氧同位素是分析古气候、古环境的重要手段[31⁃32]。生物礁发育往往和当时的生物演化和分布、气候变迁、构造运动、海平面升降密切相关。这一切,都可以通过δ13C值的变化来反映。为此,在桑株剖面克孜里奇曼组采集新鲜岩样13块进行碳氧同位素测试。其中,有6块样品采自克孜里奇曼组顶部生物礁的不同部位,其余样品则采自克孜里奇曼组中下部(涵盖了潮间云坪、颗粒滩、滩间海等亚相)。
在样品采集过程中,避开了受溶蚀作用、胶结作用、构造作用改造较强的部分,尽量排除重结晶程度较高的岩石样品,以保证样品的可用性。样品送西南石油大学油气地质与勘探实验教学中心,在Isoprime100型同位素质谱仪上进行测试。碳氧同位素分析数据见表1。
样号 层位 岩性 δ13CPDB/‰ δ18OPDB/‰ 1 克孜里奇曼组 藻纹层白云岩(礁盖,暴露面之上) 0.119 -6.587 2 克孜里奇曼组 藻云岩(礁盖) 2.856 -5.919 3 克孜里奇曼组 泥晶灰岩(礁后) 3.295 -4.777 4 克孜里奇曼组 生屑泥晶灰岩(礁后) 2.317 -6.270 5 克孜里奇曼组 生屑泥晶灰岩(礁后) 2.583 -6.295 6 克孜里奇曼组 鲕粒云岩(礁基) 3.461 -8.109 7 克孜里奇曼组 砂屑泥晶灰岩 1.569 -11.109 8 克孜里奇曼组 泥灰岩 0.973 -7.389 9 克孜里奇曼组 砂屑云岩 -1.789 -9.528 10 克孜里奇曼组 砂屑泥晶灰岩(有白云岩化) -1.532 -7.425 11 克孜里奇曼组 砂屑灰岩 -1.077 -9.761 12 克孜里奇曼组 鲕粒生屑砂屑灰岩 -0.756 -12.099 13 克孜里奇曼组 藻纹层泥粉晶云岩 -6.026 -9.183 注: 1~6号样为克孜里奇曼组顶部的生物礁岩样,其余样品为克孜里奇曼组中下部的碳酸盐岩。在应用碳酸盐岩的碳氧同位素数据解释古环境之前,需剔除受成岩改造较强的样品。而δ18O的大小及碳、氧同位素的相关性可以大致判断样品受成岩改造的程度。其中,当δ18O<-10‰时,说明样品遭受了较强的成岩改造,难以代表原始的碳、氧同位素组成。表1显示,大多数样品的δ18O的数值大于-10‰,且碳氧同位素的相关性小于0.5(图10),说明样品总体上受成岩改造的程度较低,可以代表样品的原始碳、氧同位素组成。
影响海相碳酸盐岩δ13C值变化的因素很多,包括海平面变化、有机碳含量和埋藏速率、海水温度和盐度变化、大气淡水作用等。其中,有机碳埋藏速率是最为重要的。由于有机碳中往往富集12C,因此当大量有机碳快速埋藏时期,更多的12C进入埋藏的有机碳中,将使同期海相碳酸盐岩的13C值向正的方向移动,反之则向负的方向移动。其中,在海平面上升时期,由于生物有机碳的埋藏量增加,海洋中的有机碳数量显著减少,溶解于海水中的CO2含有大量的13C,由此形成的碳酸盐岩也富含13C,所以对应δ13C的高值;反之,在海平面下降时期,则对应δ13C的低值[33⁃34]。
