Advanced Search
Volume 41 Issue 5
Oct.  2023
Turn off MathJax
Article Contents

DU Lin, TANG YongYong, ZHANG ShiFan, LI Yang, GONG Xin, XIANG MingKun, WEN YuanYun. Critical Metal Enrichments in the Aluminiferous Rock Series in the Bauxite Deposits of Guizhou Province, and Their Resource Potential[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.006
Citation: DU Lin, TANG YongYong, ZHANG ShiFan, LI Yang, GONG Xin, XIANG MingKun, WEN YuanYun. Critical Metal Enrichments in the Aluminiferous Rock Series in the Bauxite Deposits of Guizhou Province, and Their Resource Potential[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.006

Critical Metal Enrichments in the Aluminiferous Rock Series in the Bauxite Deposits of Guizhou Province, and Their Resource Potential

doi: 10.14027/j.issn.1000-0550.2022.006
Funds:

National Natural Science Foundation of China U1812402

Guizhou Geological Exploration Fund project GZMC-ZG20192015-4

  • Received Date: 2021-08-12
  • Accepted Date: 2022-03-17
  • Rev Recd Date: 2022-01-19
  • Available Online: 2022-03-17
  • Publish Date: 2023-10-10
  • Guizhou province is an important production base for aluminum. It is the second largest in China, with a recoverable reserve of bauxite of 1.289 billion tons, accounting for 17% of the national total. The bauxite deposits are enriched in critical metals, including Li, Ga, Sc and rare earth elements (REE). The enrichments of critical metals were evaluated and their resource potentials were summarized in this study of the geological characteristics of the Guizhou bauxite deposits occurring in the aluminiferous rock series, to determine the distributions of critical metals. It was found that Li, Ga, Sc and REE are enriched to varying extents in the bauxite. Li content is higher in the Wu-Zheng-Dao bauxite ore area (northern Guizhou province) than in the other study areas, mainly occurring in the dense bauxite in the middle-to-upper section of the aluminiferous rock series. Ga content is relatively highest in the Wu-Zheng-Dao and Zunyi-Weng'an (central Guizhou) bauxite, and is mainly present in the claylike and clastic bauxite in the middle section of the aluminiferous rock series. REE content is relatively higher in the Wu-Zheng-Dao and Xiuwen-Qingzhen (southwest Guizhou) bauxite, being mainly hosted by chlorite mudstone and ferruginous claystone in the lower section of the aluminiferous rock series. Sc is relatively evenly distributed, both horizontally and vertically. The Li, Ga, Sc and REE present throughout the aluminous rock series are mainly adsorbed onto mineral surfaces and fractures, or occur as isomorphic substitutes in the structures of clay minerals, aluminum-bearing minerals and accessory minerals. Small amounts of REE are present in independent minerals. Overall, these Li, Ga, Sc and REE resources in Guizhou province and their economic potential are huge. Further studies are needed to achieve the maximum economic and environmental benefits of these resources.
  • [1] 侯增谦,陈骏,翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报,2020,65(33):3651-3652.

    Hou Zengqian, Chen Jun, Zhai Mingguo. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651-3652.
    [2] 翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,33(2):106-111.

    Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111.
    [3] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报,2019,93(6):1189-1209.

    Wang Denghong. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209.
    [4] Goodenough K M, Wall F, Merriman D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations[J]. Natural Resources Research, 2018, 27(2): 201-216.
    [5] 张迎新. 欧盟将14类矿产确定为关键原材料[J]. 国土资源情报,2011(5):35-39,6.

    Zhang Yingxin. The European Union determines 14 types of minerals as critical raw materials[J]. Land and Resources Information, 2011(5): 35-39, 6.
    [6] 本刊编辑部. 美国内政部确定钨、稀土、锂等35种关键矿产清单[J]. 中国地质,2018,45(5):1086.

    Editorial Department of Geology in China. US Department of the Interior determines a complete list of 35 kinds of key mineral resources such as tungsten, rare earth and lithium[J]. Geology in China, 2018, 45(5): 1086.
    [7] 张雅丽,陈丽萍,陈静,等. 主要发达国家矿产资源安全保障战略[J]. 国土资源情报,2019(11):24-30.

    Zhang Yali, Chen Liping, Chen Jing, et al. Security strategy of mineral resourcesin major developed countries[J]. Land and Resources Information, 2019(11): 24-30.
    [8] 余韵,杨建锋. 澳大利亚关键矿产政策新动向[J]. 国土资源情报,2020(7):12-16.

    Yu Yun, Yang Jianfeng. Critical minerals policy actions in Australia[J]. Land and Resources Information, 2020(7): 12-16.
    [9] 毛景文,杨宗喜,谢桂青,等. 关键矿产:国际动向与思考[J]. 矿床地质,2019,38(4):689-698.

    Mao Jingwen, Yang Zongxi, Xie Guiqing, et al. Critical minerals: International trends and thinking[J]. Mineral Deposits, 2019, 38(4): 689-698.
    [10] 郭娟,闫卫东,徐曙光,等. 中国关键矿产评价标准和清单的探讨[J]. 地球学报,2021,42(2):151-158.

    Guo Juan, Yan Weidong, Xu Shuguang, et al. A discussion on evaluation criteria and list of critical minerals in China[J]. Acta Geoscientica Sinica, 2021, 42(2): 151-158.
    [11] 苏之良,杜蔺,巩鑫,等. 黔北道真新民铝土矿含铝岩系中关键金属富集特征与资源潜力[J]. 矿物学报,2021,41(4/5):400-412.

    Su Zhiliang, Du Lin, Gong Xin, et al. Characteristics of the critical metal enrichment and the resource potential for bauxite-bearing rocks in the Xinmin bauxite deposit in Daozhen county, Guizhou province, China[J]. Acta Mineralogica Sinica, 2021, 41(4/5): 400-412.
    [12] 叶霖,潘自平,程曾涛. 贵州铝土矿中伴生元素综合利用前景[J]. 矿物学报,2007,27(3/4):388-392.

    Ye Lin, Pan Ziping, Cheng Zengtao. The prospects of comprehensive utilization of associated elements in bauxites from Guizhou[J]. Acta Mineralogica Sinica, 2007, 27(3/4): 388-392.
    [13] 金中国,刘玲,黄智龙,等. 贵州务—正—道地区铝土矿含矿岩系中三稀元素赋存状态、富集机理及资源潜力[J]. 地质学报,2019,93(11):2847-2861.

    Jin Zhongguo, Liu Ling, Huang Zhilong, et al. Occurrence state, enrichment mechanism and resource potential of rare earth, rare metal and rare-scattered elements in ore-bearing rocks in the Wuchuan-Zheng′an-Daozhen bauxite deposit, Guizhou province[J]. Acta Geologica Sinica, 2019, 93(11): 2847-2861.
    [14] 陈粤,周辉,张家兴,等. 桂西铝土矿中三稀金属矿产开发潜力探究[J]. 矿产与地质,2017,31(4):671-675.

    Chen Yue, Zhou Hui, Zhang Jiaxing, et al. Discussion of development potential of the rare earth, rare metal and dispersed elements of the bauxite deposit in western Guangxi[J]. Mineral Resources and Geology, 2017, 31(4): 671-675.
    [15] 钟海仁,孙艳,杨岳清,等. 铝土矿(岩)型锂资源及其开发利用潜力[J]. 矿床地质,2019,38(4):898-916.

    Zhong Hairen, Sun Yan, Yang Yueqing, et al. Bauxite (aluminum)-type lithium resources and analysis of its development and utilization potential[J]. Mineral Deposits, 2019, 38(4): 898-916.
    [16] 戴传固,王雪华,陈建书,等.贵州区域地质志[R]. 贵阳:贵州省地质调查院,2012.

    Dai Chuangu, Wang Xuehua, Chen Jianshu, et al. Regional geology of Guizhou province[R]. Guiyang: Guizhou Geological Survey, 2012.
    [17] 刘幼平,程国繁,崔滔,等. 贵州铝土矿成矿规律[M]. 北京:冶金工业出版社,2015:1-201.

    Liu Youping, Cheng Guofan, Cui Tao, et al. Metallogenic regularity of bauxite deposits in Guizhou province[M]. Beijing: Metallurgical Industry Press, 2015: 1-201.
    [18] 李艳桃,肖加飞,付绍洪,等. 贵州主要铝土矿矿集区成矿特征对比研究[J]. 地质找矿论丛,2014,29(4):489-494.

    Li Yantao, Xiao Jiafei, Fu Shaohong, et al. The comparison study on metallogenic characteristics of the main bauxite-deposit-clustered areas in Guizhou province[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(4): 489-494.
    [19] 刘幼平,周文龙,程国繁,等. 贵州铝土矿含矿岩系特征与成矿规律研究[J]. 矿物学报,2016,36(2):289-294.

    Liu Youping, Zhou Wenlong, Cheng Guofan, et al. A research on characteristics of ore-bearing rock series and mineralization principles of bauxite from Guizhou province, China[J]. Acta Mineralogica Sinica, 2016, 36(2): 289-294.
    [20] 汤艳杰,贾建业,刘建朝. 豫西杜家沟铝土矿中镓的分布规律及控制因素浅析[J]. 地质与勘探,2001,37(6):9-12.

    Tang Yanjie, Jia Jianye, Liu Jianchao. Preliminary study on occurrence state of gallium in Dujiagou bauxite deposits and its controlling factors in the western areas of Henan province[J]. Geology and Prospecting, 2001, 37(6): 9-12.
    [21] 王庆飞,邓军,刘学飞,等. 铝土矿地质与成因研究进展[J]. 地质与勘探,2012,48(3):430-448.

    Wang Qingfei, Deng Jun, Liu Xuefei, et al. Review on research of bauxite geology and genesis in China[J]. Geology and Prospecting, 2012, 48(3): 430-448.
    [22] 柴峰. 试论山西铝土资源综合开发及其利用[J]. 中国矿业,2003,12(8):40-43.

