[1] |
Chen F H, Yu Z C, Yang M L, 2008: Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 27, 351-364.
|
[2] |
Chen F H, Jia J, Chen J H, 2016: A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the Late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 146, 134-146.
|
[3] |
余莺潇, 王乃昂, 隆浩, 2017: 巴丹吉林沙漠东南缘砂楔年代及其环境意义[J]. 科学通报, 62, 3461-3469.
|
Yu Yingxiao, Wang Naiang, Long Hao, et al. The age of sand wedges and its environmental significance at the southeast edge of Badain Jaran Desert[J]. Chinese Science Bulletin, 2017, 62(30): 3461-3469. |
[4] |
伏梦璇, 于世永, 吴金甲, 2020: 巴丹吉林沙漠南缘高台盐湖记录的中晚全新世气候变化[J]. 海洋地质与第四纪地质, 40, 192-203.
|
Fu Mengxuan, Yu Shiyong, Wu Jinjia, et al. Mid-to-Late Holocene climate changes on the southern margin of the Badain Jaran Desert: Evidence from the Gaotai Lake sediments[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 192-203. |
[5] |
鞠远江, 刘耕年, 2004: 孢粉记录揭示的4 000 a BP来乌鲁木齐河源区气候环境变化[J]. 冰川冻土, 26, 166-170.
|
Ju Yuanjiang, Liu Gengnian. Climate and environment changes inferred from pollen records since 4 000 a BP in the headwaters of the Ürümqi River, Tianshan[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 166-170. |
[6] |
陈发虎, 吴薇, 朱艳, 2004: 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报, 49, 1-9.
|
Chen Fahu, Wu Wei, Zhu Yan, et al. Lake records of drought events in the Alxa Plateau during the Middle Holocene [J]. Chinese Science Bulletin, 2004, 49(1): 1-9. |
[7] |
Liu L N, Wang W, Chen D X, 2020: Soil-surface pollen assemblages and quantitative relationships with vegetation and climate from the Inner Mongolian Plateau and adjacent mountain areas of northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 543, 109600-.
|
[8] |
Chen F H, Chen X M, Chen J H, 2014: Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China[J]. Journal of Quaternary Science, 29, 661-674.
|
[9] |
Lu K Q, Qin F, Li Y, 2020: A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 551, 109762-.
|
[10] |
Huang X Z, Chen C Z, Jia W N, 2015: Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 432, 36-48.
|
[11] |
Xu Q H, Zhang S R, Gaillard M J, 2016: Studies of modern pollen assemblages for pollen dispersal- deposition- preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China[J]. Quaternary Science Reviews, 149, 151-166.
|
[12] |
An C B, Feng Z D, Barton L, 2006: Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China[J]. Quaternary Science Reviews, 25, 351-361.
|
[13] |
段凤莲, 王多民, 2019: 贺兰山地区近5年气候变化特征分析[J]. 现代农业, , 100-102.
|
Duan Fenglian, Wang Duomin. Characteristics of climate change in Helan Mountain area in recent 5 years [J]. Modern Agriculture, 2019(5): 100-102. |
[14] |
苏俊礼. 巴丹吉林沙漠和腾格里沙漠降水特征研究[D]. 兰州:兰州大学,2016. |
Su Junli. A study of precipitation characteristics in the Badain Juran Desert and Tengger Desert[D]. Lanzhou: Lanzhou University, 2016. |
[15] |
康延臻, 陈世红, 张莹, 2015: 2008—2013年库姆塔格沙漠及阿尔金山降水特征[J]. 中国沙漠, 35, 203-210.
|
Kang Yanzhen, Chen Shihong, Zhang Ying, et al. Precipition during 2008-2013 in the Kumtagh Desert and Altun Mountains[J]. Journal of Desert Research, 2015, 35(1): 203-210. |
[16] |
宁凯. 巴丹吉林沙漠湖泊沉积孢粉和正构烷烃记录的全新世环境变化[D]. 兰州:兰州大学,2018. |
Ning Kai. Holocene environmental evolution implied by pollen and n-alkanes in Groundwater Recharge Lakes, Badain Jaran Desert, northwestern China[D]. Lanzhou: Lanzhou University, 2018. |
[17] |
尹林克, 1997: 中国温带荒漠区的植物多样性及其易地保护[J]. 生物多样性, 5, 40-48.