从本次测试结果来看,桑株剖面克孜里奇曼组生物礁的δ13C皆为正值(大多介于2‰~4‰),且数值远大于克孜里奇曼组下部的样品。由此可见,桑株克孜里奇曼组生物礁是在塔西南地区晚石炭世—早二叠世海平面上升背景下形成的,而且在礁体形成过程中,由于珊瑚、串管海绵、苔藓虫等造礁生物大量繁盛,它们死后被快速埋藏,从而吸收大量的12C,导致海水中的13C相对富集。但是,在礁盖的暴露面部分的藻纹层白云岩,δ13C的数值又迅速下降至0.119‰,这符合潮坪白云石的碳同位素特征[35]。这说明,在礁盖发育的时期,海平面急剧下降,桑株地区的沉积环境已经由台地边缘转变为气候炎热干燥的潮上带,在此环境中,珊瑚、海绵、苔藓虫等造礁生物根本无法生存,使得海洋中的生物作用减弱,海水中的13C出现亏损,礁体彻底消亡。前人研究表明,早二叠世(乌拉尔世)为石炭系—二叠纪大冰期的延续阶段,当时的气候较为寒冷,发育冷水动物群[36]。而如前所述,桑株生物礁的礁前出现了适应冷水环境的小型无鳞板珊瑚以及礁盖部分δ13C急剧下降,极有可能指示了此次冰期,早二叠世中—晚期塔西南地区的海退也极有可能和这次冰期有关。
-
在早二叠世初期,塔西南地区的海侵达到最大范围,在塔西南地区形成了窄长的台缘带,与之相应的,发育窄长的台缘砂屑滩体。而温暖、清洁的砂屑滩吸引了大量的海胆、海百合等棘皮动物以及䗴类、苔藓虫等前来定居,随后海胆、海百合等生物大量繁盛。但由于缺乏坚硬的格架,易被波浪打碎。海胆和海百合死后,其骨板上的骨片会解体,海胆的棘刺也会从骨片上脱落,成为碳酸盐沉积物的重要来源。从镜下观察来看,棘皮生屑往往集中富集,且生屑颗粒间有泥晶充填,可推测当时的水动力条件较之下部的砂屑滩沉积时弱,使得棘皮生屑不易被长距离搬运,易于原地堆积,形成正向地貌凸起。这易于改变水深、增加光照和氧气,为礁体的发育奠定了良好的基础(图11a)。
-
在前期发育的棘皮生屑滩的基础上,居串管海绵、群体珊瑚等造礁生物开始在浅水透光带大量地繁衍生息。其中,群体珊瑚主要在靠近迎风面一侧定殖,形成了坚固的“抗浪构造”,大量的棘皮动物、苔藓虫、䗴类等居礁生物在其中栖居;与此同时,抗浪性较弱的居串管海绵等生物在靠近背风面的一侧大量定殖,形成了“海绵丛林”(图11b),海绵与管壳石、钙藻等形成缠绕格架,黏结并障积各种灰泥、生屑。随着礁体礁体持续生长,逐渐出现了礁前和礁后的分异(图11c)。
-
海平面快速下降,桑株地区气候变得炎热干燥,礁体暴露在大气中,失去了赖以生存的基础,使得造礁生物大量死亡,有利于藻类大量繁殖。在此情况下,也容易出现准同生白云岩化和回流渗透白云岩化,因此出现了藻纹层白云岩(图11d)。
5.1. 生物礁碳氧同位素特征
5.2. 礁体演化史
5.2.1. 礁基形成
5.2.2. 礁体发育
5.2.3. 礁体衰亡阶段
-
克孜里奇曼组生物礁形成后,也经历了复杂的成岩变化。包括白云岩化、胶结作用、硅质交代、溶解作用等。其中,阴极发光技术是研究沉积岩成岩作用、成岩演化史、成岩流体性质的最有效手段之一。基于此,为了研究桑株剖面克孜里奇曼组生物礁成岩作用,从不同礁相中分别选取代表性样品进行阴极发光测试,样品为标准光薄片,实验的真空度为0.3 Pa,束电压8.0 kV,束电流6 000 μA,曝光时间为1.5 s。为了便于对阴极发光特征进行精细描述,将样品的阴极发光强度分为极强、强、中等、弱、极弱、不发光等五个等级。根据前人的研究成果,碳酸盐岩的阴极发光性主要受Fe、Mn的含量和Fe/Mn比值的影响[37⁃38]。因此,本次研究中针对某些不同阴极发光特征的颗粒和填隙物进行电子探针测试,主要分析其中的Fe、Mn、Sr等元素。阴极发光和电子探针测试都在西南石油大学地球科学与技术学院进行。