    Chai Feng. Discussion on the development & utilization and comprehensive utilization of Shanxi's bauxite resource[J]. China Mining Magazine, 2003, 12(8): 40-43.
    [23] 刘平. 四论贵州之铝土矿:黔中—川南成矿带铝土矿的稀散、稀土组分特征[J]. 贵州地质,1994,11(3):179-187.

    Liu Ping. On the bauxite in Guizhou province─Ⅳ patterns of rare elements and rare earth elements in bauxite in mineralization belts from the central Guizhou to the southern Sichuan[J]. Guizhou Geology, 1994, 11(3): 179-187.
    [24] 金中国,刘玲,黄智龙,等. 贵州务正道地区铝土矿床稀土元素组成及地质意义[J]. 地质与勘探,2012,48(6):1067-1076.

    Jin Zhongguo, Liu Ling, Huang Zhilong, et al. REE composition of the bauxite deposits in the Wuchuan-Zheng'an-Daozhen area, Guizhou province and its geological significance[J]. Geology and Prospecting, 2012, 48(6): 1067-1076.
    [25] 叶霖,潘自平,程增涛. 贵州修文小山坝铝土矿中镓等伴生元素分布规律研究[J]. 矿物学报,2008,28(2):105-111.

    Ye Lin, Pan Ziping, Cheng Zengtao. The regularities of distribution of associated elements in Xiaoshanba bauxite deposit, Guizhou[J]. Acta Mineralogica Sinica, 2008, 28(2): 105-111.
    [26] 金中国,周家喜,黄智龙,等. 黔北务—正—道地区典型铝土矿床伴生有益元素锂、镓和钪分布规律[J]. 中国地质,2015,42(6):1910-1918.

    Jin Zhongguo, Zhou Jiaxi, Huang Zhilong, et al. The distribution of associated elements Li, Sc and Ga in the typical bauxite deposits over the Wuchuan-Zheng′an-Daozhen bauxite ore district, northern Guizhou province[J]. Geology in China, 2015, 42(6): 1910-1918.
    [27] 刘平,韩忠华,廖友常,等. 黔中—渝南铝土矿含矿岩系微量元素区域分布特征及物质来源探讨[J]. 贵州地质,2020,37(1):1-13.

    Liu Ping, Han Zhonghua, Liao Youchang, et al. Regional distribution characteristics and material sources of trace elements in ore-bearing rock series of bauxite in central Guizhou—southern Chongqing[J]. Guizhou Geology, 2020, 37(1): 1-13.
    [28] 全贵龙,杨明坤,文国江,等. 黔中铝土矿含矿岩系伴生锂元素分布规律[J]. 西部资源,2020(6):1-4.

    Quan Guilong, Yang Mingkun, Wen Guojiang, et al. The distribution of associated Li elements of aluminum-bearing rock series in central Guizhou[J]. Western Resources, 2020(6): 1-4.
    [29] 陈华,姚会禄,陈启飞. 黔中地区含铝岩系中钪的分布及丰度研究[J]. 贵州地质,2012,29(4):270-274,306.

    Chen Hua, Yao Huilu, Chen Qifei. Distribution and abundance of scandium in aluminum-bearing rock series in central Guizhou[J]. Guizhou Geology, 2012, 29(4): 270-274, 306.
    [30] 梁厚鹏. 贵州小山坝铝土矿伴生锂赋存特征及富集机理探讨[D]. 贵阳:贵州大学,2018.

    Liang Houpeng. Investigate the occurrence characteristics and enrichment mechanism of the bauxite and aluminized clay rock associated lithium resources to Xiaoshanba bauxite in Guizhou[D]. Guiyang: Guizhou University, 2018.
    [31] 龙克树,付勇,陈蕤,等. 黔北铝土矿稀土元素富集机制:以新民铝土矿为例[J]. 矿物学报,2019,39(4):443-454.

    Long Keshu, Fu Yong, Chen Rui, et al. The REE enrichment mechanism of bauxite deposits in the northern Guizhou: A case study of the Xinmin bauxite deposit[J]. Acta Mineralogica Sinica, 2019, 39(4): 443-454.
    [32] 李沛刚,王登红,雷志远,等. 贵州大竹园大型铝土矿稀土元素地球化学特征及其意义[J]. 地球科学与环境学报,2012,34(2):31-40.

    Li Peigang, Wang Denghong, Lei Zhiyuan, et al. Geochemical characteristic of rare earth element in Dazhuyuan large-scale bauxite deposit of Guizhou province and its significance[J]. Journal of Earth Sciences and Environment, 2012, 34(2): 31-40.
    [33] 叶霖,程曾涛,潘自平. 贵州修文小山坝铝土矿中稀土元素地球化学特征[J]. 矿物岩石地球化学通报,2007,26(3):228-233.

    Ye Lin, Cheng Zengtao, Pan Ziping. The REE geochemical characteristics of the Xiaoshanba bauxite deposit, Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(3): 228-233.
    [34] 汪小妹,焦养泉,杜远生,等. 黔北务正道地区铝土矿稀土元素地球化学特征[J]. 地质科技情报,2013,32(1):27-33.

    Wang Xiaomei, Jiao Yangquan, Du Yuansheng, et al. Rare earth element geochemistry of bauxite in Wuchuan-Zheng′an-Daozhen area, northern Guizhou province[J]. Geological Science and Technology Information, 2013, 32(1): 27-33.
    [35] 谷静,黄智龙,金中国,等. 贵州务川瓦厂坪铝土矿床稀土元素地球化学特征及其对成矿过程的指示[J]. 矿物学报,2015,35(2):229-238.

    Gu Jing, Huang Zhilong, Jin Zhongguo, et al. Rare-earth element (REE) geochemistry and ore-forming process of the Wachangping bauxite deposit, Wuchuan-Zheng′an-Daozhen area, northern Guizhou province, China[J]. Acta Mineralogica Sinica, 2015, 35(2): 229-238.
    [36] 肖飞. 贵州铝土矿中伴生元素综合利用前景分析[J]. 有色金属文摘,2015,30(6):17-18.

    Xiao Fei. Prospect analysis of comprehensive utilization of associated elements in bauxites from Guizhou[J]. Nonferrous Metals Abstract, 2015, 30(6): 17-18.
    [37] 刘平. 黔北务—正—道地区铝土矿地质概要[J]. 地质与勘探,2007,43(5):29-33.

    Liu Ping. Bauxite geology in the Wuchuan-Zheng'an-Daozhen area, northern Guizhou[J]. Geology and Prospecting, 2007, 43(5): 29-33.
    [38] 郝家栩,杜定全,王约,等. 黔北铝土矿含矿岩系的沉积时代研究[J]. 矿物学报,2007,27(3/4):466-472.

    Hao Jiaxu, Du Dingquan, Wang Yue, et al. A study on sedimentary age of allite formation in north of Guizhou[J]. Acta Mineralogica Sinica, 2007, 27(3/4): 466-472.
    [39] 黄兴,张雄华,杜远生,等. 黔北地区铝土矿形成的地质时代[J]. 地质科技情报,2012,31(3):49-54.

    Huang Xing, Zhang Xionghua, Du Yuansheng, et al. Age of bauxite forming in northern Guizhou[J]. Geological Science and Technology Information, 2012, 31(3): 49-54.
    [40] 杜远生,周琦,金中国,等. 黔北务正道地区铝土矿基础地质与成矿作用研究进展[J]. 地质科技情报,2013,32(1):1-6.

    Du Yuansheng, Zhou Qi, Jin Zhongguo, et al. Advances in basic geology and metallogenic regularity study of bauxite in Wuchuan-Zheng'an-Daozhen area, northern Guizhou province[J]. Geological Science and Technology Information, 2013, 32(1): 1-6.
    [41] 李再会,朱同兴,尹福光,等. 渝南与黔北铝土矿含矿岩系沉积时代探讨[J]. 地层学杂志,2013,37(4):499-504.

    Li Zaihui, Zhu Tongxing, Yin Fuguang, et al. A tentative discussion on the age of bauxite-bearing rock series in the southern Chongqing-northern Guizhou area[J]. Journal of Stratigraphy, 2013, 37(4): 499-504.
    [42] 朱霭林,黄根深,向茂木. 论黔中铝土矿的地质时代[J]. 贵州地质,1984,1(1):89-96.

    Zhu Ailin, Huang Genshen, Xiang Maomu. Discussion on the geological period of bauxite in central Guizhou province[J]. Guizhou Geology, 1984, 1(1): 89-96.
    [43] 陈有能,李加澍,田兴亮. 遵义含铝岩系暨底部含磷层微化石的发现及其意义[J]. 贵州地质,1985,2(2):103-108.

    Chen Youneng, Li Jiashu, Tian Xingliang. Discovery and significance of the Al-bearing stone system of Zunyi and the microfossils at its bottom of phosphate-bearing bed[J]. Guizhou Geology, 1985, 2(2): 103-108.
    [44] 廖士范. 贵州早石炭世古风化壳相铝土矿地层时代及其与邻省对比问题[J]. 贵州地质,1988,5(4):342-348.

    Liao Shifan. The geological times of the bauxite strata of palaeoresiduum facies in Guizhou and the problems in contrast with southern Sichuan, western Hunan and western Hubei[J]. Guizhou Geology, 1988, 5(4): 342-348.
    [45] 高道德,石善华. 贵州中部九架炉组沉积特征[J]. 贵州地质,1992,9(2):109-117.

    Gao Daode, Shi Shanhua. Sedimentary features of Jiujialu Formation in central Guizhou[J]. Guizhou Geology, 1992, 9(2): 109-117.
    [46] 刘平. 五论贵州之铝土矿黔中:川南成矿带铝土矿含矿岩系[J]. 贵州地质,1995,12(3):185-203.

    Liu Ping. On the ban-cite in Guizhou province-V: The bauxite-bearing rock series in central Guizhou—southern Sichuan ore-forming zone[J]. Guizhou Geology, 1995, 12(3): 185-203.
    [47] 李玉娇,张正伟,周灵洁,等. 贵州省苦李井铝土矿地球化学特征及成因探讨[J]. 矿物岩石地球化学通报,2013,32(5):558-566.

