[1] |
Sandberg P A, 1983: An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 305, 19-22.
|
[2] |
Opdyke B N, Wilkinson B H, 1993: Carbonate mineral saturation state and cratonic limestone accumulation[J]. American Journal of Science, 293, 217-234.
|
[3] |
Wilkinson B H, Owen R M, Carroll A R, 1985: Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites[J]. Journal of Sedimentary Research, 55, 171-183.
|
[4] |
郭芪恒, 金振奎, 安益辰, 2019: 北京下苇甸地区张夏组沉积环境及沉积模式[J]. 沉积学报, 37, 40-50.
|
Guo Qiheng, Jin Zhenkui, An Yichen, et al. Study on sedimentary environment and patterns of the Cambrian Zhangxia Formation at Xiaweidian, Beijing[J]. Acta Sedimentologica Sinica, 2019, 37(1): 40-50. |
[5] |
郭芪恒, 金振奎, 史书婷, 2020: 鲕粒粒度特征及其指示意义:以北京西山下苇甸寒武系张夏组剖面为例[J]. 沉积学报, 38, 737-746.
|
Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop, Beijing[J]. Acta Sedimentologica Sinica, 2020, 38(4): 737-746. |
[6] |
李飞, 武思琴, 刘柯, 2015: 鲕粒原生矿物识别及对海水化学成分变化的指示意义[J]. 沉积学报, 33, 500-511.
|
Li Fei, Wu Siqin, Liu Ke. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry[J]. Acta Sedimentologica Sinica, 2015, 33(3): 500-511. |
[7] |
李开开, 张学丰, 贺训云, 2018: 川东北飞仙关组白云岩化作用对鲕粒滩储层的孔隙改造效应[J]. 石油与天然气地质, 39, 706-718.
|
Li Kaikai, Zhang Xuefeng, He Xunyun, et al. Modification of dolomitization on pores in oolitic shoal reservoirs of the Feixianguan Formation in the northeastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(4): 706-718. |
[8] |
刘冉, 霍飞, 王鑫, 2017: 普光气田下三叠统飞仙关组碳酸盐岩储层特征及主控因素分析[J]. 中国石油勘探, 22, 34-46.
|
Liu Ran, Huo Fei, Wang Xin, et al. Characteristics and main controlling factors of Lower Triassic Feixianguan Formation carbonate reservoir in Puguang gas field[J]. China Petroleum Exploration, 2017, 22(6): 34-46. |
[9] |
李宏涛, 2016: 台内鲕粒滩气藏成藏过程与模式:以川东北河坝地区下三叠统飞仙关组三段为例[J]. 石油勘探与开发, 43, 723-732.
|
Li Hongtao. Accumulation process and pattern of oolitic shoal gas pools in the platform: A case from member 3 of Lower Triassic Feixianguan Formation in the Heba area, northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 723-732. |
[10] |
梅冥相, LatifK, 孟晓庆, 2020: 鲕粒滩中光合作用生物膜构建的高能核形石:以辽西葫芦岛三道沟剖面寒武系张夏组为例[J]. 地质学报, 94, 999-1016.
|
Mei Mingxiang, Latif K, Meng Xiaoqing, et al. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: A case study of the Cambrian Zhangxia Formation at the Sandaogou section of Huludao city in the western part of Liaoning province[J]. Acta Geologica Sinica, 2020, 94(4): 999-1016. |
[11] |
杨仁超, 樊爱萍, 韩作振, 2011: 核形石研究现状与展望[J]. 地球科学进展, 26, 465-474.
|
Yang Renchao, Fan Aiping, Han Zuozhen, et al. Status and prospect of studies on oncoid[J]. Advances in Earth Science, 2011, 26(5): 465-474. |
[12] |
Sorby H C, 1879: The structure and origin of limestones[J]. Proceedings of the Geological Society of London, 35, 56-95.
|
[13] |
Rankey E C, Reeder S L, 2009: Holocene ooids of Aitutaki atoll, cook islands, South Pacific[J]. Geology, 37, 971-974.
|
[14] |
Pacton M, Ariztegui D, Wacey D, 2012: Going nano: A new step toward understanding the processes governing freshwater ooid formation[J]. Geology, 40, 547-550.
|
[15] |
Plee K, Ariztegui D, Martini R, 2008: Unravelling the microbial role in ooid formation-results of an in situ[J]. Geobiology, 6, 341-350.
|
[16] |
Davies P J, Bubela B, Ferguson J, 1978: The formation of ooids[J]. Sedimentology, 25, 703-730.