根据60块克孜里奇曼组生物礁的阴极发光图像来看,礁核下部(串管海绵富集部分)、礁盖、礁后(泥晶灰岩部分)的阴极发光较弱,礁核上部、礁前(生屑灰岩部分)、礁基阴极发光相对较强,但显示出明显的非均质性。此外,不同结构组分的阴极发光特征也有明显差别,特征如下。
(1) 未经重结晶(新生变形)改造的泥晶基质(包括包裹着生物碎屑的泥晶套)多数发弱—中等的棕红色光,而泥晶基质重结晶成为亮晶胶结物后,则发极弱的棕红色光—不发光。䗴类、苔藓虫等生物体腔普遍被泥晶充填,其中有重结晶的部分的阴极发光普遍偏暗(图12f)。电子探针测试结果显示,泥晶和重结晶后的亮晶胶结物之间的FeO/MnO差了将近10倍,由此可见,重结晶会导致Fe元素相对富集(表2)。
样品 探针部分 Na2O MgO CaO BaO SrO SiO2 FeO MnO TiO2 CO2 FeO/MnO 图12b 管壳石,发中等橘红色光部分 0.015 0.865 54.427 0.053 0.058 0 0.038 0.036 0 43.753 1.06 管壳石包裹的生屑(发光极弱) 0.020 0.731 54.935 0 0.007 0 0.035 0.003 0 43.950 11.67 充填孔隙胶结物(核心部分,不发光) 0.017 0.607 53.742 0 0.048 0.821 0.086 0 0.016 44.144 — 充填孔隙胶结物(边缘部分,发亮红光) 0.035 0.272 56.438 0 0.037 0 0 0.058 0.016 44.681 — 图12d 海胆棘刺,不发光—极弱发光部分 0.042 0.737 54.788 0.015 0.055 0 0.068 0.032 0 43.919 2.13 0 0.881 53.580 0.063 0.056 0.661 0.166 0.027 0.024 44.165 6.15 海胆棘刺,中等发光部分 0.012 1.270 53.899 0.034 0 0 0.019 0.056 0 43.750 0.34 0.007 1.244 53.718 0 0 0 0.005 0.020 0 43.536 0.25 图12e 充填苔藓虫体腔中的泥晶(未重结晶) 0.049 0.904 53.172 0.185 0.041 0 0.077 0.068 0.023 42.935 1.13 充填苔藓虫体腔中的亮晶(泥晶重结晶) 0.012 0.663 52.363 0.047 0.101 0 0.432 0.041 0.023 42.198 10.54 图12h 腕足动物,不发光 0.159 0.358 54.885 0 0.186 0 0.038 0.025 0 43.693 1.52 亚纽囊海绵,骨骼不发光 0.224 0.464 55.247 0 0.174 0 0.011 0 0.024 44.128 — (2) 管壳石普遍发较强的橘红色光(图12b),䗴类发弱—中等橘红色光(图12f),腕足动物多不发光(图12h)。棘皮生屑发光性强弱不一,发弱—强橘红色光(图12d,f,h,j,p)不等,海胆棘刺多不发光,但其局部重结晶后发中等橘红色光。柯坪珊瑚的钙质骨骼总体上发中等—强的橘红色光(强于充填于其体腔中的泥晶基质和粒状胶结物),其中,其隔壁的轴部发光较强,其隔壁两侧的“羽屑”部分发光弱—中等,而隔壁靠近轴部的部分基本不发光(图12f,j)。窗格苔藓虫普遍发中等—强橘红色光,但翼网苔藓虫则普遍发弱棕红色光—不发光(图12f,i,j,p)。