    Li Yujiao, Zhang Zhengwei, Zhou Lingjie, et al. Geochemical feature and genesis of the Kulijing bauxite deposit, Guizhou province, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 558-566.
    [48] 蔡贤德. 贵州省凯里地区铝土矿矿床地球化学特征及矿床成因探讨[D]. 昆明:昆明理工大学,2011.

    Cai Xiande. Discussion on geochemistry characteristics and Genesis of bauxite deposits in Kaili area, Guizhou province[D]. Kunming: Kunming University of Science and Technology, 2011.
    [49] 李传班,刘幼平,武国辉,等. 贵州省凯里地区铝土矿床控矿因素研究[J]. 地质与勘探,2012,48(1):31-37.

    Li Chuanban, Liu Youping, Wu Guohui, et al. Ore-controlling factors of the bauxite deposits in the Kaili area, Guizhou province[J]. Geology and Prospecting, 2012, 48(1): 31-37.
    [50] 肖凯,张坤,薛旭东,等. 贵州省瓮安—龙里地区平寨向斜铝土矿整装勘查报告[R]. 都匀:贵州省地质矿产勘查开发局104地质大队,2015.

    Xiao Kai, Zhang Kun, Xue Xudong, et al. The complete prospecting report of Pingzhai synclinal bauxite deposit in Weng'an-Longli area, Guizhou province[R]. Duyun: No.104 PartyGeological, Bureau of Geology and Mineral Exploration and Development Guizhou Province, 2015.
    [51] 杜蔺,郑明泓,曾道国,等. 贵州道真新民铝土矿床成矿机理[J]. 地质与勘探,2020,56(6):1116-1133.

    Du Lin, Zheng Minghong, Zeng Daoguo, et al. Metallogenic mechanism of the Xinmin bauxite deposit in Daozhen, Guizhou province[J]. Geology and Prospecting, 2020, 56(6): 1116-1133.
    [52] 李堂英,杜蔺. 贵州瓮安五台山铝土矿床地质特征[J]. 西部探矿工程,2020,32(5):150-152,155.

    Li Tangying, Du Lin. Geological characteristics of Wutaishan bauxite deposit in Weng'an, Guizhou province[J]. West-China Exploration Engineering, 2020, 32(5): 150-152, 155.
    [53] 冯学岚,尤俊忠. 贵州猫场铝土矿地质特征及成矿模式[J]. 贵州地质,1997,14(4):285-298.

    Feng Xuelan, You Junzhong. A genetic model for the Maochang bauxite depositin in central Guizhou[J]. Guizhou Geology, 1997, 14(4): 285-298.
    [54] 薛洪富,向明坤,衮民汕,等. 贵州省新兴产业矿产资源调查评价报告[R]. 贵阳:贵州省有色金属和核工业地质勘查局地质矿产勘查院,2020.

    Xue Hongfu, Xiang Mingkun, Minshan Gun, et al. Investigation and evaluation report on mineral resources of emerging industry in Guizhou province[R]. Guiyang: Geological and Mineral Exploration Institute, Non-Ferrous Metals and Nuclear Industry Geological Exploration Bureau of Guizhou, 2020.
    [55] Mongelli G. Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)[J]. Chemical Geology, 1997, 140(1/2): 69-79.
    [56] Mongelli G, Boni M, Buccione R, et al. Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities[J]. Ore Geology Reviews, 2014, 63: 9-21.
    [57] Mameli P, Mongelli G, Oggiano G, et al. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (western Sardinia, Italy): Insights on conditions of formation and parental affinity[J]. International Journal of Earth Sciences, 2007, 96(5): 887-902.
    [58] Putzolu F, Papa A P, Mondillo N, et al. Geochemical characterization of bauxite deposits from the Abruzzi mining district (Italy)[J]. Minerals, 2018, 8(7): 298.
    [59] Mordberg L E, Stanley C J, Germann K. Mineralogy and geochemistry of trace elements in bauxites: The Devonian Schugorsk deposit, Russia[J]. Mineralogical Magazine, 2001, 65(1): 81-101.
    [60] Radusinović S, Jelenković R, Pačevski A, et al. Content and mode of occurrences of rare earth elements in the Zagrad karstic bauxite deposit (Nikšić area, Montenegro)[J]. Ore Geology Reviews, 2017, 80: 406-428.
    [61] Kalatha S, Perraki M, Economou-Eliopoulos M, et al. On the origin of bastnaesite-(La, Nd, Y) in the Nissi (Patitira) bauxite laterite deposit, Lokris, Greece[J]. Minerals, 2017, 7(3): 45.
    [62] Ahmadnejad F, Zamanian H, Taghipour B, et al. Mineralogical and geochemical evolution of the bidgol bauxite deposit, Zagros mountain belt, Iran: Implications for ore genesis, rare earth elements fractionation and parental affinity[J]. Ore Geology Reviews, 2017, 86: 755-783.
    [63] Torró L, Proenza J A, Aiglsperger T, et al. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic[J]. Ore Geology Reviews, 2017, 89: 114-131.
    [64] Wang Q F, Deng J, Liu X F, et al. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China[J]. Journal of Asian Earth Sciences, 2010, 39(6): 701-712.
    [65] Liu X F, Wang Q F, Zhang Q Z, et al. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions[J]. Ore Geology Reviews, 2016, 75: 100-115.
    [66] Li Z H, Din J, Xu J S, et al. Discovery of the REE minerals in the Wulong-Nanchuan bauxite deposits, Chongqing, China: Insights on conditions of formation and processes[J]. Journal of Geochemical Exploration, 2013, 133: 88-102.
    [67] Gu J, Huang Z L, Fan H P, et al. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan-Zheng'an-Daozhen area, northern Guizhou province, China[J]. Journal of Geochemical Exploration, 2013, 130: 44-59.
    [68] Wang X M, Jiao Y Q, Du Y S, et al. REE mobility and Ce anomaly in bauxite deposit of WZD area, northern Guizhou, China[J]. Journal of Geochemical Exploration, 2013, 133: 103-117.
    [69] 黄智龙,金中国,向贤礼,等. 黔北务正道铝土矿成矿理论及预测[M]. 北京:科学出版社,2014:1-242.

    Huang Zhilong, Jin Zhongguo, Xiang Xianli, et al. Metallogenic theory and prediction of bauxite deposits in the Wuchuan-Zheng'an-Daozhen area, northern Guizhou province, China[M]. Beijing: Science Press, 2014: 1-242.
    [70] Zhu K Y, Su H M, Jiang S Y. Mineralogical control and characteristics of rare earth elements occurrence in Carboniferous bauxites from western Henan province, North China: A XRD, SEM-EDS and LA-ICP-MS analysis[J]. Ore Geology Reviews, 2019, 114: 103144.
    [71] 龙克树,付勇,龙珍,等. 全球铝土矿中稀土和钪的资源潜力分析[J]. 地质学报,2019,93(6):1279-1295.

    Long Keshu, Fu Yong, Long Zhen, et al. Resource potential analysis of REE and Sc in global bauxite[J]. Acta Geologica Sinica, 2019, 93(6): 1279-1295.
    [72] 王银喜,李惠民,杨杰东,等. 华北古风化壳型稀有稀土矿床的发现及意义[J]. 高校地质学报,2000,6(4):605-606.

    Wang Yinxi, Li Huimin, Yang Jiedong, et al. Discovery of palaeoweathering type rare and rare earth element deposits in nouthern China and its significance[J]. Geological Journal of China Universities, 2000, 6(4): 605-606.
    [73] 庹必阳,王建丽,张覃. 稀土元素在铝土矿中的赋存状态及利用现状[J]. 稀土,2007,28(1):117-119.

    Biyang Tuo, Wang Jianli, Zhang Qin. Occurrence and utilization of rare earth element in bauxite[J]. Chinese Rare Earths, 2007, 28(1): 117-119.
    [74] 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社,1984:50-215.

    Liu Yingjun, Cao Liming, Li Zhaolin, et al. Element geochemistry[M]. Beijing: Science Press, 1984: 50-215.
    [75] 王涛,赵晓东,李军敏,等. 重庆银矿垭口铝土矿锂的分布特征[J]. 地质找矿论丛,2014,29(4):541-545.

    Wang Tao, Zhao Xiaodong, Li Junmin, et al.Distribution characteristics of lithium in Yinkuangyakou bauxite deposit, Chongqing[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(4): 541-545.
    [76] 钟海仁. 重庆南川铝土矿沉积物源及含矿岩系伴生锂赋存状态和富集机理研究[D]. 北京:中国地质大学(北京),2020.

    Zhong Hairen. Provenance of bauxite, and occurrence state, enrichment mechanism of associated lithium in ore-bearing rocks of deposits in Nanchuan district, Chongqing[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [77] Ling K Y, Tang H S, Zhang Z W, et al. Host minerals of Li-Ga-V-rare earth elements in Carboniferous karstic bauxites in southwest China[J]. Ore Geology Reviews, 2020, 119: 103325.
    [78] 温汉捷,罗重光,杜胜江,等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报,2020,65(1):53-59.

    Wen Hanjie, Luo Chongguang, Du Shengjiang, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 2020, 65(1): 53-59.
    [79] 姚双秋,庞崇进,温淑女,等. 桂西上二叠统合山组富锂黏土岩的发现及意义[J]. 大地构造与成矿学,2021,45(5):951-962.

    Yao Shuangqiu, Pang Chongjin, Wen Shunü, et al. Li-rich claystone in the Upper Permian Heshan Formation in western Guangxi and its prospecting significance[J]. Geotectonica et Metallogenia, 2021, 45(5): 951-962.
    [80] 刘英俊,于鎮藩. 某地鋁土矿中镓的地球化学特征[J]. 南京大学学报(自然科学版),1963(13):93-100.