|
Yin Linke. Diversity and ex-situ conservation of plants in the desert region of temperate zone in China[J]. Chinese Biodiversity, 1997, 5(1): 40-48. |
[18] |
张玉. 巴丹吉林沙漠南北边缘植被群落特征与土壤理化性质研究[D]. 西安:陕西师范大学,2014. |
Zhang Yu. Characteristics of vegetation community and soil physicochemical properties in the north and south margin of Badain Jaran Desert [D]. Xi'an: Shaanxi Normal University, 2014. |
[19] |
马全林, 张德奎, 袁宏波, 2019: 乌兰布和沙漠植被数量分类及环境解释[J]. 干旱区资源与环境, 33, 160-167.
|
Ma Quanlin, Zhang Dekui, Yuan Hongbo, et al. Numerical classification and environmental interpretation of desert vegetation in the Ulan Buh Desert[J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 160-167. |
[20] |
张明理, 2017: 中国西北干旱区和中亚植物区系地理研究[J]. 生物多样性, 25, 147-155.
|
Zhang Mingli. A review on the floristic phytogeography in arid northwestern China and Central Asia[J]. Biodiversity Science, 2017, 25(2): 147-155. |
[21] |
侯学煜. 1:1000000中国植被图集[M]. 北京:科学出版社,2001:1-260. |
Hou Xueyu. 1:1000000 Vegetation atlas of China[M]. Beijing: Science Press, 2001: 1-260. |
[22] |
王伏雄,钱南芬,张玉龙,等. 中国植物花粉形态[M]. 2版. 北京:科学出版社,1995:1-276. |
Wang Fuxiong, Qian Nanfen, Zhang Yulong, et al. Pollen flora of China[M]. 2nd ed. Beijing: Science Press, 1995: 1-276. |
[23] |
Zhao H, Huang W, Xie T T, 2019: Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025° spatial resolution in China during 1951-2011[J]. Theoretical and Applied Climatology, 138, 491-507.
|
[24] |
Dufrêne M, Legendre P, 1997: Species assemblages and indicator species: The need for a flexible asymmetrical approach[J]. Ecological Monographs, 67, 345-366.
|
[25] |
Roberts D W. Labdsv: Ordination and multivariate analysis for ecology[EB/OL]. http://cran.r-project.org/package=labdsv, 2019-08-04. |
[26] |
李宜垠, 张新时, 周广胜, 2000: 中国北方几种常见表土花粉类型与植被的数量关系[J]. 科学通报, 45, 761-765.
|
Li Yiyin, Zhang Xinshi, Zhou Guangsheng, et al. Quantitative relationships between several common surface pollen types and vegetation in northern China [J]. Chinese Science Bulletin, 2000, 45(7): 761-765. |
[27] |
Oksanen J, Blanchet F G, Friendly M, et al. Vegan community ecology package version 2.5-7 November 2020 [EB/OL]. https://cran.r-project.org/package=vegan, 2020-11-28. |
[28] |
Hill M O, Gauch H G, 1980: Detrended correspondence analysis: An improved ordination technique[J]. Vegetatio, 42, 47-58.
|
[29] |
ter Braak C J F, Šmilauer P. Canoco reference manual and user’s guide: Software for ordination, version 5.0[M]. Ithaca: Microcomputer Power, 2012: 1-30. |
[30] |
Cao X Y, Herzschuh U, Telford R J, 2014: A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction[J]. Review of Palaeobotany and Palynology, 211, 87-96.
|
[31] |
Herzschuh U, Birks H J B, Mischke S, 2010: A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains[J]. Journal of Biogeography, 37, 752-766.
|
[32] |
Overpeck J T, Webb III T, Prentice I C, 1985: Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs[J]. Quaternary Research, 23, 87-108.
|
[33] |
Juggins S. Rioja: Analysis of quaternary science data[EB/OL]. https://cran.r-project.org/package=rioja, 2020-10-28. |
[34] |
Markel E R, Booth R K, Qin Y M, 2010: Testate amoebae and δ13[J]. The Holocene, 20, 463-475.
|
[35] |
Charman D J, Blundell A, Alm J, 2007: A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands[J]. Journal of Quaternary Science, 22, 209-221.
|
[36] |
姚付龙, 马春梅, 朱诚, 2021: 中国西天山北坡表土花粉与区域植被关系[J]. 古生物学报, 60, 471-482.
|
Yao Fulong, Ma Chunmei, Zhu Cheng, et al. Relationship between surface pollen and vegetation on the northern slope of west Tianshan Mountains, China[J]. Acta Palaeontologica Sinica, 2021, 60(3): 471-482. |
[37] |
杨庆华, 杨振京, 张芸, 2019: 新疆夏尔希里自然保护区表土孢粉与植被的关系[J]. 干旱区地理, 42, 986-997.