(3) 部分棘皮生屑加大边具有两个世代的发光性。第一世代胶结物发极弱棕红色光—不发光,第二世代的胶结物发弱棕红色光(图12f)。
(4) 充填裂缝中的方解石为极弱发光(图12d,j,p)。充填与溶蚀孔隙空间壁面的马牙状方解石胶结物内部无阴极发光,但其边缘具有中等—强的橘红色发光边。充填孔隙中间部分的粒状方解石发极弱—弱的棕红色光,它们的发光强度普遍弱于周围的泥晶基质。
总体而言,桑株剖面克孜里奇曼组生物礁灰岩的泥晶基质部分具有弱—中等程度的阴极发光,说明在成岩过程中,Mn含量较低的海相流体起主导作用。局部受重结晶(新生变形)改造的部分发光极弱—不发光,这可能和大气水的参与有关,但是影响较为局限。此外,不同类型的生物碎屑、同一类型生屑不同颗粒间乃至同一生屑颗粒不同部位的发光程度往往差别较大,但其周围的泥晶基质基本未受影响,这说明Mn含量较高的非海相流体对桑株组生物礁的改造具有一定程度的“组构选择性”,即主要针对生屑颗粒而非泥晶基质。
-
1) 准同生—同生成岩阶段
桑株克孜里奇曼组生物礁灰岩中可识别的准同生—同生成岩阶段的成岩标志主要有:(1)粉—细白云石是桑株克孜里奇曼组生物礁中最发育的白云石类型,主要为自形晶—半自形晶,是选择性交代居串管海绵骨骼作用的结果(图4d);(2)藻类的包壳作用和管壳石对生物的黏结、包裹作用;(3)可见生物钻孔,这些钻孔往往被泥晶充填,这些泥晶碳酸盐岩主要是文石或高镁方解石。其中,大多数泥晶为弱发光,部分生物碎屑为极弱—不发光,记录了低Mn含量的海水特征;(4)部分棘皮生屑可见早期具有极弱阴极发光的加大边(图12e);(5)部分海绵骨骼出现了泥晶化,由不发光向发弱棕红色光转变。
2) 早成岩阶段
桑株克孜里奇曼组生物礁灰岩在成岩过程中主要经历了淡水潜流和淡水渗流环境。淡水潜流环境的主要成岩标志包括:(1)充填于粒间、粒内溶蚀孔隙中的亮晶方解石胶结物(图12b,n)。这些胶结物往往显示出淡水胶结物的环带状阴极发光,即具有不发光—弱发光的核部和明亮的发光边缘;(2)棘皮多期共轴加大边(图12e)。棘皮动物可发育于海水潜流环境,而在淡水潜流环境中继续生长的共轴加大边通常由于锰含量相对较高而具比第一期胶结物的阴极发光较强;(3)组构选择性溶解作用,如某些棘皮生屑被完全溶解再充填,仅剩一个外形轮廓;(4)重结晶作用。泥晶向亮晶转变、文石或镁方解石等不稳定组分新生变形成低镁方解石,如充填部分生物体腔的泥晶转变成了亮晶胶结物,这部分胶结物的阴极发光强度比泥晶低。部分海胆棘刺局部也出现了重结晶,重结晶的部分发光强度比原始的钙质骨骼高。淡水渗流环境的成岩标志主要有:非组构选择性溶解作用、示底构造(下部泥晶弱—中等橘红色阴极发光,上部亮晶方解石为极弱—不发光)。
3) 中—晚成岩阶段
中—晚成岩阶段的主要成岩标志包括:(1)化学压溶作用使得颗粒或生物之间呈凹凸—缝合接触,局部沿缝合线有方解石充填;(2)生长于溶蚀孔隙中心、晶体较粗大极弱—不发光的块状方解石(图12n);(3)充填于后期构造裂缝中的粒状或块状方解石,它们发光极弱—不发光(图12d,p)。