    Liu Yingjun, Yu Zhenfan. Geochemical characteristics of gallium in a bauxite deposit in a certain area[J]. Journal of Nanjing University (Natural Sciences), 1963(13): 93-100.
    [81] 汤艳杰,刘建朝,贾建业. 豫西铝土矿中镓的赋存状态研究[J]. 西安工程学院学报,2002,24(4):1-5.

    Tang Yanjie, Liu Jianchao, Jia Jianye. Study on occurrence state of galliun in the bauxite deposits of western Henan province[J]. Journal of Xi'an Engineering University, 2002, 24(4): 1-5.
    [82] 赵晓东,李军敏,陈莉,等. 重庆银矿垭口铝土矿床镓地球化学特征及成矿环境研究[J]. 沉积学报,2013,31(6):1022-1030.

    Zhao Xiaodong, Li Junmin, Chen Li, et al. Analysis on gallium geochemical characteristics and ore-forming environment of bauxite mine in Yinkuangyakou of Chongqing[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1022-1030.
    [83] 刘英俊. 我国某些铝土矿中镓的若干地球化学特征[J]. 地质论评,1965,23(1):42-49.

    Liu Yingjun. Several geochemistry characteristics of gallium in some bauxite deposits in China[J]. Geological Review, 1965, 23(1): 42-49.
    [84] 王新萍,曾德启. 平果铝土矿伴生镓的综合利用前景[J]. 轻金属,2012(6):6-8.

    Wang Xinping, Zeng Deqi. Prospect for comprehensive utilization of Pingguo bauxite associated gallium[J]. Light Metals, 2012(6): 6-8.
    [85] 刘平,廖友常. 试论遵义高铁铝土矿与低铁铝土矿的分带性及形成机制[J]. 中国地质,2013,40(3):949-966.

    Liu Ping, Liao Youchang. The zonation and genetic mechanism of Zunyi high-and low-ferrous bauxites[J]. Geology in China, 2013, 40(3): 949-966.
    [86] 杨中华,孙思磊,孟建寅. 山西铝土矿分散金属元素镓富集特征[J]. 资源与产业,2011,13(6):106-109.

    Yang Zhonghua, Sun Silei, Meng Jianyin. Enrichment features of gallium in Shanxi's bauxite deposits[J]. Resources & Industries, 2011, 13(6): 106-109.
    [87] 柴东浩,屈值明,陈汉成,等. 山西铝土矿中稀有稀土元素的新发现及工业意义[J]. 轻金属,2001(6):6-11.

    Chai Donghao, Qu Zhiming, Chen Hancheng, et al. New discovery and industrial significance of rare and rare-earth elements in Shanxi bauxite[J]. Light Metals, 2001(6): 6-11.
    [88] 樊钰超,齐永安. 禹州地区本溪组铝土矿中镓的分布及控制因素[J]. 矿业研究与开发,2017,37(4):103-108.

    Fan Yuchao, Qi Yong'an. Distribution and controlling factors of gallium in Benxi Formation of Yuzhou bauxite mining area[J]. Mining Research and Development, 2017, 37(4): 103-108.
    [89] 曾德启. 平果铝土矿伴生组分的综合利用前景[J]. 轻金属,2000(8):7-10.

    Zeng Deqi. Comprehensive utilization of associated components of Pingguo bauxite[J]. Light Metals, 2000(8): 7-10.
    [90] 张青伟,缪秉魁,王登红,等. 桂西铝土矿中伴生元素研究现状[J]. 矿物学报,2011,31(增刊1):917-918.

    Zhang Qingwei, Miao Bingkui, Wang Denghong, et al. Research status of associated elements of the bauxite deposit in western Guangxi[J]. Acta Mineralogica Sinica, 2011, 31(Suppl.1): 917-918.
    [91] 刘平. 贵州铝土矿伴生镓的分布特征及综合利用前景:九论贵州之铝土矿[J]. 贵州地质,2007,24(2):90-96.

    Liu Ping. Characteristics of associate gallium distributed in the bauxite in Guizhou and its prospects for comprehensive utilization: Nine treatments of bauxite ores[J]. Guizhou Geology, 2007, 24(2): 90-96.
    [92] 鲁方康,黄智龙,金中国,等. 黔北务—正—道地区铝土矿镓含量特征与赋存状态初探[J]. 矿物学报,2009,29(3):373-379.

    Lu Fangkang, Huang Zhilong, Jin Zhongguo, et al. A primary study on the content features and occurrence states of gallium in bauxite from the Wuchuan-Zheng'an-Daozhen area, northern Guizhou province, China[J]. Acta Mineralogica Sinica, 2009, 29(3): 373-379.
    [93] 陈阳,程军,任世聪,等. 渝南大佛岩铝土矿伴生镓的分布规律研究[J]. 稀有金属,2013,37(1):140-148.

    Chen Yang, Cheng Jun, Ren Shicong, et al. Distribution of Ga in Dafoyan bauxite mining area, southern Chongqing[J]. Chinese Journal of Rare Metals, 2013, 37(1): 140-148.
    [94] 孙洁,赵晓东,李军敏,等. 重庆洪官渡铝土矿床镓元素地球化学特征及其成矿环境探讨[J]. 沉积与特提斯地质,2014,34(3):106-112.

    Sun Jie, Zhao Xiaodong, Li Junmin, et al. Geochemical signatures and mineralization environments of the element gallium from the Hongguandu bauxite deposit in Chongqing[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(3): 106-112.
    [95] 凌小明,赵晓东,李军敏,等. 车盘向斜南东翼铝土矿钪特征及综合利用前景[J]. 金属矿山,2014(1):88-91.

    Ling Xiaoming, Zhao Xiaodong, Li Junmin, et al. Characteristics and comprehensive utilization prospect of scandium in bauxite mine in southeast wing of Chepan syncline[J]. Metal Mine, 2014(1): 88-91.
    [96] 李军敏,陈莉,徐金沙,等. 渝南大佛岩矿区铝土矿碎屑锆石中钪的赋存形式研究[J]. 沉积学报,2013,31(4):630-638.

    Li Junmin, Chen Li, Xu Jinsha, et al. Existing form of scandium in detrital zircon from bauxite of the Dafoyan mine, southern Chongqing[J]. Acta Sedimentologica Sinica, 2013, 31(4): 630-638.
    [97] Vind J, Malfliet A, Bonomi C, et al. Modes of occurrences of scandium in Greek bauxite and bauxite residue[J]. Minerals Engineering, 2018, 123: 35-48.
    [98] 李军敏,丁俊,尹福光,等. 渝南申基坪铝土矿矿区钪的分布规律及地球化学特征研究[J]. 沉积学报,2012,30(5):909-918.

    Li Junmin, Ding Jun, Yin Fuguang, et al. Regularities of distribution and geochemical characteristics of Sc in bauxite of Shenjiping mine, southern Chongqing[J]. Acta Sedimentologica Sinica, 2012, 30(5): 909-918.
    [99] 陈莉,李军敏,杨波,等. 渝南吴家湾铝土矿含矿岩系中钪的分布规律研究[J]. 矿物岩石地球化学通报,2013,32(4):468-474.

    Chen Li, Li Junmin, Yang Bo, et al. Distribution of scandium in the Wujiawan bauxite ore-bearing rock series, southern Chongqing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 468-474.
    [100] 肖金凯,雷剑泉,夏祥. 黔中铝土矿及其赤泥中钪的某些特征[J]. 矿物学报,1994,14(4):388-393.

    Xiao Jinkai, Lei Jianquan, Xia Xiang. Some characteristics of scandium in bauxite from central Guizhou as well as in red mud[J]. Acta Mineralogica Sinica, 1994, 14(4): 388-393.
    [101] 肖金凯. 工业废渣赤泥中钪的分布特征[J]. 地质地球化学,1996(2):82-86.

    Xiao Jinkai. Distribution characteristics of scandium in industrial waste red mud[J]. Geology-Geochemistry, 1996(2): 82-86.
    [102] 张江娟,段战荣. 从赤泥中回收钪的研究现状[J]. 湿法冶金,2004,23(4):195-198.

    Zhang Jiangjuan, Duan Zhanrong. Research status of recovery scandium from red mud of slag[J]. Hydrometallurgy of China, 2004, 23(4): 195-198.
    [103] 王爱平,汪胜东,靳冉公. 赤泥提钪技术研究进展[J]. 中国资源综合利用,2014,32(9):40-42.

    Wang Aiping, Wang Shengdong, Jin Ran gong. Summarization of progress on the extraction of scandium from red mud[J]. China Resources Comprehensive Utilization, 2014, 32(9): 40-42.
    [104] 廖春生,徐刚,贾江涛,等. 新世纪的战略资源—钪的提取与应用[J]. 中国稀土学报,2001,19(4):289-297.

    Liao Chunsheng, Xu Gang, Jia Jiangtao, et al. Recovery and application of scandium—a strategic resource of new century[J]. Journal of the Chinese Rare Earth Society, 2001, 19(4): 289-297.
    [105] 金中国,邹林,张力,等. 贵州务—正—道地区铝土矿成矿模式与找矿模型[J]. 沉积学报,2018,36(5):914-926.

    Jin Zhongguo, Zou Lin, Zhang Li, et al. Metallogenic and prospecting models of bauxite in Wuchuan-Zheng'an-Daozhen area, Guizhou province[J]. Acta Sedimentologica Sinica, 2018, 36(5): 914-926.
    [106] 龙克树. 黔北新民铝土矿中稀土富集地质特征及其富集机制研究[D]. 贵阳:贵州大学,2020.

    Long Keshu. Study on geological characteristics and enrichment mechanism of REE in Xinmin bauxite deposit in northern Guizhou province[D]. Guiyang: Guizhou University, 2020.
    [107] 邵厥年,陶维屏,张义勋,等. 矿产资源工业手册 [S]. 北京:地质出版社,2010:231-298.

    Shao Juenian, Tao Weiping, Zhang Yixun, et al. Handbook for the mineral resources industry [S]. Beijing: Geology Press, 2010: 231-298.
    [108] 叶彤,谷静,王甘露,等. 铝土矿中伴生三稀元素研究进展[J]. 矿物学报,2021,41(4/5):391-399.