|
Yang Qinghua, Yang Zhenjing, Zhang Yun, et al. Relationship between surface sporepollen and modern vegetation in Xarxili Nature Reserve of Xinjiang[J]. Arid Land Geography, 2019, 42(5): 986-997. |
[38] |
李月丛, 许清海, 阳小兰, 2005: 中国草原区主要群落类型花粉组合特征[J]. 生态学报, 25, 555-564.
|
Li Yuecong, Xu Qinghai, Yang Xiaolan, et al. Pollen assemblages of major steppe communities in China[J]. Acta Ecologica Sinica, 2005, 25(3): 555-564. |
[39] |
郎青, 姚付龙, 杨海军, 2020: 新疆中天山山间盆地表土花粉谱特征[J]. 生态学杂志, 39, 2518-2527.
|
Lang Qing, Yao Fulong, Yang Haijun. Surface pollen spectrum in intermountain basin of Middle Tianshan, Xinjiang, China[J]. Chinese Journal of Ecology, 2020, 39(8): 2518-2527. |
[40] |
路晶芳, 张克信, 宋博文, 2020: 柴达木盆地大红沟地区始新世—上新世孢粉记录及气候变化[J]. 现代地质, 34, 732-744.
|
Lu Jingfang, Zhang Kexin, Song Bowen, et al. Paleogene-Neogene pollen and climate change in Dahonggou region of Qaidam Basin[J]. Geoscience, 2020, 34(4): 732-744. |
[41] |
罗传秀, 潘安定, 郑卓, 2006: 西北干旱地区表土孢粉与植被关系研究进展[J]. 干旱区研究, 23, 314-319.
|
Luo Chuanxiu, Pan Anding, Zheng Zhuo. Progresses about the studies on the relationship between topsoil spore-pollen and vegetation in arid areas of Northwest China[J]. Arid Zone Research, 2006, 23(2): 314-319. |
[42] |
朱艳, 陈发虎, 刘虎俊, 2003: 石羊河流域空气传播孢粉的初步研究[J]. 兰州大学学报(自然科学版), 39, 100-105.
|
Zhu Yan, Chen Fahu, Liu Hujun, et al. Preliminary studies on the air-borne pollen in the Shiyang River drainage, arid China[J]. Journal of Lanzhou University (Natural Sciences), 2003, 39(2): 100-105. |
[43] |
朱艳, 程波, 陈发虎, 2004: 石羊河流域现代孢粉传播研究[J]. 科学通报, 49, 15-21.
|
Zhu Yan, Cheng Bo, Chen Fahu, et al. Study on modern pollen dispersal in the Shiyang River Basin [J]. Chinese Science Bulletin, 2004, 49(1): 15-21. |
[44] |
关文彬, 1998: 中国东北地区白桦林植被生态学的研究:桦属植物与中国白桦林的地理分布[J]. 北京林业大学学报, 20, 104-109.
|
Guan Wenbin. Vegetation ecology on communities dominated by Betula platyphylla in northeast of China: Distribution of communities dominated by Betula platyphylla [J]. Journal of Beijing Forestry University, 1998, 20(4): 104-109. |
[45] |
郑敬刚, 董东平, 赵登海, 2008: 贺兰山西坡植被群落特征及其与环境因子的关系[J]. 生态学报, 28, 4559-4567.
|
Zheng Jinggang, Dong Dongping, Zhao Denghai, et al. Relationship between vegetation community characteristics and its environmental factors in the west slope of Helan Mountain[J]. Acta Ecologica Sinica, 2008, 28(9): 4559-4567. |
[46] |
Guo C, Ma Y Z, Li D D, 2020: Modern pollen and its relationship with vegetation and climate in the Mu Us Desert and surrounding area, northern China: Implications of palaeoclimatic and palaeocological reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 547, 109699-.
|
[47] |
Luo C X, Zheng Z, Tarasov P, 2010: A potential of pollen-based climate reconstruction using a modern pollen-climate dataset from arid northern and western China[J]. Review of Palaeobotany and Palynology, 160, 111-125.
|
[48] |
Li Y C, Xu Q H, Liu J S, 2007: A transfer-function model developed from an extensive surface-pollen data set in northern China and its potential for palaeoclimate reconstructions[J]. The Holocene, 17, 897-905.
|
[49] |
Xu Q H, Li Y C, Bunting M J, 2010: The effects of training set selection on the relationship between pollen assemblages and climate parameters: Implications for reconstructing past climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 289, 123-133.
|
[50] |
ter Braak C J F, van Dame H, 1989: Inferring pH from diatoms: A comparison of old and new calibration methods[J]. Hydrobiologia, 178, 209-223.
|
[51] |
Telford R J, Birks H J B, 2005: The secret assumption of transfer functions: Problems with spatial autocorrelation in evaluating model performance[J]. Quaternary Science Reviews, 24, 2173-2179.
|