|
[17] |
Royal Society. Ocean acidification due to increasing atmospheric carbon dioxide: London. The Royal Society, Policy Document, 2005, 12/05, 57 p. |
[18] |
Duguid S M A, Kyser T K, James N P, 2010: Microbes and ooids[J]. Journal of Sedimentary Research, 80, 236-251.
|
[19] |
Trower E J, Cantine M D, Gomes M L, 2018: Active ooid growth driven by sediment transport in a high-energy shoal, little ambergris cay, Turks and Caicos islands[J]. Journal of Sedimentary Research, 88, 1132-1151.
|
[20] |
Folk R L, Lynch F L, 2001: Organic matter, putative nannobacteria and the formation of ooids and hardgrounds[J]. Sedimentology, 48, 215-229.
|
[21] |
Summons R E, Bird L R, Gillespie A L, 2013: Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora[J]. Geobiology, 11, 420-436.
|
[22] |
Tang D J, Shi X Y, Shi Q, 2015: Organomineralization in Mesoproterozoic giant ooids[J]. Journal of Asian Earth Sciences, 107, 195-211.
|
[23] |
Tan Q, Shi Z J, Tian Y M, 2017: Origin of ooids in ooidal-muddy laminites: A case study of the Lower Cambrian Qingxudong Formation in the Sichuan Basin, South China[J]. Geological Journal, 53, 1716-1727.
|
[24] |
Diaz M R, Swart P K, Eberli G P, 2015: Geochemical evidence of microbial activity within ooids[J]. Sedimentology, 62, 2090-2112.
|
[25] |
Diaz M R, Eberli G P, 2019: Decoding the mechanism of formation in marine ooids: A review[J]. Earth-Science Reviews, 190, 536-556.
|
[26] |
Diaz M R, Eberli G P, Blackwelder P, 2017: Microbially mediated organomineralization in the formation of ooids[J]. Geology, 45, 771-774.
|
[27] |
梅冥相, 2012: 鲕粒成因研究的新进展[J]. 沉积学报, 30, 20-32.
|
Mei Mingxiang. Brief introduction on new advances on the origin of ooids[J]. Acta Sedimentologica Sinica, 2012, 30(1): 20-32. |
[28] |
Siahi M, Hofmann A, Master S, 2017: Carbonate ooids of the mesoarchaean pongola supergroup, South Africa[J]. Geobiology, 15, 750-766.
|
[29] |
Brehm U, Krumbein W E, Palinska K A, 2006: Biomicrospheres generate ooids in the laboratory[J]. Geomicrobiology Journal, 23, 545-550.
|
[30] |
Brehm U, Palinska K A, Krumbein W E, 2004: Laboratory cultures of calcifying biomicrospheres generate ooids: A contribution to the origin of oolites[J]. Carnets De Géologie, , 1-6.
|
[31] |
宋文天, 刘建波, 2020: 碳酸盐鲕粒包壳结构研究综述[J]. 古地理学报, 22, 147-160.
|
Song Wentian, Liu Jianbo. A review of cortical structures of carbonate ooids[J]. Journal of Palaeogeography, 2020, 22(1): 147-160. |
[32] |
Rao V P, Milliman J D, 2017: Relict ooids off northwestern India: Inferences on their genesis and Late Quaternary sea level[J]. Sedimentary Geology, 358, 44-50.
|
[33] |
Sandberg P A, 1975: New interpretations of Great Salt Lake ooids and of ancient non‐skeletal carbonate mineralogy[J]. Sedimentology, 22, 497-537.
|
[34] |
Simone L, 1980: Ooids: A review[J]. Earth-Science Reviews, 16, 319-355.
|
[35] |
周瑶琪, 张晗, 张振凯, 2017: 海相碳酸盐鲕粒形成过程的模拟实验研究[J]. 中国石油大学学报(自然科学版), 41, 23-30.
|
Zhou Yaoqi, Zhang Han, Zhang Zhenkai. Experiment study of synthesis for marine carbonate ooids genesis[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(3): 23-30. |
[36] |
Sumner D Y, Grotzinger J P, 1993: Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids[J]. Journal of Sedimentary Petrology, 63, 974-982.
|
[37] |
段雄, 时志强, 金鑫, 2015: 巨鲕的微生物成因:来自重庆石柱地区下寒武统的证据[J]. 古地理学报, 17, 241-248.
|
Duan Xiong, Shi Zhiqiang, Jin Xin, et al. Microbial cause for giant ooids: Evidence from the Lower Cambrian in Shizhu area, Chongqing[J]. Journal of Palaeogeography, 2015, 17(2): 241-248. |
[38] |
Trower E J, Lamb M P, Fischer W W, 2017: Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates[J]. Earth and Planetary Science Letters, 468, 112-118.
|
[39] |
Li F, Gong Q L, Burne R V, 2019: Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 172, 336-354.
|