    Ye Tong, Gu Jing, Wang Ganlu, et al. Research progress on the associated rare earth, rare metal, and rare dispersed elements in the bauxite deposit[J]. Acta Mineralogica Sinica, 2021, 41(4/5): 391-399.
    [109] 赵运发,亓小卫,王智勇,等. 山西铝土矿稀有稀土元素综合利用评价[J]. 世界有色金属,2004(6):35-37.

    Zhao Yunfa, Qi Xiaowei, Wang Zhiyong, et al. Appraisal of multiple-utilization of rare earth/rare metals from bauxite ores in Shanxi province[J]. World Nonferrous Metals, 2004(6): 35-37.
    [110] 中华人民共和国国土资源部. DZ/T 0204-2002 稀土矿产地质勘查规范 [S]. 北京:中华人民共和国国土资源部,2002:40-41.

    Ministry of Land and Resources of the People's Republic of China. DZ/T 0204-2002 specifications for rare earth mineral exploration [S]. Beijing: Ministry of Land and Resources of the People's Republic of China, 2002: 40-41.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(3)

Article Metrics

Article views(262) PDF downloads(79) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-08-12
  • Revised:  2022-01-19
  • Accepted:  2022-03-17
  • Published:  2023-10-10

Critical Metal Enrichments in the Aluminiferous Rock Series in the Bauxite Deposits of Guizhou Province, and Their Resource Potential

doi: 10.14027/j.issn.1000-0550.2022.006
Funds:

National Natural Science Foundation of China U1812402

Guizhou Geological Exploration Fund project GZMC-ZG20192015-4

Abstract: Guizhou province is an important production base for aluminum. It is the second largest in China, with a recoverable reserve of bauxite of 1.289 billion tons, accounting for 17% of the national total. The bauxite deposits are enriched in critical metals, including Li, Ga, Sc and rare earth elements (REE). The enrichments of critical metals were evaluated and their resource potentials were summarized in this study of the geological characteristics of the Guizhou bauxite deposits occurring in the aluminiferous rock series, to determine the distributions of critical metals. It was found that Li, Ga, Sc and REE are enriched to varying extents in the bauxite. Li content is higher in the Wu-Zheng-Dao bauxite ore area (northern Guizhou province) than in the other study areas, mainly occurring in the dense bauxite in the middle-to-upper section of the aluminiferous rock series. Ga content is relatively highest in the Wu-Zheng-Dao and Zunyi-Weng'an (central Guizhou) bauxite, and is mainly present in the claylike and clastic bauxite in the middle section of the aluminiferous rock series. REE content is relatively higher in the Wu-Zheng-Dao and Xiuwen-Qingzhen (southwest Guizhou) bauxite, being mainly hosted by chlorite mudstone and ferruginous claystone in the lower section of the aluminiferous rock series. Sc is relatively evenly distributed, both horizontally and vertically. The Li, Ga, Sc and REE present throughout the aluminous rock series are mainly adsorbed onto mineral surfaces and fractures, or occur as isomorphic substitutes in the structures of clay minerals, aluminum-bearing minerals and accessory minerals. Small amounts of REE are present in independent minerals. Overall, these Li, Ga, Sc and REE resources in Guizhou province and their economic potential are huge. Further studies are needed to achieve the maximum economic and environmental benefits of these resources.

DU Lin, TANG YongYong, ZHANG ShiFan, LI Yang, GONG Xin, XIANG MingKun, WEN YuanYun. Critical Metal Enrichments in the Aluminiferous Rock Series in the Bauxite Deposits of Guizhou Province, and Their Resource Potential[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.006
Citation: DU Lin, TANG YongYong, ZHANG ShiFan, LI Yang, GONG Xin, XIANG MingKun, WEN YuanYun. Critical Metal Enrichments in the Aluminiferous Rock Series in the Bauxite Deposits of Guizhou Province, and Their Resource Potential[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.006
  • 关键金属(critical metals)是指当今社会必需、安全供应存在高风险的一类金属,主要包括稀有金属、稀散金属、稀土金属和部分稀贵金属等,因其特殊的物理化学性能,关键金属在新能源、新材料、信息技术、航空航天和国防军工等行业具有不可替代的重要用途[14]。基于国家战略安全,欧盟、美国、俄罗斯、英国、澳大利亚、日本等重要国际组织和国家相继制定了各自的关键矿产发展战略[58],以确保关键矿产资源的安全可靠供应以及争取在未来国际竞争中的主动地位。近年随着高科技产业的快速发展,我国对关键金属矿产的需求增加迅猛,但是,我国许多关键金属矿产资源(如Li、Be、Nb、Ta、Zr、Hf、Re、PGE、Cr、Co等)的保障严重不足,约2/3的资源需要进口,对外依存度居高不下;我国优势矿种(如W、REE、In、Ge、Ga、Se、Tl、Te等)也存在基础研究薄弱、资源家底不清、战略统筹不足等问题,为保障国家战略性关键矿产资源的安全,对关键金属矿产的勘查和研究已上升为国家战略[13,910]

    我国铝土矿资源较丰富,其中常伴生锂(Li)、镓(Ga)、钪(Sc)和稀土(REE)等关键金属矿产资源,具有巨大的潜在经济价值[1115]。贵州省大地构造位置跨越杨子陆块和江南复合造山带[16],境内铝土矿资源丰富,分布范围广,矿石质量好,已探获资源储量12.89亿吨,占全国资源总量的17%,位居全国第二[1719]。这些铝土矿含铝岩系中普遍富集Li、Ga、Sc和REE等关键金属,其中伴生镓在铝土矿勘查过程中进行了综合评价,已成为工业上综合利用的资源[2022],其他伴生关键金属由于缺乏工业评价标准尚未进行综合评价和利用。前人对贵州铝土矿含铝岩系中伴生关键金属的元素组成[2324]、分布规律[2529]、富集机制[3031]、地球化学特征[3235]、综合利用前景[12,36]等进行了研究,由于研究条件的限制和研究资料的不足,以往的研究工作主要聚焦在矿床个例或局部区域,缺乏对全省关键金属的富集特征进行系统总结及对其资源潜力进行评价研究。基于贵州省地质勘查基金项目“贵州省新兴产业矿产资源调查评价”,以全省分布的铝土矿含铝岩系为调查对象,深入研究锂、镓、钪、稀土等关键金属富集的地质特征。本文在此调查评价及已有研究成果的基础上,系统全面地讨论了贵州含铝岩系中关键金属的富集规律与赋存状态,并对其资源潜力进行了分析,这可为贵州省关键矿产资源统筹规划提供重要参考,并为全国其他省市沉积型铝土矿中关键金属矿产的找矿勘查和综合评价提供借鉴。

  • 在空间位置上,贵州铝土矿含铝岩系主要分布在黔中及以北的地区,地理位置在106°00′ E~108°30′ E、26°20′ N~29°13′ N之间。自北至南,铝土矿集中分布在四个区域:(1)务正道矿集区,铝土矿主要分布在务川县、正安县、道真县境内;(2)遵义—瓮安矿集区,铝土矿主要分布在遵义县、息烽县、开阳县及瓮安县境内;(3)修文—清镇矿集区,铝土矿主要分布在修文县、黔西县、织金县、清镇市、贵阳市及龙里县境内;(4)凯里—福泉矿集区,铝土矿主要分布在凯里市、黄平县、福泉市境内(图1[1719,37-38]

    Figure 1.  Distribution of bauxite resources in Guizhou province (modified from reference [37])

    在沉积时代方面,不同地区的铝土矿含铝岩系存在差异,主要集中在二叠纪和石炭纪。其中,务正道矿集区铝土矿含铝岩系的沉积时代为早二叠世,含铝岩系岩石地层为大竹园组[3941];遵义—瓮安矿集区和修文—清镇矿集区铝土矿含铝岩系的沉积时代为早石炭世,含铝岩系岩石地层为九架炉组[4246];而凯里—福泉矿集区铝土矿含铝岩系的沉积时代为中二叠世,含铝岩系的岩石地层为梁山组[19,4750]

  • 务正道矿集区含铝岩系为下二叠统大竹园组(P1d),其上覆地层为中二叠统梁山组(P2l),下伏地层为下志留统韩家店组(S1hj)或上石炭统黄龙组(C2h)。大竹园组底部为灰绿、墨绿色绿泥石泥岩或铁绿泥石泥岩,下部为灰、浅灰色铝质泥岩,中部为灰、浅灰色土状铝土矿、碎屑状铝土矿、豆鲕状铝土矿,上部为浅灰至深灰色致密状铝土矿或铝土岩,顶部为灰、浅灰色铝质泥岩。含铝岩系厚0~16 m,平均厚6 m(图2a)。

    Figure 2.  Stratigraphic columns of aluminiferous rock series of typical bauxite deposits in Guizhou province

  • 遵义—瓮安矿集区含铝岩系为下石炭统九架炉组(C1 jj),其上覆地层为中二叠统梁山组(P2l)或栖霞组(P2q),下伏地层为下奥陶统桐梓组(O1t)或中上寒武统娄山关群(Є2-3ls)。九架炉组底部为灰绿、黄绿色绿泥石泥岩,下部为褐红、暗紫、紫红色含铁质泥岩,中部为灰、浅灰色铝质泥岩、铝土岩,上部为灰、浅灰、灰白色致密状铝土矿、豆鲕状铝土矿、碎屑状铝土矿、土状铝土矿,顶部为灰、浅灰色致密状铝土岩、铝质泥岩。含铝岩系厚0~29 m,平均厚8 m(图2b)。

  • 修文—清镇矿集区含铝岩系为下石炭统九架炉组(C1jj),其上覆地层为下石炭统摆佐组(C1b)或祥摆组(C1x),下伏地层为中寒武统石冷水组(Є2s)或高台组(Є2g)或中上寒武统娄山关群(Є2-3ls)。九架炉组底部为紫红色铁质黏土岩、灰绿色绿泥石黏土岩,夹团块状、透镜状、结核状赤铁矿;下部为灰色致密状、碎屑状铝土岩、铝质黏土岩;中部为浅灰—深灰色致密状、碎屑状、土状铝土矿;上部为灰、深灰色致密状、碎屑状铝土岩、铝质黏土岩;顶部为灰、灰绿色、杂色黏土岩。含铝岩系厚0~46 m,平均厚15 m(图2c)。

  • 凯里—福泉矿集区含铝岩系为中二叠统梁山组(P2l),其上覆地层为中二叠统栖霞组(P2q),下伏地层为上泥盆统高坡场组(D3 g)。梁山组底部为褐红、紫红色铁质侵染黏土质页岩或铝土质页岩;下部为灰白、浅灰、灰黄、黄绿、砖红色致密状、豆鲕状铝土岩或铝土页岩;中部为灰白、浅灰、黄褐色碎屑状铝土矿、豆鲕状铝土矿、半土状—土状铝土矿,局部夹铝土岩;上部为浅灰、灰黄色致密状、豆鲕状铝土岩、铝土页岩;顶部为灰黑、褐黑色炭质页岩夹劣质煤层,含结核状、薄板状、粒状黄铁矿。含铝岩系厚0~44 m,平均厚10 m(图2d)。

  • 研究样品数据来自贵州省新兴产业矿产资源调查评价报告[54],样品共计490件,均为含铝岩系样品,其中务正道矿集区191件,遵义—瓮安矿集区97件,修文—清镇矿集区129件,凯里—福泉矿集区73件。样品分析由有色金属桂林矿产地质测试中心完成,常量元素采用X射线荧光光谱仪(ZSX Primus IV)完成,分析精度高于5%,微量元素和稀土元素采用电感耦合等离子体质谱(iCAP-Q)测定,分析精度高于10%。

  • 在各矿集区含铝岩系中,关键金属的富集规律总体上为:Li含量在北部较高,中部和南部较低;Ga含量在中部和北部较高,南部较低;稀土总量∑REE在北部和南西部较高,中部和南东部较低;Sc含量变化较小(表1图3)。

    名称样品岩性特征样品数量Al2O3/%SiO2/%Li/×10-6Ga/×10-6Sc/×10-6∑REE/×10-6
    务正道矿集区致密状铝土矿3043.13~64.7355.3511.12~25.5817.77580.70~2 778.001 175.0032.20~77.4052.4128.60~74.6045.13150.00~920.00354.60
    豆鲕状铝土矿2044.94~66.7154.306.79~25.1417.04232.30~1 375.00579.3033.20~89.5058.7020.90~51.1038.81140.00~590.00260.00
    碎屑状铝土矿1555.14~72.2762.572.32~19.8611.83199.80~1 435.00554.1037.60~137.3073.4828.90~49.8038.30130.00~500.00221.40
    土状铝土矿1363.30~78.3973.642.35~7.994.7927.87~315.90115.7041.70~183.1077.3725.50~41.3033.56100.00~410.00228.30
    平均值7859.5214.70698.1061.4140.62282.00
    遵义|瓮安矿集区致密状铝土矿2044.31~63.0954.1911.16~22.4015.50120.80~1 078.00421.2043.50~83.1067.3622.10~60.5039.57160.00~890.00315.60
    豆鲕状铝土矿643.29~65.6954.464.47~26.1413.0369.68~501.70291.1058.20~90.5072.5348.00~88.6056.95150.00~500.00298.30
    碎屑状铝土矿648.12~68.7956.445.71~11.168.4451.10~478.50270.4061.80~126.6083.5824.70~47.3037.98130.00~340.00240.00
    土状铝土矿757.15~75.2169.365.40~12.599.0037.16~236.9092.9170.20~134.20100.6019.50~48.3033.27100.00~390.00181.40
    平均值3957.4712.68307.8077.6740.94276.10
    修文|清镇矿集区致密状铝土矿2643.79~66.5952.9913.86~28.6323.16153.30~989.50571.4025.90~70.0046.7323.00~79.5040.54190.00~2 190.001 064.00
    豆鲕状铝土矿1255.32~70.4261.939.27~21.2213.9855.75~529.60335.4028.50~82.0049.5324.90~61.7042.13220.00~1 960.00919.20
    碎屑状铝土矿859.12~76.8166.574.44~7.636.0446.46~483.10285.4038.60~80.8053.3827.20~61.2039.32170.00~1 050.00578.30
    土状铝土矿671.62~77.3674.001.66~3.873.0527.87~97.5648.7848.40~151.8079.3225.80~42.7038.26160.00~830.00581.70
    平均值5459.5615.11417.3052.4640.48910.20
    凯里|福泉矿集区致密状铝土矿447.67~56.5452.0422.52~25.4023.72134.50~650.40362.3055.10~60.7057.3019.50~48.3033.23120.00~670.00350.00
    豆鲕状铝土矿642.82~58.7551.5815.48~24.5620.01209.10~385.60282.6043.50~72.1058.2225.10~43.1035.90200.00~610.00320.00
    碎屑状铝土矿261.19~64.8463.0211.68~12.9112.30181.20~190.50185.8044.20~80.1062.1523.10~29.2026.15140.00~150.00145.00
    土状铝土矿369.76~70.1969.955.20~10.268.0583.62~111.4997.5650.30~70.6063.2311.50~25.9020.5070.00~270.00156.70
    平均值1556.9017.58260.7059.6630.64266.40
    地壳克拉克值201522165.35
    伴生工业品位23220201 000

    Figure 3.  Distributions of Li, Ga, Sc and REE contents in the aluminiferous rock series and bauxites in different bauxite ore⁃concentrated areas

    (1) Li含量最高的为务正道矿集区(介于27.87×10-6~2 778×10-6,平均为655.7×10-6),其次为修文—清镇矿集区(介于27.87×10-6~1 273×10-6,平均为493.0×10-6),再次为遵义—瓮安矿集区(介于37.16×10-6~1 078×10-6,平均为408.2×10-6),最低的为凯里—福泉矿集区(介于32.52×10-6~775.8×10-6,平均为242.0×10-6)。

    (2) Ga含量最高的为遵义—瓮安矿集区(介于27.90×10-6~134.2×10-6,平均为56.86×10-6),其次为务正道矿集区(介于22.50×10-6~183.1×10-6,平均为51.00×10-6),再次为凯里—福泉矿集区(介于12.10×10-6~80.10×10-6,平均为44.57×10-6),最低的为修文—清镇矿集区(介于14.60×10-6~151.8×10-6,平均为41.17×10-6)。

    (3) Sc含量总体变化较小,其中Sc含量稍高的为修文—清镇矿集区(介于11.10×10-6~91.60×10-6,平均为38.07×10-6),其次为务正道矿集区(介于19.50×10-6~74.60×10-6,平均为37.92×10-6),再次为遵义—瓮安矿集区(介于19.50×10-6~88.60×10-6,平均为37.71×10-6),最低的为凯里—福泉矿集区(介于11.50×10-6~62.20×10-6,平均为33.11×10-6)。

    (4) 稀土总量∑REE最高的为修文—清镇矿集区(介于180.0×10-6~2 440×10-6,平均为766.9×10-6),其次为务正道矿集区(介于120.0×10-6~3 310×10-6,平均值573.4×10-6),再次为凯里—福泉矿集区(介于110.0×10-6~2 220×10-6,平均为458.6×10-6),最低的为遵义—瓮安矿集区(介于100.0×10-6~2 680×10-6,平均为445.2×10-6)。

  • 在各矿集区的铝土矿石中,关键金属的富集规律为:Li含量在北部较高,中部和南部较低;Ga含量在中部较高,北部和南部较低;稀土总量∑REE在南西部较高,北部、中部及南东部均较低;Sc含量变化较小(表2、图3)。

    位置样品岩性特征样品数量Al2O3/%SiO2/%Li/×10-6Ga/×10-6Sc/×10-6∑REE/×10-6
    务正道矿集区P1d3铝质泥岩、铝土岩3026.67~48.0237.4824.23~39.0432.37497.08~1 612.00847.8027.50~78.3049.0119.50~56.7032.58120.00~480.00209.60
    P1d2铝土矿7843.13~78.3959.522.32~25.5814.7027.87~2 778.00698.1032.20~183.1061.4120.90~74.6040.62100.00~920.00282.00
    P1d1铝质泥岩、铝土岩、绿泥石泥岩8319.26~45.8233.1524.22~41.3133.53223.00~1 092.00552.1022.50~71.8043.2520.70~66.2037.13270.00~3 310.001 075.00
    P1d平均值19144.7823.47655.7051.0037.92573.40
    遵义|瓮安矿集区C1jj3铝质泥岩、铝土岩1828.60~46.6638.5725.06~43.5634.21250.90~1 208.00670.5034.60~78.5050.9225.10~48.0034.82130.00~600.00329.40
    C1jj2铝土矿3943.29~75.2157.474.47~26.1412.6837.16~1 078.00307.8043.50~134.2077.6719.50~88.6040.94100.00~890.00276.10
    C1jj1铝质泥岩、铁质泥岩4011.34~45.5631.6814.64~50.0035.7869.68~659.70350.3027.90~51.1040.0720.50~59.4035.68220.00~2 680.00696.90
    C1jj平均值9743.0328.50408.2056.8637.71445.20
    修文|清镇矿集区C1jj3黏土岩、铝质黏土岩、铝土岩3922.00~50.2036.3020.64~49.1936.3260.39~1 273.00596.8018.30~66.5038.6111.70~75.2033.83180.00~1 030.00429.50
    C1jj2铝土矿5443.79~77.3659.561.66~28.6315.1127.87~989.50417.3025.90~151.8052.4623.00~79.5040.48160.00~2 190.00910.20
    C1jj1铝土岩、铝质黏土岩、铁质黏土岩3622.39~47.2133.7118.23~39.0528.75176.50~1 068.00479.8014.60~52.9031.5311.10~91.6039.52520.00~2 440.00932.40
    C1jj平均值12945.6125.02493.0041.1738.07766.90
    凯里|福泉矿集区P2l3炭质页岩、铝土页岩、铝土岩2513.78~41.5329.1120.92~44.7435.0932.52~775.80312.4012.10~68.4037.3416.90~55.9030.42110.00~920.00338.80
    P2l2铝土矿1547.67~70.1956.905.20~25.4017.5883.62~650.40260.7043.50~80.1059.6611.50~48.3030.6470.00~670.00266.40
    P2l1铝土页岩、铝土岩、铁质黏土岩3311.67~43.0730.7512.26~43.2431.4860.39~478.50186.6015.70~67.2042.7217.20~62.2036.02220.00~2 220.00638.10
    P2l平均值7335.9129.18242.0044.5733.11458.60
    地壳克拉克值201522165.35
    伴生工业品位23220201 000

    (1) Li含量最高的为务正道矿集区(介于27.87×10-6~2 778×10-6,平均为698.1×10-6),其次为修文—清镇矿集区(介于27.87×10-6~989.5×10-6,平均为417.3×10-6),再次为遵义—瓮安矿集区(介于37.16×10-6~1 078×10-6,平均为307.8×10-6),最低的为凯里—福泉矿集区(介于83.62×10-6~650.4×10-6,平均为260.7×10-6)。

    (2) Ga含量最高的为遵义—瓮安矿集区(介于43.50×10-6~134.2×10-6,平均为77.67×10-6),其次为务正道矿集区(介于32.20×10-6~183.1×10-6,平均为61.41×10-6),再次为凯里—福泉矿集区(介于43.50×10-6~80.10×10-6,平均为59.66×10-6),最低的为修文—清镇矿集区(介于25.90×10-6~151.8×10-6,平均为52.46×10-6)。

    (3) Sc含量在各矿集区铝土矿石中的变化较小,在务正道矿集区、遵义—瓮安矿集区、修文—清镇矿集区中Sc含量稍高且相差不大;其中,务正道矿集区Sc含量介于20.90×10-6~74.60×10-6,平均为40.62×10-6;遵义—瓮安矿集区Sc含量介于19.50×10-6~88.60×10-6,平均为40.94×10-6;修文—清镇矿集区Sc含量介于23.00×10-6~79.50×10-6,平均为40.48×10-6。而凯里—福泉矿集区中Sc含量稍低,介于11.50×10-6~48.30×10-6,平均为30.64×10-6

    (4) 稀土总量∑REE最高的为修文—清镇矿集区(介于170.0×10-6~2 190×10-6,平均为910.2×10-6),其次为务正道矿集区(介于100.0×10-6~920.0×10-6,平均为282.0×10-6),再次为遵义—瓮安矿集区(介于100.0×10-6~890.0×10-6,平均为276.1×10-6),最低为凯里—福泉矿集区(介于70.00×10-6~670.0×10-6,平均为266.4×10-6)。

  • 在各矿集区含铝岩系垂向剖面上,关键金属具有分层富集的特征,总体上为上部富Li、中部富Ga、下部富REE,Sc含量变化较小的富集规律(表1图4)。

    Figure 4.  Vertical variations of Li, Ga, Sc and REE contents in the aluminiferous rock series in different bauxite ore⁃concentrated areas in Guizhou province

    (1) 在含铝岩系垂向剖面上,Li含量在上部相对较高,而在中部和下部相对较低。其中,在务正道矿集区,Li含量从上到下逐渐降低;在遵义—瓮安矿集区,Li含量从上到下表现为先降低后略有升高又逐渐降低的变化趋势;在修文—清镇矿集区,Li含量表现为上部较高、中部较低、下部相对于中部略有增高的变化趋势;在凯里—福泉矿集区,Li含量从上到下呈先升高后逐渐降低的变化趋势。

    (2) 从上到下,Ga含量在含铝岩系的中部较高,而在含铝岩系的上部和下部较低。其中,在务正道矿集区、遵义—瓮安矿集区和修文—清镇矿集区,Ga含量总体上呈中部>上部>下部的变化趋势,在凯里—福泉矿集区,Ga含量总体上呈中部>下部>上部的变化趋势。

    (3)Sc含量从上到下总体变化较小。其中,在务正道矿集区,Sc含量总体上呈上部<下部<中部变化趋势;在遵义—瓮安矿集区,Sc含量总体上呈下部<上部<中部变化趋势;在修文—清镇矿集区,Sc含量从上到下表现为先逐渐升高后到底部降低的变化趋势;在凯里—福泉矿集区,Sc含量从上到下呈先升高后降低,再升高最后降低的变化趋势,总体上呈上部<中部<下部的变化趋势。

    (4) 从上到下,稀土总量∑REE在含铝岩系下部较高,而在含铝岩系上部较低。其中,在务正道矿集区和修文—清镇矿集区,稀土总量∑REE从上至下逐渐增加;在遵义—瓮安矿集区,稀土总量∑REE呈下部>上部>中部的变化趋势;在凯里—福泉矿集区,稀土总量∑REE从上到下表现为先升高后降低又逐渐升高的变化趋势,总体上呈下部>上部>中部的变化趋势。

  • 在各矿集区的铝土矿石类型上,关键金属的富集规律总体上为:Li主要富集在致密状铝土矿石中,Ga在土状铝土矿石和碎屑状铝土矿石中相对富集,∑REE在致密状铝土矿石和豆鲕状铝土矿石中相对富集,Sc在各矿石类型中的含量变化较小(表2、图5)。

    Figure 5.  Contents of critical metals Li, Ga, Sc and REE in the different types of bauxite in the bauxite ore⁃concentrated areas in Guizhou province

    (1) Li含量总体上呈致密状铝土矿>豆鲕状铝土矿>碎屑状铝土矿>土状铝土矿的变化趋势。其中,Li在务正道矿集区致密状铝土矿中含量最高,表现出显著富集的特征;其次,Li在修文—清镇矿集区致密状铝土矿中相对富集。

    (2) Ga含量总体上呈土状铝土矿>碎屑状铝土矿>豆鲕状铝土矿>致密状铝土矿的变化趋势。其中,Ga含量在土状铝土矿和碎屑状铝土矿中含量较高,而在豆鲕状铝土矿和致密状铝土矿中含量相对较低。

    (3) Sc在各类矿石中的含量变化较小。在务正道矿集区,Sc含量呈致密状铝土矿>豆鲕状铝土矿>碎屑状铝土矿>土状铝土矿的变化趋势;在遵义—瓮安矿集区、修文—清镇矿集区及凯里—福泉矿集区,Sc含量总体上呈豆鲕状铝土矿>致密状铝土矿>碎屑状铝土矿>土状铝土矿的变化趋势。

    (4) REE在致密状铝土矿和豆鲕状铝土矿中的含量较高,在碎屑状铝土矿和土状铝土矿中的含量较低。其中,在务正道矿集区、修文—清镇矿集区及凯里—福泉矿集区,稀土总量∑REE总体上呈致密状铝土矿>豆鲕状铝土矿>土状铝土矿>碎屑状铝土矿的变化趋势。在遵义—瓮安矿集区,稀土总量∑REE呈致密状铝土矿>豆鲕状铝土矿>碎屑状铝土矿>土状铝土矿的变化趋势。

  • 关于铝土矿中伴生Li、Ga、Sc、REE的赋存状态,国内外已有了较多的研究成果,特别是关于REE的研究成果尤为突出。国外学者先后在不同国家(意大利、俄罗斯、黑山、希腊、伊朗、多米尼加共和国)的铝土矿中发现了稀土独立矿物,其类型以镧、铈及钇类稀土独立矿物为主[5563]。我国学者首次在广西曲阳铝土矿中发现了氟碳钙铈矿和针磷钇矿两种独立矿物[64],此后又在广西西部(新圩、龙合、天阳)铝土矿中发现了氟菱钙铈矿、氟碳铈矿、方铈矿、磷镧铈矿、针磷钇铒矿五种独立矿物[65];前人通过对重庆武隆申基坪、南川大佛岩与洪官渡铝土矿进行研究发现了方铈矿、氟碳铈矿、氟碳钙铈矿、磷钇矿等稀土矿物[66];在贵州务(川)正(安)道(正)地区,前人通过研究,在含铝岩系的富稀土层中发现氟菱钙铈矿、磷钇矿及氟碳钙铈矿的稀土独立矿物[6769],这与重庆发现的独立稀土矿物相似;近期在河南松岐地区发现了磷钇矿[70],由此可知独立矿物是稀土的赋存形式之一,且一些副矿物(如金红石、锆石及独居石)是稀土元素的重要载体之一[71]。除此之外,国内学者通过研究认为大部分稀土元素主要以离子吸附和类质同象的形式赋存在层状硅酸盐黏土矿物、铝矿物的表面及晶格内[7273]

    铝土矿伴生锂作为潜在的一种新型锂资源,以前很少受到关注。近期由于高新技术产业的发展,吸引了国内学者对铝土矿中锂的赋存状态进行研究。早期学者研究认为,由于锂的离子半径(0.68Å)与镁(0.66Å)、铝(0.51Å)、铁(0.74Å)等的离子半径相近,且锂与镁的化学性质相似,在铝镁硅酸盐矿物中常以类质同象置换的方式存在[74];近期有关学者对重庆[7576]、贵州[30,77]铝土矿含铝岩系中锂的赋存状态进行研究得出了一致的结论,认为锂主要以类质同象置换的方式赋存于黏土矿物和铝矿物,且以黏土矿物为主,而以独立矿物和简单离子吸附形式存在的较少。此外,温汉捷等[78]通过对贵州下石炭统九架炉组和云南下二叠统倒石头组富锂黏土岩进行研究认为,锂主要以吸附方式存在于蒙脱石相;姚双秋等[79]对桂西上二叠统合山组富锂黏土岩进行研究,推测锂主要以锂的独立矿物—锂绿泥石形式存在,部分锂可能以离子吸附状态赋存于蒙脱石。目前,铝土矿(岩)中尚未发现锂的独立矿物,但不能完全排除锂的独立矿物存在。

    镓是典型的稀散金属,具有强的亲石(亲氧)性质,与铝在原子体积、电子构型、电负性、电价、电离势、原子和离子半径等方面非常相似[80],所以Ga与Al的地球化学参数相近,二者之间存在最大程度类质同象的可能性[25,8182];从地质成矿演化看,在表生作用(风化和沉积作用)过程中,镓的质量分布与铝的质量分布呈现明显的正相关性[8384],表生风化作用解离出的Ga会随Al同转移到含铝的含氧盐与氧化物组分中,沉积作用会使Ga从含铝物质中经脱水重结晶,Ga与Al表现出在成岩成矿过程中同步增加[26,74,85],因此,Ga主要以类质同象置换Al或以吸附状态存在于铝的化合物。有关学者对山西[8687]、河南[20,81,88]、广西[84,8990]、贵州[25,9192]、重庆[82,9394]等地的铝土矿石中伴生镓进行研究,认为镓既有以类质同象置换的形式赋存于铝矿物,也有以离子吸附的形式存在于黏土矿物和铝化合物表面。镓在自然界中很少有独立矿物,目前仅发现硫镓铜矿(CuGaS2)、羟镓石[Ga(OH)3]两种镓的独立矿物[74],至今没有发现在铝土矿(岩)中存在镓独立矿物的报道。

    钪是一种典型的稀散元素,自然界中Sc的独立矿物较为稀少,主要分散于其他矿物中[74,95]。相关研究表明,在铝土矿及铝土矿渣中,Sc常以极性的类质同象置换Mg或Fe,从而赋存于黏土矿物、铝矿物及其副矿物(如金红石、钛铁矿、锐钛矿、锆英石、独居石等)晶格中[74,9697]。国内学者通过扫描电镜和能谱分析等方法对重庆[95- 96,9899]、贵州[29,100]铝土矿中钪的赋存形式进行研究,认为伴生元素钪可能以类质同象、离子吸附和超显微结构混入物三种形式赋存于铝矿物、铁矿物及碎屑锆石中。部分学者通过电子探针分析方法对生产氧化铝后的赤泥进行研究,认为钪以类质同象置换的形式分散于矿物中和以离子状态被吸附于某些矿物表面或赤泥颗粒间[101103]。迄今为止,在自然界中仅发现钪铌矿、水磷钪矿和铁硅钪矿三种独立的钪矿物,在铝土矿(岩)中尚未发现存在钪的独立矿物[104]

    综上所述,含铝岩系中Li、Ga、Sc、REE的赋存状态可能主要以离子吸附和类质同象置换的形式赋存于黏土矿物、铝矿物以及副矿物的表面和晶格,此外,还有少量REE以独立矿物的形式存在。值得注意的是,在铝土矿(岩)中,尚未发现Li、Ga、Sc独立矿物,但不能完全排除独立矿物的存在可能性,即使有,也是很少量的,只具有矿物学意义,而无经济价值。

  • 根据关键金属在铝土矿矿石类型上的富集规律可知,随着Al2O3含量的增加和SiO2含量的逐渐降低,铝土矿中Ga得到进一步富集,而Li、Sc、REE出现不同程度的亏损。前人研究表明,铝土矿的形成过程是脱硅去铁富铝的过程,从致密状铝土矿→豆鲕状铝土矿→碎屑状铝土矿→土状铝土矿,铝土矿成熟度由低等成熟度阶段向高等成熟度阶段转变。致密状铝土矿的矿物组成以高岭石、绿泥石、伊利石、蒙脱石等层状硅酸盐黏土矿物为主,而这些具有层状结构的硅酸盐黏土矿物主要是由Mg2+、Fe2+、Al3+、Si4+、Ca2+、Na+等阳离子组成。从致密状铝土矿→豆鲕状铝土矿→碎屑状铝土矿→土状铝土矿的过程中,铝土矿中矿物组成由以层状结构的硅酸盐黏土矿物为主逐渐转化为以链状结构的硬水铝石矿物为主,而硬水铝石矿物主要由Al3+、Ti4+、Fe3+、Sn2+等阳离子组成[30,51,105106]

    根据前面关键金属的赋存状态讨论,Ga与Al的化学性质和离子半径方面非常相似,常以类质同象替代Al的方式而赋存于铝矿物,因此Ga含量与Al2O3含量呈同步增加[74,85]。Sc与Fe、Mg等元素化学性质和离子半径相近,常以不等价的形式发生类质同象置换(如:Sc3++Al3+→Fe2++Si4+或Sc3++Al3+→Mg2++Si4+[74,95],因此,Sc随着铝土矿成熟度的增强而略有亏损。层状结构硅酸盐黏土矿物对稀土元素具有一定的吸附性[24,35,74],且黏土矿物中的Mg2+、Fe2+的离子势与三价稀土元素的离子势更接近[106],因此,随着铝土矿成熟度的增强,稀土元素整体呈亏损状态。铝土矿中Li主要是以耦合类质同象替换方式存在(如:Al3++Li+→Si4+),层状硅酸盐黏土矿物不仅有利于Li+侵入到结构空隙中,同时也能大量地吸附Li+,使得以耦合类质同象替换方式而赋存的锂增加,Li出现明显富集;随着铝土矿成熟度的增强,黏土矿物逐渐减少,使得黏土矿物对Li+的吸附作用减弱,同时具有链状结构的硬水铝石矿物也不利于Li+侵入到结构空隙中,导致以耦合类质同象替换方式而赋存的锂减少,Li出现明显的亏损[30]

  • 据前人资料统计[17],贵州省保有铝土矿资源储量128 926×104 t。其中,务正道矿集区70 550×104 t,遵义—瓮安矿集区9 377×104 t,修文—清镇矿集区40 345×104 t,凯里—福泉矿集区8 654×104 t(表3)。但目前我国关于铝土矿中伴生关键金属元素的最低综合利用标准尚不完善,除伴生镓在《矿产资源工业要求手册》(2010)[107]中明确规定其综合利用最低指标为Ga≥20×10-6外,沉积型铝土矿床中伴生锂、钪、稀土元素等尚无综合利用的工业指标。因此,贵州铝土矿中的伴生关键金属除镓外,其他资源均未进行综合利用评价。为了便于分析铝土矿中伴生关键金属的资源潜力,本文参考国内外一些已有关键金属综合利用标准:Li参照前人的评价指标(Li2O≥500×10-6,即Li≥232×10-6[25,108],Sc参考国外工业回收标准Sc≥20×10-6[13,109],稀土元素参照风化壳离子吸附型轻稀土矿床的工业指标(边界品位:REO≥0.07%,工业品位:REO≥0.1%)[110]

    名称保有资源储量/×104 tLiGaSc
    品位/10-6远景资源储量/104 t品位/10-6远景资源储量/104 t品位/10-6远景资源储量/104 t
    务正道矿集区70 550698.149.2561.414.3340.622.87
    遵义—瓮安矿集区9 377307.82.8977.670.7340.940.38
    修文—清镇矿集区40 345417.316.8452.462.1240.481.63
    凯里—福泉矿集区8 654260.72.2659.660.5230.640.27
    合计128 92671.237.695.15

    根据以上评价标准,由表1和表2可知,铝土矿中伴生Li、Ga、Sc的含量达到综合评价要求,而稀土元素含量仅在务正道矿集区和修文—清镇矿集区含铝岩系中下部达到评价要求。因此,仅预测铝土矿中伴生Li、Ga、Sc的远景资源储量(表3),对于务正道矿集区和修文—清镇矿集区含铝岩系中下部稀土元素暂不预测。经估算,贵州全省铝土矿中伴生Li、Ga、Sc远景资源储量分别为71.23×104 t、7.69×104 t、5.15×104 t。目前,铝土矿资源储量的范围约占含铝岩系分布面积的15%,矿体厚度为含铝岩系的1/4左右,但未圈定铝土矿的铝土岩、铝质泥岩多可作为耐火黏土,表明伴生关键金属Li、Ga、Sc的远景资源储量会增加,而且务正道矿集区和修文—清镇矿集区含铝岩系中下部伴生稀土元素的资源潜力也会较大。由此可见,贵州含铝岩系中关键金属Li、Ga、Sc、REE的资源潜力和潜在经济价值巨大,而且伴生关键金属的经济社会价值甚至会超过主矿产。因此,后续加强含铝岩系中伴生关键金属矿产资源的系统评价和综合研究,不仅能够提高矿产资源的综合利用率,增加新的经济增长点,而且可以解决大量赤泥堆放问题,减少环境污染,实现最大化的经济效益和环境效益。

  • (1) 贵州含铝岩系中不同程度地富集Li、Ga、Sc、REE等关键金属。空间分布规律显示,平面上,北部务正道矿集区Li含量较高,北部务正道矿集区和中部遵义—瓮安矿集区Ga含量较高;∑REE在北部务正道矿集区和南西部修文—清镇矿集区较高,Sc含量在不同矿集区变化较小。含铝岩系垂向剖面总体呈上部富Li、中部富Ga、下部富REE,Sc含量变化较小的富集规律。

    (2) 矿石类型富集规律显示,致密状铝土矿石主要富集Li,土状铝土矿石和碎屑状铝土矿石相对富集Ga,致密状铝土矿石和豆鲕状铝土矿石中相对富集REE,各类矿石的Sc含量变化不大。

    (3) 贵州含铝岩系中Li、Ga、Sc、REE的赋存状态可能主要以离子吸附和类质同象置换的形式赋存于黏土矿物、铝矿物以及副矿物的表面和晶格,少量REE以独立矿物的形式存在。

    (4) 贵州含铝岩系中关键金属Li、Ga、Sc、REE的资源潜力及潜在经济价值巨大,后续加强含铝岩系中伴生关键金属矿产资源的系统评价和综合研究,能够提高矿产资源的综合利用率,增加新的经济增长点,而且还可以解决大量赤泥堆放问题,减少环境污染,实现最大化的经济效益和环境效益。

Reference (110)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return